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QUANTITATIVE AND SYSTEMS PHARMACOLOGY IN 
DRUG DISCOVERY AND DEVELOPMENT

Systematic application of a model-based drug development 
paradigm has been identified as a valuable approach to 
reverse the continued decline of R&D productivity by shift-
ing compound attrition from late clinical development to 
earlier stages, ensuring more robustly designed studies, 
delivering against go/no go criteria, and improving confi-
dence in the compound.1–6 Model-based (or better stated 
as model-informed)7 drug development encompasses the 
utilization of a “quantitative toolkit” in clinical development 
that includes pharmacokinetic–pharmacodynamic models, 
disease models, comparator models, model-based meta-
analysis approaches, trial design simulations, quantitative 
decision criteria, and performance metrics.1,2,5 More recently, 
the application area of model-based analyses has expanded 
into drug discovery and commercialization in by shifting 
the balance from traditionally used tools such as empirical 
(population) pharmacokinetics (PK) and pharmacodynamics 
(PD) models, toward quantitative and systems pharmacology 
and real-world evidence models.3,5,8–13

Quantitative and systems pharmacology has been 
defined by the National Institutes of Health as an approach 
to translational medicine that combines computational and 
experimental methods to elucidate, validate, and apply new 
pharmacological concepts to the development and use of 
small molecule and biologic drugs.8 A unique feature of quan-
titative and systems pharmacology is that it not only provides 
an integrated system-level approach to determining mecha-
nism of action of new and existing drugs in preclinical and 
animal models and in patients, but also enables prediction of 
efficacy and safety of compounds with (novel) mechanisms 
of action at all stages of drug discovery and development. 
This emerging discipline has drawn an increasing awareness 
and focus in recent years. Two National Institutes of Health–
sponsored workshops have been held; a white paper was 
released8; funding opportunities have been established14; 
and a scientific journal was launched.15

Advancements in the computational and experimental 
techniques have enabled largely systems pharmacology 
model development within academia, research institutes, 
and/or specialized technical companies. A focus on the devel-
opment of system-level (mathematical) models through the 
integration of experimental data and knowledge has led to 
an improved understanding of human biology, pharmacology, 
and safety in multiple disease areas.16–18 For example, com-
prehensive cardiac models are developed that are tailored to 
the prediction of cardiac liability (see for overview).19–21 Within 
oncology, systems pharmacology approaches were used in 
quantifying anticancer drug synergy in resistant cells,22 and 
for predicting the effect of combination schedules on xenograft 
tumors.23 In the diabetes field, a recent review summarized 
the model contributions over the past five decades.24 This 
mathematical modeling, tightly linked to experiments, has 
had a great impact on the understanding of glucose homeo-
stasis, diabetic condition, and its associated complications. 
Integration of diabetes modeling efforts also enabled new 
insights in the underlying mechanisms involved.24,25 More-
over, it highlighted the areas where more focused research is 
required. The application of systems toxicology modeling in 
drug safety assessment was illustrated by Hoeng.26

Within the drug industry, quantitative and systems pharma-
cology has a large emphasis on the application: the integra-
tion of knowledge in order to enable decisions and enhane 
submissions. A wide variety of drug development decisions 
are amenable to being informed by quantitative systems 
pharmacology. Examples include: go/no go decisions, dose 
and schedule selections, optimal trial designs and analysis, 
comparator differentiation, risk-benefit analysis, discovery 
target choices, hypothesis testing in in silico models, com-
paring drug candidate efficacy/safety profiles, predicting 
human doses, optimal combinations of compounds, and 
understanding the right patient population. In the submission 
and life cycle management phase, quantitative and systems 
pharmacology can support dose justification, bridge between 
ethnic groups, inform label sections, underpin commercial-
ization strategy, and enable line-extensions.
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In light of its application, the degree of model complexity is 
determined by available information and the specific question 
that needs to be addressed, resulting in a continuum of mod-
els ranging from empirical to fully mechanistic models, with 
often a mixed “middle out” approach.11 In the pharmaceutical 
industry context, quantitative and systems pharmacology can, 
therefore, be considered as the framework that provides the 
full modeling toolbox that exists within quantitative sciences, 
supporting the model-informed drug discovery and develop-
ment paradigm. This modeling toolbox includes models all the 
way from empirical (e.g., compartmental PK, dose–exposure–
response models), (semi-) mechanistic (e.g., turn-over mod-
els, TMDD), tocomprehensive multidisciplinary (translational) 
systems models (e.g., ordinary differential equations, finite 
element method, logic-based, signaling network reconstruc-
tion, Bayesian model delineation) integrating biological, phar-
macological, and clinical knowledge (Figure 1). In this respect, 
it should be emphasized that systems pharmacology models 
in an industry setting focus primarily on understanding of the 
biological pathway/mechanisms of interest and translatable 
pharmacological pathway interventions that are scalable to 
humans. Whereas understanding basic PKPD concepts (tar-
get site exposure, occupancy, and modulation)4 can enhance 
the confidence in the compound, systems pharmacology can 
increase the understanding of efficacy and adverse events in 

