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Abstract
The tendency to avoid punishment, called behavioral inhibition system, is an essential aspect of motivational behavior. 
Behavioral inhibition system is related to negative affect, such as anxiety, depression and pain, but its neural basis has not 
yet been clarified. To clarify the association between individual variations in behavioral inhibition system and brain 5-HT2A 
receptor availability and specify which brain networks were involved in healthy male subjects, using [18F]altanserin positron 
emission tomography and resting-state functional magnetic resonance imaging. Behavioral inhibition system score negatively 
correlated with 5-HT2A receptor availability in anterior cingulate cortex. A statistical model indicated that the behavioral 
inhibition system score was associated with 5-HT2A receptor availability, which was mediated by the functional connectivity 
between anterior cingulate cortex and left middle frontal gyrus, both of which involved in the cognitive control of negative 
information processing. Individuals with high behavioral inhibition system displays low 5-HT2A receptor availability in 
anterior cingulate cortex and this cognitive control network links with prefrontal-cingulate integrity. These findings have 
implications for underlying the serotonergic basis of physiologies in aversion.
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Introduction

The fundamental features of complex behavior have long 
been discussed as being categorizable into the approach 
to rewards and the avoidance of punishments. These two 
systems can be applied to account for personality and 
motivation (Davidson, 1994; Gray, 1982; Higgins et al., 
1994), positing that there are independent sensitivity in the 
respective systems. Gray provided a powerful theoretical 
framework that was rooted in behavioral psychology and 
neuroscience, called Reinforcement Sensitivity Theory 
(RST) (Gray, 1982). Gray proposes two systems together 
with an additional one: Behavioral Approach System 
(BAS), Behavioral Inhibition System (BIS), and Fight-
Flight System (FFS) (see revised version of RST(Gray & 
McNaughton, 2000)). The BAS promotes behavior that 
leads to positive outcomes (reward and non-punishment) 
and is involved in the experience of positive emotions such 
as hope, elation, and happiness, while the BIS causes inhi-
bition of behaviors that lead to negative outcomes (punish-
ment and non-reward) and is involved in the experience of 
negative emotions such as fear, anxiety, frustration, and 
sadness. BAS corresponds to impulsivity, drug addic-
tion, and attention deficit hyperactivity disorder; BIS is a 
self-reported sensitivity to punishment related to anxiety, 
depression, and pain, and FFS is fear at the psychological 
and psychiatric level (Bijttebier et al., 2009; Corr, 2002, 
2004; Jensen et al., 2016).

In contrast to BAS, however, only a handful of studies 
have investigated the neural basis of BIS. The trait sen-
sitivity to aversive events was associated with increased 
gray matter volume in amygdala and hippocampus (Bar-
ros-Loscertales et al., 2006; Cherbuin et al., 2008) and 
decreased volume in orbitofrontal cortex (OFC) and precu-
neus (Fuentes et al., 2012). BIS variability was also asso-
ciated with individual differences in the neural activities 
of dorsal anterior cingulate cortex (ACC), OFC, striatum, 
amygdala, and hippocampus during anticipation of aver-
sive events, such as monetary loss, measured by functional 
magnetic resonance imaging (fMRI) (Beaver et al., 2008; 
Kim et al., 2015; Simon et al., 2010). A resting-state fMRI 
(rs-fMRI) study similarly found that BIS correlated nega-
tively with regional homogeneity in amygdala and hip-
pocampus (Hahn et al., 2013).

Meanwhile, a number of neuroimaging studies have 
investigated the neural responses to aversive stimuli 
such as signal pain, punishment and monetary loss. The 
core regions of these aversive anticipations are found 
in ACC, anterior insula, OFC, and amygdala (De Mar-
tino et al., 2010; Eisenberger, 2012; Hayes & Northoff, 
2011; Kringelbach & Rolls, 2004; Nitschke et al., 2006; 
Wrase et al., 2007). Congruent brain regions (ACC, OFC, 

amygdala) between aversive anticipation and individual 
variations in the sensitivity to aversive events leads to the 
notion that these regions are the hub for understanding the 
neural mechanisms of BIS.

