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Background
Conventional secondary-treated municipal wastewater usually contains appreciable 
amounts of oxidized nitrogen and other nutrients, which pose a risk of eutrophication to 
receiving waters. Also, elevated nitrate concentrations were proved to have both lethal 
and non-lethal effects on a number of commercially relevant aquatic species (Hamlin 
et al. 2008). Denitrifying biological filter (DNBF) is extensively considered as an effective, 
economical, stable and feasible technology to control oxidized nitrogen from second-
ary effluents of municipal wastewater treatment plants (Jeong et al. 2006). A DNBF per-
forms the denitrifying function through biological conversions of organics and oxidized 
nitrogen in absence of oxygen by the biofilms attached on granular media, meanwhile 
achieves a physical removal of suspended particles by the media filtration. Denitrifying 
bacteria in the biofilm play an important role in transforming nitrate to nitrogen gas, 

Abstract 

The treatment performance and spatial microbial community structure of three parallel 
denitrifying biological filters (DNBFs) operated with methanol, ethanol and acetate, 
respectively, were explored. The acetate-fed DNBF presented the highest denitrification 
rate and NOx-N (NO2-N and NO3-N) removal efficiency, while the methanol-fed DNBF 
showed the lowest carbon consumption and NOx-N removal efficiency. Distinct spatial 
distribution patterns of terminal restriction fragment length polymorphism fingerprints 
were observed among the DNBFs. The ethanol enhanced captured biofilms through-
out the flowpath of DNBF had the highest diversity and evenness. The methanol-
enhanced attached biofilm along the flowpath presented the highest evenness, but 
lowest richness and limited diversity. β-Proteobacteria was dominant in the microbial 
community in all of methanol, ethanol and acetate enhanced biofilm; however, differ-
ent external carbon sources resulted in different dominant genera species. Thauera was 
dominant in the acetate enhanced bacterial community, while both Dechloromonas 
and Thauera were dominant in that of ethanol fed. However, methylotrophic bacteria 
(Methyloversatilis and Methylotenera) dominated exclusively in the methanol enhanced 
bacterial community throughout of the DNBF.
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while organic carbon as the denitrifying electron donor is a significant factor to perform 
a complete denitrification process.

The organic matters in secondary effluents are commonly low to meet the demands of 
electron donors for anoxic denitrification and energy for cell growth and maintenance 
(Hallin et al. 2006). Hence, external organic carbon is required for wastewater tertiary 
denitrification process to avoid incomplete denitrification and nitrite accumulation. The 
external organic carbon always includes common organic carbon source (e.g. methanol, 
acetate and ethanol) and alternative carbon source (e.g. hydrolysis products of primary 
sludge and solid waste, glycerin-based byproduct of biofuel production) (Cherchi et al. 
2009; Lu et al. 2014). Under a given plant size, hydraulic load, influent water quality and 
operation conditions of a denitrification process, the types of external organic carbons 
pose significant impacts on the external carbon dosage, nitrogen removal efficiency, 
denitrifying rates and bio-kinetics (Hallin et al. 1996; Hallin and Pell 1998; Cherchi et al. 
2009; Rocher et al. 2015). Such effects could mainly be attributed to that different elec-
tron donors (external carbon source) lead to different denitrifying microbial ecosystems 
(Guven 2009; Lu et al. 2014). In addition, carbon types have influence on the expression 
levels of carbon oxidases (e.g., alcohol dehydrogenase catalyzing methanol and glycerol 
oxidation) (Baytshtok et al. 2009; Lu et al. 2011).