specific diseases and patient populations. In this way, quantita-
tive and systems pharmacology enhances confidence in Proof 
of Concept, as was elegantly conceptualized by Vicini and Van 
der Graaf.11 For this reason, the primary focus of application of 
quantitative and systems pharmacology in drug discovery and 
development is to increase the probability of technical success 
in phase II. Some illustrations of impact examples using quan-
titative and systems pharmacology in industry are: decision on 
endometriosis dose management27; prediction of drug-induced 
modulation of human thyroid hormones based on dog toxic-
ity data28; target selection in drug discovery29; understanding of 
complex PKPD behavior for bronchodilatory effect of zileuton, a 
5-lipoxygenase inhibitor,30 reduction of the number of animals31; 
prediction of cardiac safety32; and in silico design of combina-
tion therapies and identification of predictive biomarkers in 
oncology.33

MERCK’S IMPLEMENTATION SUCCESS FACTORS

Four years ago, Merck, among other pharmaceutical com-
panies, recognized the need for the implementation of quan-
titative and systems pharmacology in drug development as 
a framework for the integration of quantitative knowledge in 
drug projects. The leading theme for implementation has been 
to provide timely quantitative answers to critical questions in 
the development projects in order to enable decision-making.3 
Critical questions that are often posed in drug development 
teams are, for example: How much improvement is required in 
efficacy or safety to be best- or first-in-class?; What is the best 
dose?; Are there subsets of patients who respond differently?; 
Do we understand variability and uncertainty in critical biomark-
ers?; How does a biomarker relate to clinical outcome?; Can 
a human efficacious dose be predicted based on nonclinical 
results? To address these questions, experimentalists and 
quantitative scientists have been closely collaborating in devel-
oping and utilizing integrated models with the aim to enable 
key development decisions and to optimize patient outcomes. 
Many of the modeling efforts started out as focused projects 
for specifically defined questions and in incremental steps, 
evolved into more broadly applicable (systems) models leading 
to ongoing impact and value return (Figure 2).

The time from project initiation to first impact on drug 
development can vary widely. It is dependent on the ques-
tion of interest, project development phase, project timelines, 
and availability of the data. For modeling projects of clinical 
study data, the modeling and analysis plan typically is writ-
ten directly after protocol finalization to be prepared for a 
quick turn-around of modeling results at interim analysis and/
or after database lock. In these cases, the pace of the clini-
cal study determines the total time for the modeling impact. 
However, for discovery and early clinical development project 
questions, such as translational understanding, systems and 
pathway analysis, and comparator modeling, time needs to 
be allocated for appropriate scoping of the background; gath-
ering existing data and modeling approaches from literature, 
preclinical experiments, and previous studies; modeling of 
the data; interpreting and summarizing the results. It is not 
uncommon for a new modeling project that the data gather-
ing and data curation into modeling ready datafiles can take 

Figure 1  Within drug industry, quantitative and systems 
pharmacology focuses on the application: knowledge integration 
to enable decisions and enhance submissions. The aspiration and 
benefits of applying quantitative and systems pharmacology value 
are illustrated in the drug discovery and development continuum. 
Quantitative and systems pharmacology can be seen as the 
framework that focuses on the development of integrated models 
using the modeling toolbox that exists within quantitative sciences, 
supporting the model-informed drug discovery and development 
paradigm.
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more time than the modeling itself. However, within each 
therapeutic area, the quantitative strategy on the transla-
tional approach, systems and pathway analysis, and com-
parator modeling may be amenable for reuse in programs 
for related targets and back-up compound: and in such way 
have possibility for short lead times to impact. During the first 
2 years, a modeling and simulation (M&S) capability group 
with a diversity of mathematical, conceptual, and matrix-
leadership skills was established (backgrounds included: 
clinical pharmacology, pharmacy, pharmaceutical sciences, 
statistics, engineering, bioinformatics, mathematics, biology, 
and biochemistry). Most scientists were PhDs with varying 
level of experience (see also).34 This expert group recognized 
and responded to a flexible demand. Flexibility was obtained 
through partnerships with external vendors and through 
cross-functional network collaborations with other quanti-
tative functions, such as biostatistics, informatics, applied 
mathematics, and clinical pharmacokinetics. Strong matrix 
leadership was a prerequisite for successful network collabo-
rations and the optimal integration of experimental, clinical, 
and quantitative functional input (Figure 3).

