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Abstract: Ultrasonic vocalizations (USVs) are known to reflect emotional processing, brain neu-
rochemistry, and brain function. Collecting and processing USV data is manual, time-intensive,
and costly, creating a significant bottleneck by limiting researchers’ ability to employ fully effective
and nuanced experimental designs and serving as a barrier to entry for other researchers. In this
report, we provide a snapshot of the current development and testing of Acoustilytix™, a web-based
automated USV scoring tool. Acoustilytix implements machine learning methodology in the USV
detection and classification process and is recording-environment-agnostic. We summarize the user
features identified as desirable by USV researchers and how these were implemented. These include
the ability to easily upload USV files, output a list of detected USVs with associated parameters
in csv format, and the ability to manually verify or modify an automatically detected call. With
no user intervention or tuning, Acoustilytix achieves 93% sensitivity (a measure of how accurately
Acoustilytix detects true calls) and 73% precision (a measure of how accurately Acoustilytix avoids
false positives) in call detection across four unique recording environments and was superior to
the popular DeepSqueak algorithm (sensitivity = 88%; precision = 41%). Future work will include
integration and implementation of machine-learning-based call type classification prediction that
will recommend a call type to the user for each detected call. Call classification accuracy is currently
in the 71–79% accuracy range, which will continue to improve as more USV files are scored by
expert scorers, providing more training data for the classification model. We also describe a recently
developed feature of Acoustilytix that offers a fast and effective way to train hand-scorers using
automated learning principles without the need for an expert hand-scorer to be present and is built
upon a foundation of learning science. The key is that trainees are given practice classifying hundreds
of calls with immediate corrective feedback based on an expert’s USV classification. We showed that
this approach is highly effective with inter-rater reliability (i.e., kappa statistics) between trainees and
the expert ranging from 0.30–0.75 (average = 0.55) after only 1000–2000 calls of training. We conclude
with a brief discussion of future improvements to the Acoustilytix platform.

Keywords: ultrasonic vocalization; automated scoring; dopamine; addiction; mental health; machine
learning; drug discovery; drug development
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1. Introduction

Identifying neural mechanisms underlying mental health and addiction disorders
is necessary to develop successful interventions, but moving from basic science findings
to clinical trials is a lengthy and high-risk process. Although not the sole determinant,
emotional processing is directly involved in many mental health disorders and addictions.
Animal models allow direct measurement and manipulation of the neural circuitry that
drives emotional processing, circuitry that often can only be inferred in human studies [1–5].

Rodent ultrasonic vocalizations (USVs) are known to reflect emotional processing,
brain neurochemistry, and brain function-key observations in animal model studies. USVs
in the 22–28 kHz and 50–55 kHz frequency range are widely recognized forms of social and
emotional expression in rats [6]. USVs in the 22–28 kHz range are provoked by external
threats (e.g., danger) or unpleasant internal conditions (e.g., sickness, pain) [6–8]. These
negative-affect associated 22–28 kHz USVs are initiated through the ascending mesolimbic
cholinergic pathway, originating in the laterodorsal tegmental nucleus (LDT) and extending
through the midbrain, anterior hypothalamic, preoptic, and septal regions [7,9,10]. Positive-
affect associated USVs, commonly referred to as 50–55 kHz FM USVs, are elicited by
activation of sites all along the mesolimbic dopaminergic pathway, including the VTA,
anteromedial hypothalamus, preoptic area, and the NAc [11,12]. Although the frequency
ranges and spectral dynamics of the emitted USVs differ, similar mechanisms also exist in
mice [13,14]. Animal models using both mice and rats are utilized in a broad number of
research areas, including mental health and addiction [15].

Analysis of rodent USVs is a foundational technique that underlies a diverse cross-
section of mental health and addiction research [16–28]. However, this technique is cur-
rently underutilized because USV tabulation is time-intensive, manual, and costly—each
two minutes of recorded rodent vocalizations can require up to an hour to hand-score de-
pending upon the number of calls present. Hand-scoring requires extensive prior training
before a scorer reaches the necessary level of proficiency, and all too often, this training is
sub-optimal, reliability is left unchecked, and large individual differences in hand-scoring
results. Notably, even with proficient hand-scorers, the intensive manual nature of the
analysis limits researchers’ ability to employ the effective and nuanced experimental de-
signs (e.g., multi-hour and/or multi-session experiments) needed to fully explore mental
health and addiction related topics. In addition, with the increased predictive success of
acoustic parameters of USVs over discrete call classification, tools are needed to automate
this process [15,29–32]. This represents a bottleneck for current USV researchers and a
barrier to entry for other researchers as well.

Recognizing that automation can alleviate the USV analysis bottleneck, several re-
search groups have developed automated USV detection and classification algorithms,
including WAAVES [32], XBAT [33], DeepSqueak [34], and MUPET [35]. WAAVES has
enabled Duvauchelle and colleagues to rapidly examine emotional profiles in rats across
a broad range of experimental settings in a fraction of the time required with manual
analyses [30,32,36–39]. However, the main weakness of all of these automated USV scoring
algorithms is that each is customized to specific environmental recording conditions and
types of animals (e.g., rats vs. mice) and requires end user trial-and-error-driven thresh-
olding and/or extensive training data to ensure accurate results. These algorithms cannot
be broadly applied to data collected in other sound environments without tailoring, thus,
impeding research progress.