According to Gray’s concept of BIS, harm avoidance is 
characterized by excessive anxiety and fear. Serotonin 2C(5-
HT2C) receptors are linked to some of the adverse motiva-
tional effects corresponding to avoidance behaviors (Roberts 
et al., 2020), but 5-HT2A receptors have also been reported 
to be intimately involved in the modulation of negative 
emotions, such as anxiety, depression, and pain (Baldwin & 
Rudge, 1995; Sommer, 2009). For instance, higher pessimis-
tic behavior in depressive patients was related to higher fron-
tal 5-HT2A receptor binding as detected by positron emission 
tomography (PET) (Meyer et al., 2003). Harm avoidance and 
5-HT2A receptor availability showed a negative correlation 
in the prefrontal cortex and left parietal cortex (Moresco 
et al., 2002), a positive correlation in the dorsal prefrontal 
cortex (Baeken et al., 2014), or no significant regional cor-
relation (Soloff et al., 2010). Although 5-HT2A receptor ago-
nists may experimentally increase impulsivity (Carli et al., 
2006), the human [18F]altanserin PET study was unable to 
prove these relationships, in addition to a prior report (da 
Cunha-Bang et al., 2013; Frokjaer et al., 2008). Human PET 
studies have shown that 5-HT2A receptors are numerous and 
widely distributed in cortical regions (Savli et al., 2012), and 
it remains unclear whether individual variations in 5-HT2A 
receptor availability are involved in trait sensitivity to aver-
sive events, that is, BIS.

The aim of this study was to elucidate the neural and 
molecular mechanisms associated with individual varia-
tions in BIS. In this regard, the relationships among BIS, the 
5-HT2A receptor availability using PET and the brain func-
tional connectivity measured by rs-fMRI were investigated. 
We first conducted a PET imaging study to explore which 
brain regions of 5-HT2A receptor availability correlated with 
BIS in healthy volunteers. Then, we analyzed rs-fMRI data 
to detect functional connectivity showing correlation with 
local 5-HT2A receptor availability and BIS. Finally, media-
tion analysis was conducted to elucidate the relationships 
among BIS, functional connectivity and the 5-HT2A receptor 
availability.

Materials and methods

Participants

Sixteen healthy right-handed male subjects (age: 
23.3 ± 2.9 years, mean ± standard deviation) were recruited. 
Two subjects were excluded due to incomplete data collec-
tion, and the data of fourteen participants (23.4 ± 2.9 years) 
were analyzed. The demographic summary is shown in 
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Table 1. All participants were free of current and past psy-
chiatric or somatic disorders and had no history of drug 
abuse. Each participant completed psychological testing and 
underwent both rs-fMRI and PET scans. All participants 
provided written informed consent before participating in 
the study, which was approved by the Ethics and Radia-
tion Safety Committee of the National Institute of Radio-
logical Sciences in accordance with the ethical standards 
laid down in the 1964 Declaration of Helsinki and its later 
amendments.

Psychological measurement

To test Gray’s original theory, Sensitivity to Punishment and 
Sensitivity to Reward Questionnaire (SPSRQ) was devel-
oped by Torrubia (Torrubia et al., 2001). This scale indi-
cates good reliability and validity, and accurately expresses 
the essence of Gray’s theory (e.g., extraversion and neu-
roticism in expected directions). All participants completed 
the Japanese version of SPSRQ (Takahashi & Shigemasu, 
2008). SPSRQ is a 48-item self-report measure that consists 
of two subscales, representing sensitivity to reward (SR) to 
measure impulsivity, i.e., BAS, and sensitivity to punish-
ment (SP) to measure anxiety, i.e., BIS. Each item is scored 
on a 4-point Likert scale (1 = disagree, 4 = agree). SR and 
SP scores with higher scores indicating greater impulsivity 
and sensitivity to punishment, respectively. Participants also 
completed the Beck Hopelessness Scale (BHS(Beck et al., 
1974)) and State-Trait Anxiety Inventory (STAI (Spielberger 
et al., 1983)) to measure the levels of depressive hopeless-
ness and anxiety, respectively.