Capability enhancement was achieved through process 
improvements, best practices implementations, and method-
ology development. One large component was the formation 
of a number of specialty modeling teams focusing on inno-
vative methodology development and its application to the 
portfolio. A comparator modeling capability was built through 
the training of internal resources; training provided to proj-
ect team members: development of uniform processes for 
data collection and warehousing; access to modeling tools 
and external vendors; and implementation of novel commu-
nication and visualization routines. Comparator modeling is 
now systematically used at Merck to differentiate compounds 
from standard-of-care treatment and (potential) competitors 

in order to define best-in-class criteria, determine clinical 
viability, and assist in marketing strategies. Another specialty 
team focused on improving clinical trial simulation methods 
and tools for trial design optimization from a cost avoidance 
perspective. In the formulation development area, in  silico 
predictive tools and model-based IVIVC approaches sup-
ported formulation development and life-cycle management 
resulting in more successful late stage formulation trials and 

Figure 2  Quantitative and systems pharmacology model development generally follows a learning–confirming cycle. Key questions in a 
drug project are framed before start of model development, and the most appropriate modeling approach is identified. The model should 
reflect current physiological and statistical knowledge and is parameterized using data from various sources (ideas, literature, in-house or 
external studies, expert opinion, and assumptions). Transparency on the data, sources, and assumptions is critical. Previously unmeasured 
parameters can be identified, fit, or optimized on the basis of available data. The outputs are answers to the question at stake, enhanced 
understanding, and ability to explore untested scenarios through simulations. The model itself can be viewed as a representation of integrated 
form of knowledge.
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also regulatory success. Other specific focus areas for spe-
cialty teams included PK/QTc to assess QTc risk and inform 
trial design (thorough QT study, phase III QTc collection 
intensity), translational PKPD (informing probability of clini-
cal success of preclinical candidates), pediatric, and physi-
ological platform modeling. As for all these modeling efforts, 
the application to drug programs was imperative. In addition, 
infrastructure projects around computational capabilities 
were spearheaded in order to increase impact and efficiency. 
Finally, process improvements for reporting, quality control, 
reviewing and resourcing were put in place.

The key success factors in influencing decision making were 
the thorough scoping of opportunities and the rigorous priori-
tization of opportunities in each therapeutic area, enabling a 
maximized use of the M&S capability for activities with the high-
est value to the business. As seen everywhere, the opportunity 
space greatly exceeded the capacity and highlighted the need 
to focus on the highest value opportunities. Scoping and priori-
tization were facilitated by the formalizing M&S representation 
on development project teams and governance bodies. This 
single access point in the project team created a clear account-
ability for the quantitative systems pharmacology activities.

RETURN OF INVESTMENT AND ENABLED DECISION 
MAKING

At Merck, the impact of quantitative and systems pharmacol-
ogy in drug development has been demonstrated in many 
therapeutic areas in the form of dose selections (phase Ib, 

II, and III), study designs, go/no-go decisions, influences 
on clinical development plans and portfolio prioritizations at 
milestones (lead identification and optimization, preclinical 
candidate nomination, proof of concept, phase IIb and III and 
postmarketing). In addition, modeling supported decisions 
on dosing, formulation, pediatric, and thorough QT (studies; 
heart muscle repolarization test) (TQT) strategies in regula-
tory interactions and filings. This aligns with other industry 
reports on tangible impacts in terms of decision making, cost-
savings, cost-avoidance, and cycle-time improvements.5,12

Merck has rigorously prioritized modeling support based on 
expected impact. Each year, ~50% of the opportunity space 
was prioritized. Approximately 10 projects were seen as inform-
ing key decisions. Impact was defined by senior management 
rather than by the modelers themselves. From the first year 
onwards, high impact was achieved if the model-informed deci-
sion resulted in a significant change in the program strategy 
which would have been unattainable without the modeling. The 
10 key impacts annually typically were divided equally between 
enabling and no-go decisions. Among the M&S-enabled deci-
sions were dose and schedule selection for phase I, II, or III, 
accelerated time to start of the next clinical trial and ability to 
file. In supporting regulatory interactions, M&S supported dose 
justification, bioequivalence claims, label recommendations, 
timing of TQT study and optimizing (costly) QTc assessments 
in phase III, and pediatric development plans and doses. No-go 
impacts were primarily due to quantitatively demonstrating the 
lack of a therapeutic window, or a too low probability of suc-
cess for differentiation. As example: a drug development team 