In this manuscript, we present a snapshot of the development and testing of a new
web-based automated USV scoring tool called Acoustilytix (see http://acoustilytix.com/;
30 May 2021). Acoustilytix is environment-agnostic and implements machine learning
methodology in the USV detection and classification process (We are in the process of
applying this approach in mice). The ongoing development of Acoustilytix is funded
through the National Institutes of Mental Health Small Business Technology Transfer
(STTR) program, whose mission is to support commercialization of products developed
through a partnership between research institutions and industry (It is for this reason that

http://acoustilytix.com/
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many algorithmic details cannot be presented). The ongoing development of Acoustilytix
derives from a unique collaboration between the Cornerstone Research Group (CRG), a
high-technology research and development company near Dayton Ohio, and Dr. Christine
Duvauchelle, an expert in USV animal research in the College of Pharmacy at the Uni-
versity of Texas (UT). The CRG and UT teams were complemented with an international
consortium of USV researchers who generously provided their expertise and input, as well
as their USV data to be used during software development. The consortium included a
dozen USV researchers from around the world who were interested in helping us develop
the most effective automated USV scoring solution.

The remainder of the manuscript is organized into two major sections.
The first focuses on the current state of development of the Acoustilytix platform and

the rigorous quantitative testing and evaluation of the platform. The current version of
Acoustilytix is quite effective at automated call detection, being environment-agnostic and
offering a quantitative measure of call detection uncertainty (see Section 3 below). Acousti-
lytix is less effective when it comes to automated call classification with this still being
a work in progress. In this first section, we briefly summarize some of the user features
suggested by our consortium members that have been implemented into Acoustilytix, such
as rapid automated USV detection, call parsing, detection confidence, call classification,
and parameterization from rats in any USV recording environment. For ease of exposition,
the main body of this section will offer a high-level summary, with many of the algorithmic
and architectural details in Appendices A–C. Next a detailed analysis of the platform
output and a comparison of its effectiveness at automated call detection with the popular
DeepSqueak algorithm is presented. Briefly, with no user intervention or tuning, Acousti-
lytix achieves 93% sensitivity (a measure of how accurately Acoustilytix detects true calls)
and 73% precision (a measure of how accurately Acoustilytix avoids false positives) in
call detection across four unique recording environments and was superior to the popular
DeepSqueak algorithm (sensitivity = 88%; precision = 41%). Acoustilytix is also much
less prone to detecting false positives than DeepSqueak. We conclude with a discussion
of automated call classification and our progress to date. To anticipate, automated call
classification has been challenging. We had to balance the desire to classify multiple distinct
call types with the need for large numbers of hand-scored calls for model testing. To date,
we have developed a machine learning model that automates the classification of a five-call
scheme suggested by one of our consortium members. Call classification accuracy is in
the 71–79% range (well above chance) and will continue to improve as more USV files
are scored, which will provide more training data for improving model fit. Perhaps more
importantly, discussions with our consortium members suggest that they are less interested
in a product that is well calibrated to a single call classification scheme but rather would
like a product that allows them to upload a large number of hand-scored calls from a
classification scheme of their choice that will then be used to train a machine learning
algorithm for subsequent automated scoring. In the General Discussion section, we briefly
summarize what a product offering like this might look like.

The second major section focuses on a recently developed feature of Acoustilytix that
offers a fast and effective automated method for training hand-scorers without the need for
an expert hand-scorer to be present. Building upon the fact that some level of hand-scoring
competency is needed in any USV lab, even with Acoustilytix, we describe a new feature
that leverages learning science principles to optimize hand-scoring training [40,41]. In
short, hand-scorers in training can select the “training” feature in Acoustilytix. They are
presented with a list of training files that contain calls that have been hand-scored by an
expert in the laboratory whose classification serves as the teaching signal. The trainee can
select a file and begin by selecting prototypical calls from a menu that they can visualize
using a spectrogram or listen to at a reduced rate. Once the trainee is ready to begin the
formal call-by-call training process, they are presented, one by one, with a large number
of calls (e.g., 1000), which they may analyze visually using a spectrogram or audibly
by listening to the audio clip at a reduced rate. For each call, the trainee selects a call
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classification and is given immediate corrective feedback (based on the expert scorer’s
classification). If in error, the trainee is allowed to examine any prototypical calls again
and/or make another classification judgement. This process continues until the trainee
provides the correct classification for each call and until all calls in the training set have
been correctly classified. Immediate corrective feedback of this sort is known to speed
learning and enhance proficiency [40,41]. This increases the likelihood that all hand-scorers
in the laboratory mimic the scoring behavior of the expert, thus increasing consistency and
reliability of USV hand-scoring. We present the results from a reliability study that verifies
the effectiveness of the Acoustilytix hand-scorer training approach.

Finally, we conclude the manuscript with a discussion of future Acoustilytix software
development plans and how Acoustilytix might be incorporated into and affect the USV
research landscape.

2. Acoustilytix Program Structure

In this section, we provide a high-level description of the Acoustilytix program struc-
ture. Acoustilytix is a web-based platform that allows USV researchers to easily upload
wav files; to trigger automated USV call detection and classification; and to output call
classifications, counts, and a number of acoustic characteristics of each call to a csv file for
the users’ subsequent analysis.

2.1. Acoustilytix Web-Based User Interface and Features

An overriding aim of the Acoustilytix web-based interface is to offer a user-friendly
experience for USV researchers. Based on extensive discussions with USV consortium
members, the website includes separate pages or drop-down menu functions for wav
file uploading, sorting, and tracking of wav files; selecting a USV classification scheme
(e.g., the 14 call types identified in Wright, et al., 2010) [42]; initiating the automatic
detection; manual verification of automated call detection and classification; and download
of tabulated results to a csv file. We briefly summarize each of these functions below.