PET acquisition and analysis

All subjects underwent a PET scan to measure regional 
5-HT2A receptor availability. Although [18F]altanserin is a 
reversible and selective antagonist of the rat 5-HT2A recep-
tor subtype (Riss et al., 2011), the changes in endogenous 
5-HT binding do not directly influence the binding of [18F]
altanserin (Kristiansen et al., 2005). A 90-min dynamic PET 
acquisition was performed after injection of [18F]altanserin 
(190 ± 5.4 MBq with molar activity of 167 ± 77 GBq/μmol). 
The scan protocol consisted of 33 frames (10 s × 6, 20 s × 3, 

1 min × 6, 3 min × 4, and 5 min × 14 frames). All of the PET 
scans were performed on an Eminence SET-3000 GCT/X 
PET scanner (Shimadzu; Kyoto, Japan) with a head fixation 
device to minimize head movement. Each PET scan was 
preceded by a transmission scan for attenuation correction 
using a 137Cs source. All PET images were reconstructed 
with the filtered back-projection method (Gaussian filter, 
kernel 5 mm; reconstructed in-plane resolution was 7.5 mm 
in full width at half maximum; voxel size: 2 × 2 × 2.6 mm) 
corrected for attenuation, randoms and scatter.

During the scans, arterial blood samples were obtained 
manually 33 times after radioligand injection to obtain arte-
rial input function (Ishii et al., 2017). Each blood sample 
was centrifuged to obtain plasma and blood cell fractions, 
and the concentrations of radioactivity in whole blood and 
plasma were measured (Ishii et al., 2017). The fractions of 
the parent compound and its radiometabolites in plasma 
were determined using high-performance liquid chroma-
tography from 6 samples of each subject (Ishii et al., 2017).

All PET images were spatially normalized to the stand-
ard anatomic orientation. First, head motion during the 
scans was corrected on the emission images after correc-
tion of attenuation using µ-maps that were realigned to 
each frame of the emission images (Wardak et al., 2010). 
Second, T1-weighted MR images were coregistered to the 
corresponding mean PET images. Third, the MR images 
were spatially normalized and segmented into gray matter, 
white matter, and cerebrospinal fluid using SPM8 (Well-
come Institute of Neurology, University College of London, 
UK). Finally, all PET images were spatially normalized to 
the standard anatomic orientation (Montreal Neurological 
Institute (MNI) 152 standard space; Montreal Neurological 
Institute; Montreal, QC, Canada) based on the transforma-
tion of the MR images.

Because the Logan analysis provided a good compro-
mise between validity, sensitivity, and reliability of imple-
mentation (Price et al., 2001), the PET data were analyzed 
by Logan graphical method (Logan et al., 1990), which 
was applied across the 12- to 90-min integration inter-
vals, and regional total distribution volume (VT) values 
were obtained. We used the cerebellum as reference brain 
region and estimated the nondisplaceable distribution vol-
ume (VND). 5-HT2A receptor availability was determined as 
binding potential (BPP) that was derived from the equation: 
BPP = VT–VND (Innis et al., 2007). All kinetic analyses were 
performed using PMOD (version 3.6, PMOD Technologies 
Ltd., Zurich, Switzerland).

Region‑of‑interest analysis

ACC, OFC and amygdala, which are involved in the sen-
sitivity to aversive events (Barros-Loscertales et al., 2006; 
Beaver et al., 2008; Cherbuin et al., 2008; Eisenberger, 2012; 

Table 1   Demographic chart

SP sensitivity to punishment, SR sensitivity to reward, BHS Beck 
Hopelessness Scale, STAI State-Trait Anxiety Inventory