Figure 4  Illustration of Merck’s variety of systems pharmacology models for virtual organs, tissue and diseases developed in house and with 
external partners. Courtesy of the virtual tumor graphic is Physiomics PLC.23
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asked if there existed a therapeutic window that would allow 
our molecule to be best-in-class. Integrated models were devel-
oped linking the relationship between the biomarker and the 
variability in exposure in order to understand the probability of 
preventing stroke while minimizing bleeding risk and QT pro-
longation potential. This was accomplished by leveraging an 
internal biomarker study, phase I and II trial results, and exter-
nal data for hundreds of patients on comparator molecules. The 
modeling results indicated that there was no differentiation in 
safety vs. efficacy from existing comparators, and enabled the 
no-go decision. This no-go decision led to significant cost sav-
ings and demonstrated the high value of comparator modeling. 
The modeling-informed no-go decisions for these key impacts 
resulted each year in direct substantial cost avoidances for 
planned clinical trials as assessed by the finance department.

Two case studies are presented below to highlight the 
impact of quantitative and systems pharmacology on the 
development of new treatments for osteoporosis and pso-
riasis. The choice of case studies was made to illustrate the 
spectrum of enabling clinical decision making. The first case 
study is illustrating the application of finite element analysis 
to provide an in silico biomarker. The second case study is 
the application of a model-based meta analysis, as an illus-
tration of the importance of our comparator analysis capa-
bility development. Beyond these examples, Merck strongly 
focused on the development of physiological platform mod-
els for organs (lung and circulation), tissues (bone- see case 
study below and tumors), and diseases (Alzheimers dis-
ease, hepatitis C virus, asthma, cancer, and diabetes), as 
illustrated in Figure 4. These in silico organs and systems 
disease models, being developed in house and in collabora-
tion with external partners, are incrementally enhancing our 
internal drug discovery and development decisions with their 
ability to investigate what-if scenarios through simulations.

CASE STUDY 1: FINITE ELEMENT ANALYSIS OF BONE 
IMAGING SUPPORTING PREDICTION OF CLINICAL 
EFFICACY OF ODANACATIB IN PREVENTION OF  
POSTMENOPAUSAL OSTEOPOROSIS

Odanacatib, a selective CatK inhibitor, is currently being devel-
oped for the treatment of postmenopausal osteoporosis, a 
progressive degenerative bone disease leading to increased 
fracture risk. The associated morbidity and increased costs 
with the increase in life expectancy make osteoporosis an 
important world-wide health issue. Due to slow disease pro-
gression, large numbers of patients and long clinical trials are 
required to demonstrate the efficacy of new treatments that 
reduce fracture risk. The measurement of areal bone mineral 
density at the spine and hip is the current clinical standard 
for diagnosing osteoporosis, assessing the fracture risk, and 
estimating the treatment effects. However, the areal bone 
mineral density marker is a two-dimensional projection of the 
three-dimensional bone structure, and provides only a partial 
explanation of the bone fracture risk in osteoporosis patients. 
Full evaluation of bone micro- and macro-architecture in the 
assessment bone density can be done through high resolu-
tion-peripheral quantitative computed tomography, an in vivo 

imaging technique. Finite element analysis is used as an 
approach to mathematically recreate 3D structures based 
on the in vivo images and thereby aid in the evaluation of 
the bone mechanical response under various loading condi-
tions and prediction of fracture risk. Therefore, finite element 
analysis could potentially serve as an improved noninvasive 
surrogate marker for bone strength and associated fracture 
risks.