The use of molecular techniques has contributed to the determination of the exoge-
nous carbon source as one of the controlling factors determining the structure and func-
tion of the denitrifying microbial community, during anoxic denitrification (Kraft et al. 
2011; Warneke et al. 2011; Lu et al. 2014). Using stable-isotope probing, full-cycle rRNA 
analysis, and fluorescence in  situ hybridization-microautoradiography (FISH-MAR), 
Ginige et al. (2004; 2005) characterized methanol-fed and acetate-fed denitrifying micro-
bial community in sequencing batch reactors, respectively, and found Methylophilales 
bacteria were the dominant denitrifiers in methanol-fed denitrifying sequencing batch 
reactor while Comamonadaceae and Rhodocyclaceae were the dominant denitrifiers in 
the acetate-fed reactor. Osaka et  al. (2008) characterized the differences of microbial 
community structure between two active sludge reactors using acetate and methanol as 
the external carbon source by using terminal restriction fragment length polymorphism 
(T-RFLP) and cloning analysis. Baytshtok et  al. (2009) demonstrated that Methylover-
satilis and Hyphomicrobium were dominant methylotrophic bacteria in a denitrifying 
sequencing batch reactor and the concentration of Hyphomicrobium decreased signifi-
cantly when switching the electron donor from methanol to ethanol by stable isotope 
probing 13C 16S rRNA gene clone libraries and real-time quantitative polymerase chain 
reaction assays. In addition, effects of different alternative carbon sources on denitrify-
ing microbial community structure were also carried out using polymerase chain reac-
tion (PCR) based molecular techniques or high-throughput techniques (Warneke et al. 
2011; Lv et al. 2014).

Molecular techniques obviously bring us valuable information on microbial commu-
nity of wastewater denitrification; however, most studies about the impacts of different 
carbon sources on denitrifying microbial ecosystem were focused on suspended active 
sludge systems. Moreover, since bioflm-based reactors usually enriches more diverse 
communities than that of active sludge system (Lu et al. 2011, 2014), there are still con-
siderable gaps in the knowledge of biofilm-based systems. Recently, the study carried out 
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by Srinandan et al. (2012) investigated the effects of different exogenous carbon sources 
(acetate, glucose, methanol and ethanol) on denitrifying biofilm structure by denaturing 
gradient gel electrophoresis and FISH, and found that nitrate removal efficiency was low 
in ethanol-fed biofilm but the denitrifying bacteria abundance was high. However, this 
study focused on the biolfim attaching on polystyrene slides, which were suspended in 
an active sludge reactor; related investigation on biofilm in denitrifying filter system is 
limited.

In this study, spatial microbial community diversity and structure for three parallel 
DNBFs operated with common used external organic carbon of methanol, ethanol and 
acetate were investigated. The following specific objectives were pursued based on the 
DNBFs achieving satisfactory nitrogen removal: a. evaluating the treatment performance 
of the DNBFs influenced by different external carbon source; b. determining the spatial 
variations and diversity of community composition and dominant species of the three 
DNBFs by DNA fingerprinting T-RFLP technique combined clone library; c. making a 
insight on the microbial community structure of DNBF reactors impacted by methanol, 
ethanol and acetate.

Methods
Experimental reactor description

Three paralleling lab-scaled up-flowed DNBFs fed by acetate (R1), ethanol (R2) and 
methanol (R3), respectively were set up. Each DNBF was made of plexiglass column 
with a height of 600 mm and a diameter of 80 mm (working volume of 2.5 L) (Fig. 1). 
The packed height of filter material (frosted globosely glass beads with uniform diam-
eter of 4 mm, specific surface area of 5.58 cm2/g and bulk density of 2.7 × 103 kg/m3) 
was 400 mm. In the bottom of DNBF, there was a gravel layer with a height of 50 mm to 
support the filtering layer. The influent of synthetic wastewater and the external carbon 
source were mixed in the pipe before pumped to the bottom of the DNBF reactor by a 
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Fig. 1  Schematic diagram of a lab-scaled DNBF system. WSinf, WS1, WS2 and WSeff are water-sampling points. 
BS1, BS2 and BS3 are biofilm sampling points
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peristaltic pump, which also control the filtration velocity. The DNBF was backwashed 
every 5 d for 15 min with combined air and water. During backwashing, the water flow 
rate was 7 L/(m2 s) and the airflow rate was 15 L/(m2 s).

Three sampling ports (BS1, BS2 and BS3) were constructed for filter materials sam-
pling at 0, 200 and 400 mm from the bottom of the filter layer. Also, three taps (WS1, 
WS2 and WSeff) were equipped for liquid sampling at 0, 200 and 450 mm from the bot-
tom of the filter layer. The inlet and outlet water samples for the DNBF were WSinf and 
WSeff as shown in Fig. 1.