Age (mean ± standard deviation) 23.4 ± 2.9
SP (median, [interquartile range]) 61, [55 – 67.5]
SR 51, [44 – 59]
BHS 6, [4.5 – 10.5]
STAI 41, [34 – 54.5]
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Fuentes et al., 2012), were applied to ROI analyses. These 
brain regions were extracted by the Harvard–Oxford atlas 
using the CONN toolbox (version 17e, http://​www.​nitrc.​org/​
proje​cts/​conn), averaged over right and left. Subsequently, 
ACC was divided into four segregated subregions, namely, 
subgenual ACC (sgACC), pregenual ACC (pgACC), ante-
rior midcingulate cortex (aMCC) and posterior midcingulate 
cortex (pMCC) (Yeung et al., 2004). Subgenual ACC was 
substituted by subcallosal cortex in the atlas due to small 
volume (0.056 mm3). The volumes of each ACC subregion 
were 9.2 mm3 in subcallosal cortex, 6.5 mm3 in pgACC, 
7.6 mm3 in aMCC, and 6.7 mm3 in pMCC. The volumes 
of the OFC and amygdala were 25.3 mm3 and 5.4 mm3, 
respectively.

Resting‑state fMRI acquisition and analysis

Each subject underwent a 6.8-min rs-fMRI scan, performed 
with a Magnetom Verio 3.0 T MRI scanner (Siemens, Erlan-
gen, Germany) equipped with a 32-channel head coil. Dur-
ing scanning, subjects were instructed to relax with their 
eyes open while gazing at a fixation cross. A single session 
acquired 3.8-mm thick, no gap, interleaved axial 33 slices 
(in-plane resolution: 3.75 × 3.75 mm) with a 30-degree 
angle relative to the AC-PC axis, using a T2*-sensitive 
single-shot EPI sequence with the following parame-
ters: TR = 2000 ms, TE = 25 ms, flip angle = 90 degrees, 
matrix = 64 × 64. A high-resolution T1-weighted anatomi-
cal image using a magnetization prepared rapid acquisition 
gradient echo (MPRAGE) sequence (176 sagittal slices, 
resolution = 0.49 × 0.49 × 1.00 mm, no gap, TR = 2300 ms, 
TE = 1.95 ms, flip angle = 9 degrees, matrix = 512 × 512) was 
acquired for anatomical reference.

Data processing was performed using the CONN tool-
box and SPM12 (Wellcome Institute of Neurology, Uni-
versity College of London, UK) working on Matlab ver-
sion 8.4 (MathWorks, MA, USA). The first four volumes 
were discarded from analysis to account for magnetization 
saturation effects. Preprocessing comprised: 1) realignment 
and unwarping, 2) slice timing correction, 3) segmentation 
and normalization, 4) smoothing with a Gaussian kernel 
of 4 mm. To eliminate correlations caused by head motion 
and artifacts, we identified outlier time points in the motion 
parameters and global signal intensity using Artifact Detec-
tion Tools (ART), which includes the CONN toolbox. For 
each subject, we treated images as outliers if composite 
movement from a preceding image exceeded 0.2 mm, or 
if the global mean intensity was over 3 SDs from the mean 
image intensity for the entire resting scan. Based on the pre-
vious report(Yan et al., 2013), after removing outlier images, 
one subject whose total scan time of less than 3 min was 
excluded from the subsequent analyses.

After preprocessing, we conducted de-noising as fol-
lows: 1) linear regression of noise sources from white mat-
ter and cerebrospinal fluid by CompCor (component-based 
noise correction method) and from outliers by ART and 
from Friston 24 head motion parameter, 2) band-pass filter-
ing of 0.009 – 0.1 Hz was used to pass the low frequency 
fluctuations of interest, 3) quadratic trends were removed. 
Global signal regression was not used to avoid potential false 
anticorrelations.

Image analyses

Association between SP and 5‑HT2A receptor availability

To test for the contribution of 5-HT2A receptor availability 
to SP, we first conducted Spearman’s rank test between SP 
and the BPP value of each ROI using GraphPad Prism (ver-
sion 7, GraphPad Software, CA, USA). P-value less than 
0.05 with false discovery rate (FDR) correction for multiple 
comparisons was considered significant.