2.1.1. User Interface

Once a research group gains access to Acoustilytix, the principal investigator (PI) in a
laboratory creates a username and password, is assigned their own research group, and
receives “administrative” privileges. Once logged in to the Acoustilytix platform, a user
can select the “upload file” feature and can either drag and drop or use an upload button to
select a wav file for upload to the research group. All research group members can access
and score files that have been uploaded by any member of the group. Files can be sorted
in any number of ways, for example, alphabetically by file name, by file uploader, or by
file scorer. In the current version of the platform, users can select one of the default USV
classification schemes from a drop-down menu. (As detailed in the General Discussion
section, we are currently building the capability of allowing a researcher to create their
own call classification scheme. A large number of hand-scored calls from this scheme
will be uploaded to Acoustilytix and will be used to train an automated call classification
model.) Once a call classification scheme is selected, it will be applied for all subsequent
files until a new call classification scheme is selected. A manual verification process has
been implemented that allows researchers to review the automated call classification for
any calls they choose. Once a wav file is scored by Acoustilytix, it is available for download
as a csv. The file will include the start and stop time, user selected call type classification,
and a large number of acoustic parameters associated with each call.

2.1.2. Acoustilytix Features

The two primary features of Acoustilytix are automated call detection and call classifi-
cation. Because different laboratories or individuals within a laboratory might implement
a different call classification scheme, users can select unique call classification schemas to
be used during the automated call classification and/or manual verification process.
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Acoustilytix automatically begins parsing the audio file and detecting calls upon file
upload. Automatic call detection requires three distinct processes—initial detection and
file parsing, call isolation and detection confidence, and call parameterization.

Initial Detection and File Parsing: Two of the primary guiding tenets of the Acoustilytix
automated detection algorithm are: (1) most of the recording time and frequency bins can
be attributed to background noise and (2) USVs are connected in time, frequency, acoustic
power, or some combination of these. Thus, Acoustilytix begins by estimating an overall
measure of the background noise and identifies likely calls as those segments in the file
with connected time, frequency, acoustic power, or some combination that is distinct from
background noise. Possible calls are expanded by several milliseconds to capture both
ends of any potential calls. These expanded segments are organized into a list where any
overlapping segments are coalesced together. These segments with potential calls are then
passed into the call isolation module. A detailed explanation of this process is included in
Appendix A.

Call Isolation and Detection Confidence: To isolate calls and differentiate them from
background and noise, Acoustilytix uses a combinatorial approach applying several filters
and algorithms. These are combined in various ways to differentiate the call from the
background and to assign a detection confidence value (percent certainty). The details can
be found in Appendix B.

Parameterization: Once the calls have been isolated, descriptive parameters can be
calculated; the current version of Acoustilytix calculates over 200 parameters for each
call. These include parameters such as maximum, minimum, and median frequency;
maximum acoustic power (and frequency at which this occurs); and median acoustic
power along the call maximal ridge. A review of commonly referenced call types for both
rat and mice reveals that temporal variations, i.e., slopes, jumps, etc., appear indicative
of many call types [14,42]. Using the ridges from the isolation step as an initial guide,
many temporal-varying parameters are also calculated, including max, min, median, and
standard deviation of slopes for not only the whole call but also the beginning, middle,
and end of the call. Jumps and gaps are also tabulated, as well as a few measures of how
quickly slopes change over time (slope variability), which relates to “trill” type calls. The
current iteration of the software outputs a sub-set of these parameters in the csv file for
researchers. We fully expect the use of these parameters in USV research will become more
common [29,30,43].

Manual verification of automated call detection is not a mandatory step in the Acousti-
lytix process. Even so, and especially since software development is ongoing, we urge
researchers to incorporate manual verification into their workflow. During software devel-
opment, the CRG and UT teams worked iteratively to ensure that the manual verification
process was easy to implement and streamlined. The result of this development effort is
that the platform currently offers three data formats for exploring and interacting with
the data in each file-card, tile, and table. Briefly, the “card” format presents a single seg-
ment/call combination with the ability for users to play back the audio segment while a
line moves through a responsive spectrogram. From this screen, users can modify the call
bounds, mark an auto-detected call as a false positive, or provide a USV classification type.
The “tile” format provides an infinite scrolling list of the segment and call combinations
for a broader overview. The call parameters and any user-selected call classification are
shown on the tile. Tiles can be filtered to include all calls or only calls above a threshold
detection confidence (i.e., percent certainty) for detection. Finally, the “table” format pro-
vides parameterization details for each of the calls, as well as any user added comments or
classifications. These data are able to be downloaded as a csv file for each scoring session.
Scoring data are organized in “scoring sessions” with data linked to the user, wav file,
and call classification scheme. Progress for each scoring session is tracked, and users can
easily resume scoring where they left off. In addition, each file can be scored separately by
multiple users or using multiple classification schemes. Multiple users can score the same
file, and the results can be easily compared to assess inter-rater reliability.
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3. Acoustilytix Validation Results
3.1. Acoustilytix: Detection Statistics

To generate detection statistics, the output from Acoustilytix was compared to com-
piled data from hand-scored USV files and to the output from DeepSqueak. The time
stamps were matched between datasets, and then, calls from the Acoustilytix or Deep-
Squeak dataset were given one of the following three designations:

• Detected: These are defined as calls detected by hand-scorers and by Acoustilytix (or
DeepSqueak).

• Missed: These are defined as calls detected by hand-scorers but not detected by
Acoustilytix (or DeepSqueak).

• False Positive: These are defined as calls not detected by hand-scorers that were
detected by Acoustilytix (or DeepSqueak).

Two metrics were used to quantify the success of Acoustilytix (or DeepSqueak) at
matching the hand-scored data.

• Sensitivity = Detected/(Detected + Missed): This is a measure of how many of the
hand-scored calls are correctly detected by Acoustilytix (or DeepSqueak).