Key questions in the odanacatib development program 
were: (i) Can finite element analysis be used as a nonin-
vasive surrogate biomarker for bone strength and quality?; 
(ii) Can this marker support differentiation of odanacatib 
from standard-of-care treatment and thus provide insight 
in clinical viability; (iii) Can this biomarker, as exploratory 
endpoint in interim analysis, aid in prediction of clinical trial 
outcome to support go/no go decision? The finite-element-
analysis-based bone strength methodology was devel-
oped and qualified to address the first two questions in the 
ovariectomized nonhuman primate, which is used as an 
animal model of postmenopausal bone loss. A schematic 
overview of the model qualification is provided in Figure 5. 
During in vivo studies, high-resolution bone images were 
taken to determine the impact of osteoporosis treatment on 
bone structure and strength. At the end of treatment, the 
bone sections were removed upon euthanasia, reimaged 
ex vivo, and experimentally tested for strength (peak load 
and stress) in axial compression using a hydraulic device. 
Based on the images, finite element analysis provided in 
silico predictions of these bone strength parameters. The 
qualification of the finite-element-analysis was confirmed 
by a good correlation between finite element analysis pre-
dictions and ex vivo measurements of bone strength with 
the understanding of its variability (For detailed description 
see refs. 35,36). Moreover, high-resolution imaging out-
performed by 28% the classical X-ray-based bone mineral 
density as a fracture predictor.35 In a subsequent study, 
the predictive performance of finite element analysis was 
investigated and qualified through predictions of longitudi-
nal bone changes and treatment efficacy based on images 
earlier in the study. Moreover, in a head-to-head compari-
son, the qualified finite element analysis method also quan-
tified the superior efficacy of odanacatib over alendronate 
in ovariectomized nonhuman primates.36

Successful prospective predictions in nonhuman primates, 
coupled with experimental cadaver data from the literature, 
provided confidence that assessment of bone strength 
through finite element analysis in clinical studies could be 
used to support the third question. In a 2-year randomized, 
double-blind placebo-controlled phase III trial, finite element 
analysis was included as an exploratory endpoint for estima-
tion of bone strength and longitudinal prediction of efficacy to 
support internal decision making.37,38

In summary, finite element analysis has been used as a 
noninvasive surrogate biomarker for bone strength and qual-
ity, and thereby has provided unique clinical insight into the 
biomechanical effects of new osteoporosis therapy, and has 
enabled comparator differentiation and clinical longitudinal 
predictions of bone strength, thereby enabling decision mak-
ing in the odanacatib program.
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CASE STUDY 2: PHASE IIB AND PHASE III DOSE 
SELECTION OF TILDRAKIZUMAB FOR TREATMENT OF 
PSORIASIS LEVERAGING COMPARATOR DATA

Tildrakizumab is a monoclonal antibody designed for the 
treatment of psoriasis. Psoriasis is a common, chronic 
immune-mediated skin disease that varies in severity from 
minor localized patches to complete body coverage. Psoria-
sis Area and Severity Index (PASI) is the most widely used 
tool for the measurement of severity of psoriasis. PASI com-
bines the assessment of the severity of lesions and the area 
affected into a single score in the range 0 (no disease) to 72 
(maximal disease).

Key questions in the development program were: (i) What 
is the comparative efficacy of tildrakizumab against it com-
petitors?; (ii) What doses need to be studied in phase IIb 
to establish the full dose response curve?; (iii) What is the 

optimal dose and schedule to be used for phase III confirma-
tory trials?

The first two questions were addressed in a compara-
tive dose–response model analysis across five compara-
tors (adalimumab, etanercept, infliximab, ustekinumab, and 
briakinumab, with published mean study-arm level data from 
>10,000 patients) and in-house phase Ib data of tildraki-
zumab.39 Tidrakizumab was compared against comparators 
assuming that all parameters, except for drug potencies, 
were similar across all comparators (Figure 6a). In clinical 
trial simulations, the doses were explored that would char-
acterize the full-dose response curve. The doses 5, 25, 100, 
and 200 mg administered at weeks 0 and 4, followed by every 
12 weeks were predicted to provide evidence of the plateau 
of the dose–response curve, to allow for of a dose–response 
relationship, and to enable determination of the lowest dose 
resulting in meaningful efficacy (Figure 6b).

Figure 5  Schematic view of the development and qualification of finite element analysis as noninvasive marker for longitudinal prediction 
of bone strength and compound differentiation. From a high-resolution image of the ultradistal radius in a monkey, an engineering model of 
bone is created. Using finite element analysis, the deformations that the structure undergoes under a load are calculated. The force at which 
the bone goes into fracture is what is used to represent the strength of the bone. The finite element analysis was validated by comparing 
the predicted strength to actual failure load. Subsequently, high-resolution peripheral quantitative computed tomography and finite element 
analysis of bone strength at the distal radius in ovariectomized adult rhesus monkey demonstrated longitudinal efficacy of odanacatib and 
differentiation from alendronate. The finite element analysis method was incorporated in phase III trials to evaluate bone strength progression 
on the ultradistal radius site in humans.
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The phase IIB study results were in accordance with the 
predictions made and subsequently used to develop an 
exposure–response model to analyze PASI-75 and PASI-90 
response rates.40 Clinical trial simulations were conducted to 
investigate the potential outcome of phase III clinical trials. 
Key assumptions were made that (i) phase IIb study subjects 
were representative for the phase III population; (ii) the aver-
age serum concentration (Cavg) up to week 16 was a rea-
sonable measure of exposure to predict week 16 PASI-75 
and PASI-90; and (iii) that the developed exposure–response 
model was appropriate to describe tildrakizumab responses. 
In total, 10,000 trials were simulated with cohorts of 300 sub-
jects. Results demonstrated that the 100 and 200 mg doses 
are likely near or at the plateau of the exposure–response 
relationship (Figure 6c) and were both selected for phase 
III development to evaluate if the 200 mg dose may have 