DNBF reactor operation

The DNBF reactors were inoculated with activated sludge taken from one anoxic tank 
of a sewage treatment plant in Beijing, China with anaerobic/anoxic/aerobic (A2/O) 
system to enhance biofilm forming on the beads. The DNBFs were fed with synthetic 
wastewater, which prepared by tap water added with carbon source (acetate, ethanol 
and methanol, respectively), NO3-N (KNO3), phosphate buffer and mineral medium 
with trace elements (including H3BO3 2.86  g/L, ZnSO4·7H2O 0.22  g/L, CuSO4·5H2O 
0.08 g/L, MnSO4·4H2O 2.03 g/L and Na2MoO4·2H2O 1.26 g/L, which added as 0.1 mL/L 
to the synthetic wastewater). At the start-up stage, each DNBF reactor was operated at a 
hydraulic loading of 14–19 m3/(m2 day) and with chemical oxygen demand (COD) and 
nitrate nitrogen (NO3-N) of the inlet (WSinf) were 490–570 and 48–65  mg/L, respec-
tively. Each DNBF reached a steady state after operation for 8 weeks at room tempera-
ture (20–25 °C).

Under steady state, each DNBF was operated with a hydraulic loading of 29  m3/
(m2 day). The concentration of COD and NO3-N of the inlet (WSinf) were 230–380 and 
25–38  mg/L, respectively. The high level of COD in the influent was to ensure suffi-
cient carbon source for denitrifying bacteria. Each DNBF was continually running for 
2 months for this experiment, in which COD, NO3-N, nitrite nitrogen (NO2-N), pH and 
DO were monitored every 2 days of the water samples (WSinf, WS1, WS2 and WSeff) to 
examine the dynamics of nutrient removal efficiency. Concentrations of COD, NO3-N 
and NO2-N were measured according to standard methods (APHA 1998). The level of 
pH and DO was determined by a pH sensor (pHS-25) and a DO sensor (WTW Oxi 
340i), respectively.

Biofilm samples collection and DNA extraction

The biofilm was classified to two forms: captured biofilm (CB) and attached biofilm (AB) 
(Jeong et al. 2006). The beads with biofilm were sampled from the sampling ports (BS1, 
BS2 and BS3) of each DNBF (R1, R2 and R3), and then firstly washed using milliQ water 
until there was no obvious adhesion on them, and then the washed liquid was collected 
as CB suspension. While the biofilm retained on the beads were put into a centrifuge 
tube with milliQ water (45 mL) and shaked by a vortex mixer at 3000 rpm for 5 min, and 
then the detached biomass was decanted from the centrifuge tube and collected as AB 
suspension (Delatolla et al. 2008). All the CB and AB suspensions were diluted with mil-
liQ water to 100 mL and stored at 4 °C for the subsequent extraction of total DNA.

Total DNA was extracted using the sodium dodecyl sulphate (SDS)-cetyl trimethyl 
ammonium bromide (CTAB)-based DNA extraction method (Douterelo et  al. 2013). 
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Each biofilm suspension sample was put into a centrifuge tube and centrifuged at 
12,000 r/min (4 °C) for 5 min, and then the deposition was mixed with Tris-EDTA (567 
µL) and blended until resuspension. Thereafter, 30 μL SDS (10 %) and 10 μL proteinase 
K were added and mixed and then incubated at 37 °C for 1 h. 100 μL NaCl (5 mol/L) and 
80 μL CTAB/NaCl were sequential added mixed and incubated at 65 °C for 10 min. After 
blended with equal volumes of phenol–chloroform–isoamyl alcohol mixture (25:24:1), 
the sample was then centrifuged at 12,000 r/min (4 °C) for 10 min. The supernatant were 
decanted to a 2 mL centrifuge tube and mixed with 0.8-fold volumes of isopropyl alco-
hol, then centrifuged at 12,000 r/min (4 °C) for 5 min. The deposition was rinsed with 
1  mL alcohol (70  %) and centrifuged at 12,000  r/min (4  °C) for 10  min, and then the 
DNA was pelletised. Followed by the air dry, the extracted DNA was resuspended in 
95 μL Tris-EDTA buffers (pH 8.0) and stored at −20 °C.