• Precision = Detected/(Detected + False Positive): This is a measure of how many
hand-scored calls Acoustilytix (or DeepSqueak) detects but also the number detected
that are not detected by the hand-scorers.

We examined the sensitivity and precision from different experimental conditions
across different recording environments. These results are summarized in Table 1.

Table 1. Sensitivity and precision of Acoustilytix and DeepSqueak for four experimental conditions across four record-
ing environments.

Sensitivity Precision

Recording
Environment

Brief Description of
Study Manipulation

# of Hand-Score
Detected USVs Acoustilytix DeepSqueak p-Value Acoustilytix DeepSqueak p-Value

1 Cocaine 8552 92.5 91.5 0.016 74.5 42.0 <0.00001

2 Ethanol 1720 94.0 92.1 0.029 72.0 65.8 0.00008

3 Morphine 5771 90.6 75.8 <0.00001 83.6 33.1 <0.00001

4 Sex 3462 96.4 97.5 0.0078 59.5 46.1 <0.00001

For Acoustilytix, the sensitivity (accurate detection of calls compared to hand-scored)
was above 90% in all cases, with an average of 92.7%. This means that Acoustilytix correctly
detected over 90% of the calls noted via hand-scoring in a variety of experimental and
recording conditions without any user intervention or tuning. For DeepSqueak, the sensitiv-
ity was 87.7% on average for 18,770 USV calls. Compared with Acoustilytix, DeepSqueak’s
sensitivity had a p-value less than 0.00001, which showed a significant difference.

Precision is a critical metric for automated detection success, as the number of false
positive USVs should be minimized. As the results in Table 1 suggest, precision was lower
than sensitivity in all cases, ranging from 59.5–83.6% with a weighted average of 73.2%.
DeepSqueak had an average precision of 41.0% with a p-value less than 0.00001 when
compared with Acoustilytix’s 73.2% average precision.

In developing and evaluating the USV detection algorithm, we realized that some
metric of call detection certainty (or confidence) could be of value to USV researchers.
We developed such an algorithm, and these values are part of the csv output file. The
details of the algorithm are being evaluated as potential intellectual property (IP) and, thus,
cannot be presented in detail here. At a high level, call detection certainty is a function of
acoustic power of the parsed signal relative to the background power, with greater acoustic
power for the parsed signal relative to the background being associated with greater call
detection certainty.
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In the next iteration of Acoustilytix, we plan to incorporate a new feature into the
detection workflow that will allow the USV researcher to set a threshold on the call detection
certainty so that all calls below the research-selected threshold will be automatically made
available for manual verification.

3.2. Acoustilytix: Call Classification Statistics

The goal of this section is to report the progress toward developing an automated
USV call classification machine learning algorithm. Our original goal was to develop
an automated USV call classification machine learning algorithm that could accurately
classify 20 or more unique call types that are used in the literature. These might include the
15 call types identified by Wright et al. [42] but also more complex waveforms, including
dysphonation and frequency shifts, which may have particular relevance to translational
research [44,45]. After some initial attempts, this was not deemed feasible in a reasonable
amount of time. In addition, and based on discussions with our USV consortium members,
we were informed that researchers were more interested in having the ability to upload
their own hand-scored USV files that could be used to train an automated scoring algorithm
that they could use exclusively.

The first step in achieving this aim was to identify which of many machine learn-
ing algorithms to implement. Although a number of machine learning algorithms were
explored, we settled upon a random forest algorithm whose parameters were estimated
from hand-scored USV call classification data. For the initial validation test, we wanted
to balance the need to classify a broad range of calls with the need to have the statistical
power to train and test the model. We settled on a five-call classification scheme that has
been used by one of our consortium members and represents a composite of an existing
call classification scheme by Wright et al. [42]. The mapping from the Wright categories
to the five-call composite is presented in Table 2. Representative call spectrograms are
displayed in Figure 1. It is important to note that we are not arguing that this is the best
call classification scheme to be used in translational research. Rather, the goal is to verify
that a random forest algorithm can be used to build an automated hand-scoring tool with
reasonable accuracy.

Table 2. Call types in the Wright et al. [42] classification scheme and their mapping to the five-call
composite with representative spectrograms from Acoustilytix.

Wright et al. [42] Five-Call Composite

Flat Fixed Frequency 50
Short

Upward Ramp

Frequency Modulated 50

Downward Ramp

Split

Step Up

Step Down

Multi-step

Inverted-U

Complex

Composite

Trill

Frequency Modulated with Trills 50Flat-Trill Combo

Trill with jumps

22-kHz call
Long 22-kHz

Short 22-kHz (>300 ms)



Brain Sci. 2021, 11, 864 8 of 19

Figure 1. Representative spectrograms for each of the call types in Table 2.

Results

A machine learning algorithm was trained using a supervised random forest classifi-
cation model where Dr. Duvauchelle’s most experienced rater’s call classifications were
used as the supervised teaching signal for the model. The dataset consisted of 931 rat calls.
Table 3 shows the number of each call type in the dataset.
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Table 3. Number of each of five call types in the five-call composite dataset classified by an ex-
pert scorer.

Call Types Count

Fixed Frequency 50 202

Frequency Modulated 50 342

Frequency Modulated with Trill 50 132

Long 22-kHz 184

Short 22-kHz 71

The experimental dataset was split into a training dataset consisting of 70% of the
calls and a test dataset with the remaining 30% to validate the model’s performance and to
prevent overfitting. The model features consisted of the parameters that were calculated by
the call detection algorithm discussed in the Parameterization section of this paper. Feature
selection methods were employed to down-select the number of predictors in the model
and to prevent overfitting. A grid-based approach was used to tune the random forest
model parameters and to identify the model that yielded the highest test data accuracy.