Relationship between 5‑HT2A receptor availability 
and functional connectivity

Regions of 5HT2A receptor availability that correlated with 
SP were subsequently investigated by seed-based functional 
connectivity analysis modeling the BPP values in the analo-
gous regions, utilizing the CONN toolbox. This procedure 
may explore the functional connectivities that correlate with 
5-HT2A receptor availability of SP-related ROIs. The thresh-
old was defined as a cluster-level threshold of p < 0.05, FDR-
corrected with voxel-level threshold of p < 0.001, uncor-
rected for multiple comparisons. All reported coordinates 
were of MNI standard space.

Functional connectivity related to SP

The correlation coefficient for each specified functional 
connectivity was extracted. Spearman’s rank test was per-
formed between each extracted correlation coefficient and 
SP. P-value less than 0.05 was considered significant.

Mediation analysis

Finally, for each functional connectivity that was signifi-
cantly related to both 5-HT2A receptor availability and SP, 
we performed mediation analysis to test whether functional 
connectivity might be involved in the link between SP and 
5-HT2A receptor availability. The correlation coefficient of 
functional connectivity was included as a mediator. INDI-
RECT macro (Preacher & Hayes, 2008) with SPSS (ver-
sion 24, IBM, NY, USA) was used. Bias-corrected and 
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accelerated 95% confidence intervals based on 10,000 boot-
strap sampling were used to assess significance.

Results

Behavioral findings

The median SP and SR scores were 61 (interquartile range, 
55–67.5) and 51 (interquartile range, 44–59), respectively 
(Table 1). The median score of BHS was 6 (interquartile 
range, 4.5–10.5) and STAI was 41 (interquartile range, 
34–54.5). The SP scores correlated positively with the BHS 
(rs = 0.86, p < 0.0005, Spearman’s rank test) and at a margin-
ally significant level with STAI (rs = 0.52, p = 0.07).

Regional 5‑HT2A receptor availability measured 
by [18F]altanserin PET

Figure 1 shows the 5-HT2A receptor availability values (BPP) 
in ACC, OFC and amygdala which were selected from the 
premise that these regions were associated with aversive 
anticipation. Higher BPP was measured in the ACC and 
OFC, while low BPP was observed in the amygdala. The 
BPP values in ACC (1.535 [1.376 to 1.773]), OFC (1.503 
[1.41 to 1.633]) and amygdala (0.676 [0.581 to 0.762]) were 
comparable to that of healthy subjects in previous report 
(Savli et al., 2012).

Association between behavioral inhibition system 
and 5‑HT2A receptor availability

The SP score was negatively correlated with the BPP 
value of ACC (rs = -0.66, p = 0.016, Spearman’s rank test 
with FDR correction). No correlations were found in OFC 

or amygdala (rs = -0.47 and rs = -0.57, respectively, both 
p > 0.05 with FDR correction). There was no significant 
correlation between the SR score and BPP values (ACC, 
rs = 0.28, p = 0.35; OFC, rs = 0.02, p = 0.96; amygdala, 
rs = 0.11, p = 0.73).

We further examined the correlations between SP and the 
BPP values in the functional subdivisions of ACC. There was 
no difference in the BPP values among subdivisions of ACC 
(F(3, 48) = 1.06, p = 0.375, One-way ANOVA). SP scores 
correlated negatively with the BPP values in pgACC, aMCC 
and pMCC but not in subcallosal cortex (pgACC, rs = -0.59, 
p = 0.037; aMCC, rs = -0.60, p = 0.034; pMCC, rs = -0.66, 
p = 0.017; subcallosal cortex, rs = -0.46, p = 0.117, Spear-
man’s rank test with FDR correction; Fig. 2).

Association between 5‑HT2A receptor availability 
and functional connectivity

Seed-based functional connectivity analyses were performed 
for above three ACC subregions (Fig. 3, Table 2) to explore 
functional connectivity that correlated with the local BPP 
value. The BPP values in pgACC were negatively correlated 
with the functional connectivity between pgACC and clus-
ters in left lateral occipital cortex and right lingual gyrus 
(Fig. 3a). The BPP values in aMCC were positively corre-
lated with the functional connectivity between aMCC and 
left middle frontal gyrus (MFG) (Fig. 3b). The BPP values 
in pMCC were positively correlated with the functional con-
nectivity between pMCC and clusters in right inferior frontal 
gyrus, left precentral gyrus, left supramarginal gyrus and left 
angular gyrus (Fig. 3c).