PCR amplification of the 16S rRNA gene

The extracted DNA was amplified by polymerase chain reaction (PCR) using a TC-512 
analyzer (TECHNE, Bibby Scientific, UK). For clone library construction and sequenc-
ing, 16S rRNA gene from 1 µL DNA extract was PCR-amplified using specific primers 
27F (5′-AGA GTT TGA TCC TGG CTC AG-3′) and 1492R (5′-GGT TAC CTT GTT 
ACG ACT T-3′) (Lane 1991). For T-RFLP analysis, 16S rRNA gene from 1 µL DNA 
extract was PCR-amplified using eubacterial universal primers 8F (5′-AGA GTT TGA 
TCC TTG GCT CAG-3′) and 1492R, and the forward primer 8F was fluorescently 
labeled at the 5′ end with 6-carboxyfluorescein (6-FAM) (Zhang et  al. 2011). All PCR 
reactions with a final volume of 25  μL including 12.5  μL 2×Taq PCR colorless Mix 
(Dingguo Biotech, China), 1  μL of each forward and reverse primer, 1  μL DNA tem-
plate and 9.5 μL dd H2O. The PCR reactions were operated under the following thermal 
profile: The PCR amplification parameters were as follows: 5 min initial denaturation at 
95 °C and then 30 cycles for denaturing at 94 °C and 1 min, thereafter 1 min for anneal-
ing at 55 °C, and 1.5 min fro elongation at 72 °C, with 10 min for final extension at 72 °C 
and a hold at 4  °C. PCR products were verified the product size by electrophoresis on 
1.5 % (w/v) agarose gels. PCR products were purified using DNA Fragment Quick Purifi-
cation/Recover Kit (Dingguo Biotech, China).

T‑RFLP analysis

T-RFLP analysis of bacterial 16S rRNA gene was applied to analyze the denitrifier com-
munity of biofilm samples collected from DNBFs. The purified fluorescent PCR prod-
ucts (10 μL) was digested with 3 U of the restriction enzyme MspI (Thermo Scientific, 
USA) for 4 h at 37 °C, and then inactivated at 65 °C for 10 min (Zhang et al. 2011). The 
final reactions were submitted to a commercial company (Sunbioech Beijing, China) for 
sequencing using ABI 310 genetic analyzer with the GeneScan mode (Applied Biosys-
tems, USA).

Peak Scanner software (Applied Biosystems/Life Technologies, Carlsbad, CA, USA) 
was used to analyze the T-RFLP fingerprints. The relative abundance of a terminal 
restriction fragment (T-RF) was evaluated by calculating the ratio of the peak area of a 
T-RF to the total peak area of all peaks within one sample. T-RFs that differed by smaller 
than 1  bp were clustered. Peaks with a relative abundance below 1  % were excluded 
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from further analysis. Also, T-RF length smaller than 50 bp and larger than 900 bp were 
neglected to avoid uncertainties associated with fragment size determination.

Based on T-RFLP profiles, denitrifier structural diversity between attached and cap-
tured biofilm along the flowpath within a DNBF and the DNBFs operated by different 
carbon sources were evaluated by Shannon diversity index (H) and evenness (E) (Zhang 
et al. 2011). Shannon diversity index (H) of each sample was calculated by the equation 
of H =

∑S
i=1

(pilnpi), where pi is the ratio of individual RF peak relative intensity to 
the sum of the relative intestity of all RFs. Evenness (E) was calculated as E = H/Hmax, 
where Hmax is the maxium value of H and equal to lnS, and S was the sum of all peaks of 
each sample profile.

Cloning and sequencing

The purified PCR fragments were ligated into a pGEM-T cloning vector (Promega, 
USA) and cloned into Escherichia coli according to the manufacturer’s instructions. 
Transformants were selected by using ampicillin resistance, while blue-white screening 
was employed to identify clones with inserts. The white colonies of ampicillin-resist-
ant transformants were picked randomly and cultured overnight in LB broth contain-
ing 50 mg/L ampicillin. The randomly selected clones were conducted and sequenced 
by a commercial company (Dingguo Biotech, China). All the 16S rRNA gene sequences 
were subjected to a BLAST search engine at NCBI GenBank and identified through 
sequence similarities (http://blast.ncbi.nlm.nih.gov/Blast.cgi). Clones were sequenced 
and grouped based on a 95 % similarity criterion (Tindall et al. 2010). In total, three 16S 
rRNA gene clone libraries were constructed for the acetate, ethanol and methanol-fed 
DNBF, respectively.