We began the evaluation process by tallying the number of calls of each type that fall
in each of the following four categories:

• True Positive (TP): The hand-scorer selected call type “A”, and the classifier selected
call type “A”. The hand-scorer and classifier agreed that call type “A” was present.

• True Negative (TN): The hand-scorer did not select call type “A”, and the classifier
also did not select call type “A.” The hand-scorer and classifier agreed that call type
“A” was absent.

• False Positive (FP): The hand-scorer did not select call type “A”, but the classifier
selected call type “A.” The hand-scorer and classifier disagreed and the hand-scorer’s
call type selection was considered the true call type.

• False Negative (FN): The hand-scorer selected call type “A”, but the classifier did not
select call type “A.” The hand-scorer and classifier disagreed and the hand-scorer’s
call type selection was considered the true call type.

These were then used to compute the five model performance metrics displayed
in Table 4: These include precision, recall, F1-score, support, and accuracy, which are
calculated from the TP, TN, FP, and FN values as follows. The F1-Score is the harmonic
mean of precision and recall and gives a better measure of the incorrectly classified cases
than the Accuracy metric.

• Precision = TP/(TP + FP)
• Recall = TP/(TP + FN)
• F1-score = 2 * (Precision * Recall)/(Precision + Recall)
• Support = count
• Accuracy = (TP + TN)/Total Population

Table 4. Evaluation of the five-call composite classification model performance on the test dataset.

Five-Call Type Precision Recall F1-Score Support

Fixed Frequency 50 0.77 0.69 0.73 49

Frequency Modulated 50 0.73 0.87 0.80 12

Frequency Modulated with Trill 50 0.81 0.62 0.70 42

Long 22-kHz 0.92 0.87 0.89 53

Short 22-kHz 0.82 0.75 0.78 24

Overall Accuracy/Support (N-size) 0.79 280
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Precision, recall, F1-score, and accuracy fall between 0 and 1 where values close to 1
indicate strong model performance. Table 4 shows good performance on all of the five call
types across all performance metrics with an average accuracy of 79%, which is well above
chance level (20%).

For comparison, Table 5 shows how well the model performed on the training data.

Table 5. Evaluation of the five-call composite classification model performance on the training dataset.

Five-Call Type Precision Recall F1-Score Support

Fixed Frequency 50 0.89 0.80 0.84 153

Frequency Modulated 50 0.82 0.93 0.87 230

Frequency Modulated with Trill 50 0.92 0.81 0.86 90

Long 22-kHz 0.92 0.92 0.92 131

Short 22-kHz 0.86 0.77 0.81 47

Overall Accuracy/Support (N-size) 0.87 651

Again, model performance was quite good on all performance metrics with an ac-
curacy for the training dataset of 87%. We used a kappa statistic to compare the model
to the expert hand-scorer’s full data set. Kappa statistics range from 0 to 1 with higher
values denoting greater agreement. The model yielded a kappa = 0.79, suggesting strong
agreement between the model and the expert hand-scorer. As new data are scored, the
model fit will continue to improve and further optimize (We also fit the model with over
30,000 hand-scored calls from a team of six hand-scorers. Seventy percent of the data were
used to train the model and 30% to test the model. Test data accuracy was 71% as compared
to the 79% with the single expert hand-scorer, and training accuracy was 88% as compared
to 87% with the single expert hand-scorer.).

3.3. Acoustilytix Validation Results General Summary and Future Directions

In this section we evaluated the effectiveness of Acoustilytix as an automated USV
call detection tool and compared it with the currently popular DeepSqueak algorithm. We
also examined the ability of a random forest machine learning algorithm to serve as the
foundation for automated call classification. We gained a number of important insights
from this evaluation.

First, our automated USV detection algorithm was not significantly impacted by back-
ground noise. Background noise can obfuscate USVs from both hand-scorers and existing
automated call classification solutions. Acoustilytix’s proprietary detection algorithm main-
tained excellent performance even in the presence of background noise. In fact, we showed
that USVs missed by hand-scorers during initial scoring were subsequently identified by
Acoustilytix and confirmed as true calls by hand-scorers. With no user intervention or
tuning, Acoustilytix achieved 93% sensitivity (a measure of how accurately Acoustilytix
detects true calls) and 73% precision (a measure of how accurately Acoustilytix avoids false
positives) in call detection accuracy across four unique recording environments. Critically,
Acoustilytix also generated a call detection certainty metric that reflected the confidence in
the model call detection decision. In future iterations of Acoustilytix, we plan to incorpo-
rate this into the optional manual call verification process so that USV researchers have
the option to manually verify any calls with a detection certainty below some threshold
selected by the USV researcher.

Second, Acoustilytix had significantly better sensitivity and precision than Deep-
Squeak (sensitivity = 88%; precision = 41%) across the four studies analyzed, which in-
cluded four different environments. DeepSqueak had a high false positive rate across the
four studies, which posed a challenge to hand-scoring.

Third, our automated USV call classification algorithm performed quite well on the
five-call composite outlined in Table 2. While there is room for continuous improvement,
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and we have a plan for implementing this (see future directions), Acoustilytix accurately
classified 79% of the hand-scored data from nearly 1000 calls classified by an expert into
the five-call types. This is well above chance (20%). As additional data are uploaded to the
Acoustilytix platform, and as hand-scorers modify or endorse the Acoustilytix classification,
model parameters will continue to be optimized in the interest of increased accuracy.

Fourth, and based on conversations with our USV consortium members, it is clear
that they prefer an automated call classification platform that allows them to upload a
large number of hand-scored USV files that could be used to train an automated scoring
algorithm that they could use exclusively. Our progress with the random forest algorithm
displayed in Tables 4 and 5 suggest that this feature can be effectively implemented in the
next iteration of Acoustilytix.