a clinically meaningful higher PASI-90 response rate. To 
address the optimal scheduling question, a semimechanistic 
PK-PD model was developed to describe the PASI fraction 
of baseline over time.41 Clinical trial simulations were con-
ducted to explore various maintenance doses and dosing fre-
quencies taking parameter uncertainty and between-patient 
variability into account. Figure 6d shows that the 12-week 
dosing interval results in a sustained response at the 100 mg 
dose level. A less frequent dosing regimen would not lead to a 
sustained PASI-75 response. This underpinned the decision 
using a 12-week dosing frequency for 100 and 200 mg with 
the expectation to result in optimal efficacy for the treatment 
of psoriasis. In summary, model-based analysis, comparator 
analysis, trial simulations have been critical components in 
design and analysis considerations of tildrakizumab phase II 
and III clinical trials.

Figure 6  Dose selection of Tildrakizumab for treatment of psoriasis levering comparator data analysis. (a) Comparative landscaping: efficacy 
(y-axis) for various subcutaneous (SC) doses of tildrakizumab (based on Ph1b data) as compared to recommended dosing regimens for 
adalimumab, etanercept and infliximab, ustekinumab and briakinumab with 80% confidence intervals. (b) Results from clinical trial simulations 
for the selected dose range for phase IIb development of tildrakizumab. (c) Results from clinical trial simulations for PASI-75 in cohorts of 
n = 300 based on exposure–response models. (d) Clinical trial simulations of PASI-75 response rate during treatment with 100 mg SC 
tildrakizumab administered in 12-, 16-, or 26-week dosing intervals.
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DRIVERS FOR CONTINUED AND SYSTEMATIC 
SUCCESS OF QUANTITATIVE AND SYSTEMS 
PHARMACOLOGY

Despite significant impact examples as provided above and 
found in the literature, continued efforts are required to reach 
the benefit potential of quantitative and systems pharma-
cology in drug discovery and clinical development. These 
specific focus areas include: effective communication of mod-
eling results and impact; adequate qualification of systems 
pharmacology models; timely funding and efficient execution 
for the work to be influential; integrative knowledge enabling 
infrastructure; strategic partnering with external specialists: 
systematic implementation in drug discovery; and increased 
utilization in regulatory interactions.

Effective communication remains a challenge for model-
ers. On one hand, scientists need to be able to lay-out vision-
ary messages on tangible benefits for approval on resourcing 
from senior management. On the other hand, they need to be 
able to develop, communicate, and review a sound technical 
approach. Moreover, successful model development requires 
substantial experimental data collection and strategic contri-
butions from a variety of functional experts (e.g., pharmacol-
ogy, biology, clinical research, biostatistics, mathematics). It 
can be challenging for the modeler to efficiently solicit biologi-
cal and pharmacological input (scientific and experimental) 
without burdening the pharmacologist with mathematical and 
modeling details. In general, detailed technical and mathe-
matical descriptions should be used only for documentation 
purposes and a peer-to-peer learning environment, and not 
for cross-functional or management discussions. However, 
model skeptics often require a high level of technical detail, 
which when provided often still is insufficient for reducing 
skepticism. Therefore, technically-skilled scientists possess-
ing excellent communication skills are needed. It also may be 
helpful to pair technical experts with good communicators to 
lay out the application and value.