T‑RFs identification and phylogenetic assignment

The observed T-RFs were identified by cloning and sequencing. The obtained bacterial 
clones from the 16S rRNA gene clone library of each DNBF were subjected to virtual 
T-RF simulations and examined by in silico enzymatic digestion with MspI (http://tools.
neb.com/NEBcutter2/index.php). The virtual T-RF obtained from the in silico enzymatic 
digestion was then compared to the actual T-RF lengths obtained from the samples. A 
specific clone was considered present in the sample only if the virtual T-RFs matched 
the T-RFLP fingerprints of the biofilm sample (Lepère et al. 2006). The virtual T-RFs and 
the actual T-RFs were considered as the same when their length gap was less than 3 bp. 
Some clones with incomplete sequences at the region of the 8F forward primer were 
filled with a sequence from a close relative (González et al. 2000).

A T-RF length from the T-RFLP fingerprint was considered to be a single operational 
taxonomic unit (OTU) (Hallin et al. 2005). The clones from the 16S rRNA gene clone 
library of each DNBF can be divided into different OTUs on the basis of the virtual 
T-RFs. Moreover, some bacterial clones presenting different phylogenies but the same 
length of the virtual T-RFs were divided into sub- OTUs (such as OUT 1a and OUT 1b, 
which presented same T-RF length but different genera).

The MEGA software was used for alignment, calculation of the distance matrices for 
the aligned sequences and construction of neighbor-joining phylogenetic trees. Heat 

http://blast.ncbi.nlm.nih.gov/Blast.cgi
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maps displaying relative abundance of specific bacteria taxonomies of the DNBFs were 
generated using R.

Results and discussion
Performance of the DNBF reactors

The spatial distribution of COD, NO3-N and NO2-N of acetate, ethanol and methanol-
fed DNBF at steady operating state were shown in Fig.  2. The concentration of COD 
and NO3-N of each DNBF decreased along the flowpath under the non substrate-limited 
denitrifying growth conditions. The influent NO3-N of acetate, ethanol and methanol-
fed DNBF were 33.1 ± 3.2, 33.6 ± 2.6 and 30.1 ± 1.8 mg/L, respectively, while the efflu-
ent NO3-N were 0.33 ± 0.19, 0.59 ± 0.73 and 2.28 ± 1.86 mg/L, respectively, indicating 
a 99, 98.3 and 92.4 % NO3-N removal of each DNBF. Moreover, the denitrificaton rate 
of acetate, ethanol and methanol-fed DNBF were 2.40, 2.29 and 2.01 kg NO3-N/m3 day, 
respectively. The acetate enhanced DNBF showed the highest denitrificaton rate and the 
NO3-N removal efficiency, which is in accordance with previous reports that acetate 
augmentation leading to a higher rate of denitrification than that of methanol and etha-
nol (Hallin et al. 1996).

Nitrite accumulation at the bottom (sampling port of WS1) of the acetate, ethanol 
and methanol-fed DNBFs was 17, 9 and 15 %, respectively. The NO2-N concentration 
decreased gradually along the flowpath of the acetate and ethanol-fed DNBFs, and 
the average nitrite at the outlet of the acetate and ethanol-fed DNBFs were 0.16 and 
1.34  mg/L. However, a markedly nitrite accumulation occurred along flowpath of the 
methanol-fed DNBF, and the average nitrite up to 5.11 mg /L at the outlet of the reactor. 
The elevated level of nitrite along the flowpath of methanol-fed DNBF might decrease 
the denitrification rate or take further time to achieve complete removal of nitrite, for 
the reaction catalyzed by the nitrite reductase enzyme is considered as the limiting stage 
for anoxic denitrification process (Guven 2009).