Fifth, and perhaps most exciting, is the fact that over 200 acoustic parameters asso-
ciated with each detected USV are being computed and can be outputted in the csv files.
As many research groups have shown, including our own [14,30,46–51], the USV acoustic
parameter values are highly predictive of a number of addiction and other health related
outcomes. It is very likely that the ease of acquisition of these parameters when using
Acoustilytix will quicken the pace of research focused on acoustic parameters.

4. Acoustilytix Hand-Scoring Training Feature

As outlined above, the need for highly proficient, fast, and consistent hand-scoring
is a clear bottleneck for the use of USVs in research. Few USV researchers are satisfied
with their current hand-scoring training procedures, and most report their desire for an
automated approach to hand-scorer training.

To accurately hand-score a USV, the scorer must detect the call as distinct from noise
in a spectrogram, then, must visually inspect the USV and listen to it to accurately classify
the call. This mental representation must then be compared with either visual and auditory
mental representations of prototypical calls of each type or actual visual and auditory
spectrograms of prototypical calls from each type. The scorer must then assign the call to a
USV category.

The best way to train this type of complex visual/auditory matching task is to have a
trainee inspect a potential call, classify it, then receive immediate feedback from an expert
hand-scorer on the correctness of their classification. This process should be repeated
several hundred times to build expertise. Unfortunately, this is time-consuming and costly
and, thus, rarely occurs. More commonly, a hand-scorer in training is shown examples
along with verbal descriptions of each call type. They are then asked to score a large
number of calls (e.g., several hundred), and they only receive corrective feedback after the
fact. This is suboptimal, as the best time to strengthen or weaken the neural connection
between the stimulus (call to classify) and response (classification) is to provide feedback
immediately following the classification [40,41,52].

We recently developed a new function in Acoustilytix to automate the hand-scoring
training process that builds upon what is known about learning to optimize the speed,
accuracy, and consistency of the resulting hand-scoring capability. This function includes
an initial USV call familiarization phase in which a hand-scorer in training can view and
listen to spectrograms of numerous calls from any selected call category. Learners can do
this at their own pace for as long as they want. This familiarization tool remains available
to hand-scorers at all points in time. Once a hand-scorer is ready to practice hand-scoring,
they retrieve a USV file from the Acoustilytix platform that has been “tagged” as a training
file. This training file has been hand-scored by an expert from the USV laboratory. The
expert simply generates a csv file that includes the correct response, uploads it to the
platform, and tags it as a training file. Once the hand-scorer in training begins, the first call
is presented. The hand-scorer can look at the call and use all of the tools outlined above
(e.g., zoom), as well as listen to the call. “Flashcards” of prototypical calls are available
for the hand-scorer to view. Once they are ready to classify, they select a call category
from a drop-down menu, and they receive immediate feedback from the platform. If their
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classification is correct, they go on to the next call. If their classification is incorrect, they
can either select a new call category, or they can view the prototypical call flashcards and
can compare them with the to-be-classified call until they are ready to generate their own
classification. This process continues until they classify all calls in the training file. Once
complete, an accuracy rate (based only on the first call classification) is displayed. Multiple
training files can be scored until the hand-scorer is proficient.

Acoustilytix: Hand-Scoring Trainer Inter-Rater Reliability

A group of five individuals were given traditional (unstructured training), with each
subsequently classifying several thousand calls into the five call types described above
over the course of several months (ranging from 6000–31,000 calls classified by each hand-
scorer). At a later date, all of these individuals were asked to individually score a single test
file with approximately 1000 calls that had been hand-scored by an expert (test following
unstructured training). They were given one week to complete this task.

We used a kappa statistic to compare each hand-scorer with the expert hand-scorer.
An example of the kappa statistic calculation can be found in Appendix C. The kappa
statistics for the initial group of five individuals in the test following unstructured training
is presented in the top portion of Table 6. Notice that the kappa values are moderate
following unstructured training ranging from 0.30–0.55 with a mean of 0.42.

Table 6. Kappa statistics for experienced and novice hand-scorers relative to an expert scorer.

Hand-scorer Test Following
Unstructured Training

Test Following
Acoustilytix Training p-Value

Experienced Scorers

1 0.42 0.29 <0.00001

2 0.55 0.60 0.031

3 0.30 0.75 <0.00001

4 0.36 0.69 <0.00001

5 0.49 0.64 <0.00001

Novice Scorers

6 NA 0.47 NA

7 NA 0.42 NA

Next, we asked two individuals with no prior USV hand-scoring experience to com-
plete Acoustilytix training with approximately 1000 calls, and they were given the same
Acoustilytix test. The kappa statistics for the two Acoustilytix-only trained individuals
are presented at the bottom of Table 6 (Hand-scorer 6–7). The kappa values were 0.42 and
0.47 with an average of 0.445. This is comparable to the average kappa value for the five
extensively trained hand-scorers and, in fact, is slightly higher (0.445 vs. 0.42).

Given the success of Acoustilytix training with the two novice hand-scorers, we asked
the five experienced hand-scorers to complete Acoustilytix training with approximately
2000 calls, and they were given the same Acoustilytix test. The kappa statistics for the five
Acoustilytix-only trained individuals are presented in the right-most column of Table 6. The
kappa values ranged from 0.30–0.75 with an average kappa value of 0.60. Four out of
five experienced hand-scorers had significantly better kappa statistics after the Acousti-
lytix training.