Functional connectivity related to behavioral 
inhibition system

Correlation analyses between these specific functional con-
nectivities and SP were carried out. SP was negatively cor-
related with the functional connectivity between aMCC 
and left MFG (rs = -0.67, p = 0.014, Spearman’s rank test; 
Table 3).

Mediation analysis

Finally, we examined whether functional connectivity 
between aMCC and left MFC serve as a potential mediator 
of the link between SP scores and 5-HT2A receptor avail-
ability. We tested two possible models: 1) 5-HT2A receptor 
availability affects functional connectivity, which in turn 
affects SP; 2) SP affects functional connectivity, which in 
turn affects 5-HT2A receptor availability. Mediation analyses 
supported the latter model, indicating that the total indirect 
effect of SP scores on the BPP values via functional connec-
tivity was significant (Bias-corrected and accelerated 95% 

Fig. 1   [18F]altanserin binding potentials of the limbic system. Bar 
graphs represent mean ± standard deviation
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confidence intervals: -0.044 to -0.007; p < 0.05). In sum, 
these results imply that the functional connectivity between 
aMCC and left MFG serves as an important role in linking 
BIS with the 5-HT2A receptor availability.

Discussion

This study investigated whether the individual variations in 
5-HT2A receptor availability contributes to BIS and which 
brain networks were specifically involved. BIS correlated 
negatively with 5-HT2A receptor availability in ACC, and the 
association between BIS and 5-HT2A receptor availability 
was accounted for by the functional connectivity between 
aMCC and left MFG.

Our findings indicate the role of 5-HT2A receptor-medi-
ated serotonergic neurotransmission in ACC, as was previ-
ously linked with BIS personality and aversive anticipa-
tion. Specifically, high BIS individuals showed reduced 
levels of serotonin 5-HT2A receptor availability in ACC. 
The 5-HT2A receptor is known to be related to psychi-
atric symptoms, such as anxiety and depression, as well 
as hallucinations in schizophrenia (Quednow et al., 2009) 

and Parkinson’s disease (Ballanger et al., 2010). In recent 
genetic studies, polymorphism of the 5-HT2A gene has 
been frequently reported in depression and schizophrenia 
(Gu et al., 2013; Tan et al., 2014; Zhao et al., 2014). For 
example, single nucleotide polymorphism of 5-HT2A gene 
was associated with pathological gambling and suicide in 
depressed patients (Arias et al., 2001; Wilson et al., 2013). 
Furthermore, in PET studies, while suicide victims had a 
high density of 5-HT2A receptors in prefrontal cortex (Du 
et al., 2001), treatment-resistant depressed patients dis-
played lower 5-HT2A receptor binding in dorsal prefrontal 
cortex and ACC (Baeken et al., 2012). These contradic-
tory findings represent the activation and the inhibition of 
impulsivity (Fineberg et al., 2010), and the current finding 
supports to the latter. Animal experiments have also shown 
that blockage of the 5-HT2A receptor in medial prefrontal 
cortex suppressed impulsive behavior (Fink et al., 2015); 
human experiments have shown that 5-HT2A agonists facil-
itate punishment learning (Kanen et al., 2021). A recent 
review suggested that 5-HT2A signaling is associated 
with cognitive flexibility (Carhart-Harris & Nutt, 2017). 
Although the causal relationship between 5-HT2A receptor 
availability and BIS still needs to be verified, the present 