The qualification of models is essential in the use and 
communication of systems pharmacology models. The level 
of model qualification is dependent on the question being 
addressed. If a multimillion dollar clinical study is at stake, 
it requires significant confidence in the models’ robustness. 
Robustness is not only assessed through the standard evalu-
ation of parameter estimate precisions, diagnostic plots, 
individual fits, and predictive checks, but also through the 
evaluation of the models’ consistency with the physiology 
and evaluation of parameter sensitivity to key assumptions. 
In addition, model robustness is tied closely to experimen-
tal data and can be enhanced by generating time-course 
data, integrating multiple data sources, evaluating prospec-
tive predictions of nonobvious responses, and validating 
through external data. In the recently proposed framework 
for model qualification of physiological models,42 the first step 
frames the project questions and the project team agrees 
on the use of the model inferences for the decision making. 
In a second step, the critical assumptions are summarized 
and highlighted. Moreover, data sources (clinical, preclinical, 
literature) and a method for assessing inter- and between-
subject variability are clarified upfront. Following the model-
ing, uncertainty in predictions (e.g., sensitivity analysis for 

critical assumptions, data, and parameters) are assessed. To 
ensure biologically plausible results, communication of the 
approach (assumptions, limitations, results, and interpreta-
tion) with the relevant functions (biologists, clinical pharma-
cology and disease experts) is critical. This approach is not 
different from an earlier proposed general model qualifica-
tion method to ensure that physiological models are fit for 
purpose.43 Beyond statistical evaluation, a physiology model 
can be used with confidence in drug discovery and develop-
ment if it has addressed the following criteria: relevance to 
research context, dealing with uncertainty, dealing with vari-
ability, comparison to data.43

A team’s failure to achieve the intended impact can be 
a result of getting stuck in the model building phase. Good 
planning dictates that model building be completed well in 
advance of a decision date, in order to allow for simulation, 
interpretation, review, and discussion with in the project team. 
Another failure of demonstrating timely impact can be that 
development of complex disease/systems pharmacology 
models requires substantial time and investment. Therefore, 
efforts should be made to rapidly develop critical components 
to answer specific project questions, thereby providing incre-
mental value for the business prior to full integration into a 
comprehensive platform model. Again, visionary leadership 
and good communication is helpful to lay-out future ben-
efits for prioritization and justification of investments. More-
over, continuous managing of key stakeholder expectations 
increases the likelihood of model-informed decision making.

Integrative understanding of preclinical and clinical data 
is imperative to enable informed decisions. Both the volume 
and variety of data generated during drug development have 
increased tremendously. Efficient use of modeling requires 
access to diverse and high quality data sets and a flexible 
data management infrastructure. Achieving this task in large 
pharmaceutical companies is challenging because the data 
sources and types differ among therapeutic areas, functional 
areas, and development stages. Without appropriate data 
capture, storage, and retrieval routines, data transformation, 
integration, and visualization will not be possible. One pre-
requisite is the availability of agreed data standards to allow 
integration of experimental data from various sources and 
a flexible data capture tool.12 In addition, visualization tools 
based on the knowledge plot concept44 would allow integra-
tion of in vitro, in vivo, clinical, efficacy, and safety data in 
order to enable scientific and informed decision-making in 
various stages of drug development. Such integration and 
visualization tool could be used as a forward- and back-trans-
lational tool, that can result in an improved understanding of 
the competitive edge for a particular project or disease area 
portfolio, and benchmarking multiple attributes evaluating 
compounds during due diligence.

Development of specialized physiological platforms mod-
els can occur via strategic partnering with vendors or insti-
tutions that provide advanced data-analysis tools, in depth 
(mathematical) knowledge of the disease, and/or specific 
technical expertise. The mutual benefits of such partnering 
include access to highly specialized models for pharmaceuti-
cal industry, and access to experimental data for specialized 
partners. These model-building collaborations often lead to 
new business opportunities (in the form of models, data sets, 
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technology, software, etc.) for these partners that they could 
sell to others. Therefore, creation of collaboration agree-
ments that ensure optimal exploitation of advanced models 
beyond the development phase is imperative. Also, it can 
be anticipated that the investment of large pharmaceutical 
companies in specialized model development through part-
nering with vendors, may eventually lead to future “off the 
shelf” purchase of platform model solutions. In such cases, 
due diligence would be required on the scientific foundation 
and on the ability to address project questions. Multiple mod-
eling approaches to predict QT liability in the cardiovascular 
area illustrate the need for clarification on the qualification 
level for the intended application.32,45–47 To this end, it may be 
advantageous to precompetitively share data and knowledge 
for comparison and crossvalidation. In recent discussions 
with regulators, such appeal was made for the precompetitive 
sharing of models and data in collaborative efforts between 
pharmaceutical industry, academic investigators, research 
institutes (such as National Institutes of Health), and regula-
tors.18,48,49 An example of such successful collaboration is the 
CAMD consortium focusing on understanding the placebo 
response in Alzheimer’s disease clinical trials.50 A number of 
challenges in collaborative model building include definition 
of data standards, agreement on approval processes, and 
life-cycle management of the model and knowledge; how-
ever, the opportunity lies in the advancements in predicting 
drug safety and efficacy.