These findings suggest that hand-scoring training in which the learner is given imme-
diate call-by-call feedback, and where the teaching signal is based on the call classification
from an expert hand-scorer, leads to more accurate and consistent hand-scoring. Across all
seven hand-scorers, and following Acoustilytix training, the average kappa value was 0.55.
Further training would likely increase this value. USV researchers could set a minimum
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threshold on this value if they like and deem hand-scorers “qualified” only when they
exceed that threshold. Refresher training could also be incorporated to ensure consistency
and accuracy of hand-scoring.

5. General Discussion and Future Directions

Ultrasonic vocalizations in rodents provide a window into emotional and neural
processing. These processes are directly involved in many mental health disorders and
addictions. Despite the potential of USV analysis in mental health and addiction research,
one huge bottleneck exists—namely, the time-intensive, manual and costly nature of USV
hand-scoring—specifically, call detection and call classification.

In this report, we provide a snapshot of our current development and testing of
Acoustilytix, a web-based automated USV scoring tool that is currently environment-
agnostic and implements machine learning methodology in the USV detection and classifi-
cation process.

Based on discussions with our USV consortium, we identified and implemented
a number of features to make the platform easy to use. These include the ability to
easily upload USV files, output csv files, and the ability to manually verify or modify an
automatically detected call. The initial test of the call detection algorithm in Acoustilytix
was promising. With no user intervention or tuning, Acoustilytix achieved 93% sensitivity
(a measure of how accurately Acoustilytix detects true calls) and 73% precision (a measure
of how accurately Acoustilytix avoids false positives) in call detection accuracy across four
unique recording environments and was superior to the popular DeepSqueak algorithm
(sensitivity = 88%; precision = 41%). Long calls and short calls are scored separately in
DeepSqueak because the functions for each algorithm work differently. While analyzing
and comparing the long and short call files, we noticed that DeepSqueak can detect long
and short calls that overlap either partially or fully in time. This can create confusion
regarding the spectral dynamics of each USV and make analysis more challenging. Because
Acoustilytix’s call detection algorithm does not require separate analyses of the USV
recording files, this problem is avoided. The ability to accurately detect USVs without any
user intervention or tuning addresses a major barrier to broad adoption of USV models in
addiction and mental health research. Once we incorporate the quantitative metric of call
detection certainty into the user facing Acoustilytix dashboard, researchers will be able to
set a threshold for manual verification that is fast, accurate, and flexible for users.

We also examined USV call classification accuracy in a five-call composite classification
scheme derived from the Wright et al. [42] call categories. Automated call classification
accuracy using a random forest machine learning algorithm was 79% for the five-call
composite. These accuracy rates are well above chance, but as additional data are uploaded
to the Acoustilytix platform, and as hand-scorers modify or endorse the Acoustilytix
classification, model parameters will continue to be optimized in the interest of increased
USV call classification accuracy. The validation of the random forest model sets the stage
for the next iteration of the automated USV call classification algorithm. As requested by
our USV consortium members, we plan to incorporate a new feature that allows researchers
to upload a large number of hand-scored USV files that could be used to train an automated
scoring algorithm that they could use exclusively.

Perhaps most exciting is the fact that over 200 acoustic parameters associated with
each detected USV are being computed and can be outputted in the csv files. As our
research group and others have shown [31,37,42,53–59], the USV acoustic parameters are
highly predictive of a number of addiction and other health related outcomes. We expect
that the ease of acquisition of these parameters when using Acoustilytix will quicken the
pace of research focused on acoustic parameters.

We also introduced a recently developed feature of Acoustilytix that offers a fast and
effective way to train hand-scorers and is built upon a foundation of learning science [40,41].
Critically, trainees are presented with several hundred USVs one at a time, are asked to
classify the call, and receive immediate corrective feedback based on the hand-scoring from
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an expert in the lab. We tested this approach in seven novice hand-scorers and showed that
their post training call classifications were highly correlated with the expert (inter-rater
reliability: kappa statistic ranged from 0.30–0.75, average = 0.55). This approach increases
the likelihood that all hand-scorers in the laboratory mimic the scoring behavior of the
expert, thus, increasing consistency and reliability of hand-scoring.

We now briefly discuss some future directions and further refinements planned
for Acoustilytix.

Call Detection: With no user intervention or tuning, we were able to achieve high levels
of call detection accuracy that were superior to the popular DeepSqueak algorithm. Even
so, we are exploring the application of machine learning models in the USV call detection
process to further eliminate false positives. As more USV wav files from other research
groups are uploaded to the platform and are run through the detection algorithm, this
model can be further tuned to provide better separation of valid calls from false positives.

Call Classification: Although automated call classification for the five-call type clas-
sification scheme was well above chance, there is still room for improvement. Having
explored numerous machine learning types, we are confident that the supervised random
forest approach is a good approach, but we need a significantly larger pool of data with
hand-scored calls from experts to further improve the predictions from the algorithm. This
process is ongoing. As we outline in this manuscript, we began with an expert hand-scorer
scoring 1000 calls or so. We used that to train the model. Every time the expert scored a
new file, that triggered a model refit so that the fit improved based on the larger set of data.
Users can use the model developed from our expert, or they can use their own expert to
train the model on a specific call classification scheme. Ultimately, we will use all of these
data to train the model using expert scorers from multiple research groups using the same
classification scheme. This is beneficial to the whole USV community because it will lead
to more uniformity and consistence in scoring within and across research groups, making
the research findings more reliable and reproducible.