Fig. 2   a) Mean parametric image of 5-HT2A receptor binding of [18F]
altanserin PET, shown in sagittal view. b) Subdivisions of ACC, 
overlaid on sagittal T1 MRI template. c) Plot graph of sensitivity to 
punishment (SP) score and regional 5-HT2A receptor binding poten-
tials (BPP). SP was negatively correlated with 5-HT2A receptor BPP in 

pgACC, aMCC and pMCC, whereas no such association was detected 
in subcallosal region (*false discovery rate corrected p < 0.05). Spear-
man ‘s rank test was used. pgACC, pregenual anterior cingulate cor-
tex; aMCC, anterior midcingulate cortex; pMCC, posterior midcingu-
late cortex
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results of mediation analyses indicate that a high level of 
BIS, which positively correlates with depressive hopeless-
ness, causes low 5-HT2A receptor availability in aMCC via 
the functional connectivity of aMCC. This may reflect the 
inhibitory control and cognitive flexibility associated with 
some aspects of depressive symptoms, which may lead to 
downregulation of the 5-HT2A receptor.

This study newly identified the functional connectivity 
associated with 5-HT2A receptor availability in ACC sub-
regions (pgACC, aMCC, pMCC), and the mediation test 
revealed that aMCC-MFG functional connectivity contrib-
uted to the link between BIS and 5-HT2A receptor availabil-
ity. ACC has been consistently linked with cognitive func-
tion, emotion processing, and the autonomic nervous system 

Fig. 3   Surface rendered images of functional  connectivity associ-
ated with 5-HT2A receptor binding potentials in each anterior cingu-
late cortex subregion. a) 5-HT2A receptor binding potentials in the 
pgACC were negatively correlated with the functional connectivity 
of the pregenual anterior cingulate cortex. b) 5-HT2A receptor bind-
ing potentials in the anterior midcingulate cortex were positively cor-
related with the functional connectivity of the anterior midcingulate 
cortex. c) 5-HT2A receptor binding potentials in the posterior midcin-

gulate cortex were positively correlated with the functional connec-
tivity of the posterior midcingulate cortex. Shown clusters remained 
after a threshold of cluster-level p < 0.05 false discovery rate cor-
rected and voxel-level p < 0.001 uncorrected for multiple compari-
sons. Clusters were surface-rendered onto a brain template. Color bar 
represents T-value; negative correlations as blue-purple, positive cor-
relations as red-yellow
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(Bush et al., 2000; Critchley et al., 2001), which is divided 
into 4 subregions (Vogt et al., 2003). The pgACC, the ven-
tral part of ACC, is involved in assessing emotional and 
motivational information. The pMCC and aMCC are part 
of the dorsal ACC, mainly involved in cognitive controls. 
The negative correlation between the BPP of the pgACC 
and the functional connectivity between the pgACC and left 
lateral occipital cortex/right lingual gyrus might be associ-
ated with the psychedelic state, although it is not possible to 
draw any conclusions from the current results. Lysergic acid 
diethylamide (LSD), a non-selective 5-HT2A receptor ago-
nist and well-known hallucinogenic agent, was administered 
to healthy subjects who underwent fMRI scanning, which 

revealed an association with the activation of the primary 
visual cortex, which was correlated with the degree of visual 
hallucination, represented as a ‘psychedelic state’ (Carhart-
Harris et al., 2016).

The aMCC represents a hub where information about 
punishment and negative feedback, such as pain, is moni-
tored, triggering control signals and/or selective attention 
generated in dorsolateral prefrontal cortex (DLPFC) (Mac-
Donald et al., 2000; Miller & Cohen, 2001; Shackman et al., 
2011; Walsh et al., 2011; Yeung et al., 2004). Other stud-
ies have also shown that aMCC is anatomically connected 
with DLPFC in monkeys (Morecraft & Tanji, 2009), and 
that the functional connectivity between these two regions 
is correlated with working memory demand according to 
task-based fMRI (Osaka et al., 2004). A recent study with 
multi-voxel pattern analysis supports the fact that the middle 
frontal gyri appear to be primarily predictive of the sub-
jective experience of fear (Taschereau-Dumouchel et al., 
2020). Consistent with these previous studies, our finding 
of the functional connectivity between aMCC and left MFG, 
a part of DLPFC, possibly reflects the inhibitory control 
and cognitive flexibility associated with negative informa-
tion processing, and in particular, serves a mechanistic role 
in linking BIS and 5-HT2A receptor–mediated serotonergic 
neurotransmission.