The benefit–risk relationship of a drug is largely determined 
once the target and compound are selected.11 Therefore, a 
systematic implementation of model based drug discovery 
has been advocated to increase the phase II proof of con-
cept success rate.4,9,12 Successful utilization of quantitative 
and systems pharmacology (concepts, models, resources) 
in drug discovery requires a change from discrete functional 
contributions to a crossfunctional integration of knowledge in 
discovery project teams. Early alignment on a translational 
quantitative biomarker plan should provide the clinical line 
of sight for both biomarker development and modeling activi-
ties. Adaptive in vivo experimental design in the screening 
cascade can enable learning about the system properties of 
relevant markers, comparing to comparator compounds, and 
translation combined with early experimental medicine stud-
ies.12,31 Moreover, enabling technologies, such as real-time 
visualization and quick simulations prior to all in vivo experi-
ments, could impact assumptions, trigger learning, and opti-
mize use of animal resources, and enable rational integrative 
decision making on target and compound progression.

A last challenge is the use of model-informed approaches 
in regulatory interactions. Readiness and an increase in 
willingness from Regulators to accept model-informed 
approaches in the interactions with the sponsors have been 
noted at recent M&S workshops (in 2013 with the US Food 
and Drug Administration and in 2011 with the European 
Medicine Agency). However, given the potential complexity 
of systems pharmacology models and the level of inferences 
made, specific documentation requirements for this area 
should be clarified from a regulatory perspective. In recent 
discussions between European Federation of Pharmaceu-
tical Industries and Associations and European Medicine 
Agency, a documentation framework was proposed, in which 

the level of scrutiny in modeling documentation is related to 
the importance of the decision at hand.48 In addition, regula-
tory acceptance of systems pharmacology model qualifica-
tion is needed to ensure that integrated knowledge can assist 
in model-informed trial design and in extrapolations beyond 
the observed data range.7 Besides that, more importantly, the 
willingness (courage) is needed within the industry to make 
quantitative systems pharmacology model inferences part of 
the submission package, clinical trial applications, and scien-
tific advice interactions. Early and continuous engagement 
with regulators from IND stage onwards is paramount for a 
mutual understanding and comfort in underlying assump-
tions for both the Sponsor and the Regulator allowing rapid 
regulatory decisions.

CONCLUDING REMARKS AND FUTURE 
PERSPECTIVES

Merck’s implementation of quantitative and system pharma-
cology in drug development focused on enabling key deci-
sions through rigorous prioritization of opportunities, timely 
execution, influential communication, adequate model qualifi-
cation, and securing team/management buy-in and funding. A 
high return on investment through significant cost avoidance 
was demonstrated. Therefore, we advocate a mechanistic and 
holistic approach, prioritized to impact key decisions in both 
drug discovery and development programs, using the diver-
sity of tools that a quantitative and systems pharmacology 
approach offers. Integrated, comprehensive, multidisciplinary 
models should be developed through close collaboration 
between experimental and quantitative disciplines, with clear 
transparency of the critical assumptions and the impact of 
variability and uncertainty. One of the drivers for quantita-
tive and systems pharmacology success is the access to 
the right skill combination. Scientists with highly developed 
communicative skills and an aptitude for project manage-
ment should pair with mathematical and information-science 
experts for effective model development and engage regularly 
with biology and pharmacology experts. Furthermore, teams 
should be enabled in their dedication in time and resources 
to systems pharmacology model development beyond single 
compound development projects. A long-term value can be 
argued for industry, academia, and technology companies 
to collaborate in the design of experimental protocols that 
advance large-scale data collection (biochemical parameters 
and physiological outputs), and in the development of math-
ematical tools. The appropriate infrastructure for knowledge 
management (data capture, storage, processing and retrieval) 
is prerequisite to further enhance development of quantitative 
and systems pharmacology models as carriers for integrated 
knowledge across discovery/development continuum.

In conclusion, a systematic implementation can be claimed 
when a model-informed drug discovery and development 
paradigm becomes fully institutionalized to integrate knowl-
edge, enable decision making, and enhance submissions. In 
such way, it builds for a future in silico drug-development, in 
which we can reduce in vivo and clinical drug testing and 
increase the number of effective treatments for patients. 
Moreover, these in silico models can be ultimately be used at 
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the “bedside” to optimally inform patient and individual dose 
selection.
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