Acoustic Parameters: Several research groups [10,14,42,46–51,53,54,56,57,59,60], includ-
ing our own [29–32,36–39,43,61–64], have shown that acoustic parameters are predictive
of addiction and mental health related outcomes. For example, our own research group
has shown that acoustic parameter values are predictive of whether a call is emitted by a
high vs. low alcohol drinking rat or whether that rat is male or female [37,43], as well as a
number of other interesting distinctions. Acoustilytix currently computes over 200 acoustic
parameters for each call that can be analyzed by USV researchers. Future work should
consider applying multi-dimensional similarity-based approaches to create novel call classi-
fication schemes that are strictly data driven, in addition to exploring the predictive nature
of specific or groups of parameters.

6. Conclusions

This report offers a snapshot of the development of a web-based automated USV
detection and classification software solution called Acoustilytix. Acoustilytix accelerates
throughput of USV scoring by automating the call detection and classification process.
Acoustilytix achieves high detection accuracy across four distinct environments without
manual tuning or calibration and is superior to the currently popular DeepSqueak algo-
rithm in sensitivity for three out of four environments and superior in precision in all four
environments. Automated call classification was adequate yielding 79% accuracy, but more
work is needed. A feature that allows researchers to upload a large number of hand-scored
USV files that could be used to train an automated scoring algorithm that they could use
exclusively is in demand and under development. The development of an automated
hand-scoring feature is innovative and has been well received by the USV community.
Taken together, Acoustilytix has the potential to speed the process of USV detection and
classification in the interest of developing and testing animal models of mental health
and addiction.
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Appendix A. Details of Initial Detection and File Parsing

To determine where a call is most likely to exist, a coarse spectrogram (STFT) of the
entire file is calculated. This coarse spectrogram is processed to account for differences due
to the recording setup, which can result in varying acoustic power with respect to frequency
bins. A maximum acoustic power is then derived from this processed spectrogram at each
time interval, resulting in a one-dimensional (1D) signal. To determine where possible calls
are located, calls are treated as outliers in this 1D signal.

Appendix B. Call Isolation and Detection Confidence

To isolate calls and differentiate them from background and noise, Acoustilytix uses
a combinatorial approach, applying several filters and algorithms. The details of the
algorithm are being evaluated as potential IP and, thus, cannot be presented in detail here.
These filters are combined in various ways to extract the calls out of the background and
provide a detection confidence value (percent certainty)

Appendix C. Example Kappa Statistic Calculation

In calculating the kappa statistic between two scorers, USVs that Acoustilytix missed
were not included in the calculation. We were unable to include user-added calls in the
analysis because the expert scorer did not add calls when analyzing calls in some recording
files. Acoustilytix, at times, detects false USVs. Both scorers can assign the “false positive”
category to these USVs. The false positive category was included in the kappa statistic
calculation. The method used to calculate the kappa statistic can be found in the University
of Nebraska-Lincoln Bivariate Statistics Hand-Computation Cache (2021, February). To
begin calculating the kappa statistic, a confusion matrix is generated. The confusion
matrix is a 5 × 5 matrix where each row represents one of the five call types, and each
column represents the same five call types. The rows denote the classification for the
individual hand-scorer and the columns for the expert hand-scorer. For each call classified,
the value in one cell of the 5 × 5 confusion matrix is incremented. For example, if both
the individual and expert classify a call as a Short 22-kHz then the cell in the confusion
matrix that represents Short 22-kHz for the individual hand-scorer and Short 22-kHz for
the expert is incremented by 1. This process is repeated until all calls are represented in the
confusion matrix.

Table A1 shows an example of a confusion matrix for 748 rat calls that were each
scored by one individual and by the expert.
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Table A1. Example of a confusion matrix comparing call types between two raters.

Rater 1

Fixed
Frequency

50

Frequency
Modulated

50

Frequency
Modulated

with Trill 50
Long 22 Short 22 Row

Totals

Rater 2

Fixed Frequency 50 110 75 3 0 1 189

Frequency Modulated 50 32 305 16 0 0 353

Frequency Modulated with Trill 50 6 126 60 0 0 192

Long 22 2 1 0 1 0 4

Short 22 0 0 0 0 10 10

Column Totals 150 507 79 1 11 748

Interpreting the confusion matrix is straightforward. On-diagonal elements represent
calls where the two raters are in agreement, and off-diagonal elements represent calls where
the two raters are not in agreement. For example, Rater 1 and Rater 2 agreed that 110 calls
were the “Fixed Frequency 50” call type, but Rater 1 assigned 75 calls to the “Frequency
Modulated 50” call type that Rater 2 assigned to “Fixed Frequency 50.”

The kappa statistic calculation uses the row sums, column sums, and overall call
count. These are shown in the final column and final row in the example in Table A1. The
overall total is the same whether you sum the row totals or column totals and is 748 in
this example.

Next, the total number of agreements are found by summing the values in the diagonal
cells of the confusion matrix. In this example,

Σ agreements = Σ a = 110 + 305 + 60 + 1 + 10 = 486

The expected frequency for the number of agreements is now calculated for each
agreement along the diagonal by multiplying the row total by the column total and dividing
by the overall total (see Table A2). For example, row #1 multiplied by column #1 and
divided by the overall total is:

expected frequency = ef = 189 ∗ 150/748 = 37.90

Table A2. Expected frequencies calculated from confusion matrix in Table A1.

Expected Frequency

Fixed Frequency 50 37.90

Frequency Modulated 50 239.27

Frequency Modulated with Trill 50 20.28

Long 22 0.0053

Short 22 0.1470

The sum of the expected frequencies of agreement by chance is the sum of the expected
frequencies. For example:

Σ expected frequencies = Σ ef = 37.90 + 239.27 + 20.28 + 0.0053 + 0.1470 = 297.60

The kappa statistic can now be calculated with the Formula:

K = (Σ a − Σ ef )/(N − Σ ef ) = (486 − 297.60)/(748 − 297.60) = 0.418
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