It is puzzling that the direction of the path was found 
to be from the psychological trait to the molecular system, 
not vice versa. The mediation test taps on the mathemati-
cal linkage rather than on a biological one. 5-HT2A recep-
tor–mediated stimulation by physiological and acute or 
chronic pharmacological manner may exhibit differently in 
the brain function. To further clarify this question, acute and 
chronic 5-HT2A receptor intervention may alter both BIS and 
the functional connectivity between aMCC and left MFG, 
which shall be left for the future investigations.

There are several limitations to this study. The first is 
that our sample size is comparatively small. Although we 
have set a stringent statistical threshold, future study with 
a larger sample size will be required to replicate the cur-
rent findings. Second, females were not included in the 
present study. As estrogen promotes 5-HT synthesis and 
menstrual cycle, it influences 5-HT2A receptor binding in 
women (Wihlbäck et al., 2004), thereby we exclusively 
included male subjects in the current study. Considering 
that emotional reactions differ between genders, it may 
be interesting to explore the similarities and differences 
between male and female subjects in the future. In addi-
tion, the enrolled subjects were all Japanese. Previous 
behavioral studies have indicated that Japanese are moti-
vated more by negative feedbacks than by positive ones 
(Diener et al., 2003; Heine et al., 2001); thus, our results 
might be biased in this regard. Lastly, functional connec-
tivity only accounts for a linear association between two 

Table 2   Coordinates of functional connectivity that correlated with 
5-HT2A receptor binding potentials in each anterior cingulate cortex 
subregion

A cluster-level threshold of p < 0.05 false discovery rate corrected 
with voxel-level threshold of p < 0.001 uncorrected
ROI Region-of-interest, MNI Montreal Neurological Institute

Brain Region Extent T-value MNI Coordi-
nates

x y z

ROI: pregenual anterior cingulate cortex
  Left lateral occipital cortex 54 -5.70 -22 -80 14
  Right lingual gyrus 33 -5.77 14 -72 -2

ROI: anterior midcingulate cortex
  Left middle frontal gyrus 91 8.35 -36 28 26

ROI: posterior midcingulate cortex
  Left precentral gyrus 119 7.27 -50 2 26
  Left supramarginal gyrus 46 7.23 -42 -44 44
  Left angular gyrus 67 6.84 -28 -58 34
  Right inferior frontal gyrus 50 5.72 52 18 28

Table 3   Correlations between sensitivity to punishment score and 
functional connectivity of each subregion of anterior cingulate cortex

rs Spearmann's rank correlation coefficient, ROI Region-of-interest
* p < 0.05

rs p value

ROI: pregenual anterior cingulate cortex (pgACC)
  pgACC—left lateral occipital cortex 0.52 0.069
  pgACC—right lingual gyrus 0.44 0.135

ROI: anterior midcingulate cortex (aMCC)
  aMCC—left middle frontal gyrus -0.67 0.014*

ROI: posterior mid cingulate cortex (pMCC)
  pMCC—left precentral gyrus -0.46 0.112
  pMCC—left angular gyrus -0.39 0.189
  pMCC—right inferior frontal gyrus -0.35 0.243
  pMCC—left supramarginal gyrus -0.41 0.166
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brain regions. Whole brain networks and anatomical con-
nectivities were not examined in the present study and 
should be addressed in the future studies.

Conclusions

In summary, this multimodal neuroimaging study provides 
novel evidence of the relationship between the behavioral 
inhibition and the 5-HT2A receptor–mediated serotonergic 
function, which is mediated by the functional connectivity 
between aMCC and left MFG, known as a cognitive con-
trol network. The link obtained in the current study may be 
tested by interventional studies using drugs which modu-
late 5-HT2A receptor function to elucidate biological causal 
relationships. From the basis from the current findings, the 
symptoms related with behavioral inhibition of patients with 
anxiety, depression, and pain disorder may benefit from 
medications associated with 5-HT2A receptor function.
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