The NOx-N (NO2-N and NO3-N) removal efficiency of acetate, ethanol and methanol-
fed DNBF was 98.5, 94.2 and 75.9  %, respectively. Due to a relatively long adaptation 
period required for a methanol added microbial reactor (Hallin et al. 1996; Hallin and 
Pell 1998), the denitrification rate and NOx-N removal efficiency may be lower than that 
of DNBF fed by ethanol or acetate under the same start-up period and the steady operat-
ing state. Furthermore, different carbon metabolic routes and the involved enzymes may 
lead to different NOx-N removal efficiencies between methanol, ethanol and acetate-fed 
denitrifying bacteria. Acetate is directly converted to acetyl-CoA by the bacterial cell 
prior to entering the tricarboxylic acid cycle (TCA cycle), while ethanol is oxidized to 
acetaldehyde and subsequently to acetate and begin the biochemical pathways as well as 
that of acetate; however, methanol is initially utilized by bacterial cell in serine/glyoxy-
late pathways (Hallin and Pell 1998; Cherchi et al. 2009).

CODconsumed to NOx–Nreduced ratio of the acetate, ethanol and methanol-fed DNBF 
were 4.9, 4.3 and 2.9, respectively. Under the same operation conditions, the CODconsumed  
to NOx–Nreduced ratio of acetate and ethanol were higher than that of the theoretical 
stoichiometric ratio (denitrifyication consumption of a carbon source including the 
conversion of nitrate to nitrogen gas and microorganism growth), while the actual ratio 
of methanol was similar with that theoretical stoichiometric ratio. In this experiment, 
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the synthetic wastewater input to the reactors was not deoxygenated, so the COD con-
sumption of a carbon source primarily includes three parts as the conversion of nitrate 
to nitrogen gas, the removal of oxygen from the system and the production of extracel-
lular material by other reactions (Hamlin et al. 2008). The average DO concentration at 
the effluent of acetate, ethanol and methanol-fed DNBF was 0.11, 0.13 and 0.36 mg/L, 
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respectively under the same operating condition during, which indicated that acetate 
and ethanol-fed DNBFs might consume more external carbon for required denitrifica-
tion and oxygen removal.

Spatial distribution of microbial community and diversity of the DNBFs

The microbial community and diversity of the DNBFs was analyzed using 16S rRNA 
gene T-RFLP fingerprinting (data in Additional File 1: Fig. S1). Figure 3 shows the spa-
tial distribution of TFs relative abundance of the captured and attached biofilm samples 
from acetate, ethanol and methanol-fed DNBF, respectively. The T-RFs of 79, 121, 430, 
475, 490 and 601 bp were observed in the acetate-fed DNBF, of which 79 and 430 bp 
were absolutely the dominant T-RFs for both captured and attached biofilms along the 
flowpath of DNBF. The ethanol-fed DNBF presented two dominant T-RFs (i.e. 79 and 
430 bp) of the attached biofilm along the flowpath and the T-RFs of 79 bp showed the 
highest relative abundance, which is similar with that spatial distribution pattern of the 
attached biofilm of the acetate-fed DNBF. However, T-RFs spatial distribution of the 
ethanol enhanced captured biofilm remarkably displayed alternate dominant T-RFs 
between 79, 205, 430 and 486 bp along the flowpath.
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Only three T-RFs of 78, 437 and 489 bp were observed in the methanol enhanced both 
attached and captured biofilm, which had no overlapped RFs with either acetate or eth-
anol-fed biofilm. Such phenomenon might be caused by the different metabolic proper-
ties between methanol fed bacteria and those fed by acetate and ethanol. The relative 
abundance of T-RFs at 489 bp of the methanol enhanced attached biofilm was relatively 
stable with around 65–71 % along the flowpath, while that of T-RFs at 78 bp increased 
from 18 to 34 % along the flowpath. However, alternate dominant T-RFs between 489 
and 78 bp along the flowpath for the captured biofilm of methanol -fed. Comparing with 
the form of attached biofilm, captured biofilm was not so closely attached to the filter 
materials and was easily influenced by the water flowing state and intermediates pro-
duced during denitrification.

The microbial community diversity of all the biofilm samples fed by different carbon 
sources was evaluated by Shannon indices (Fig.  4). The ethanol augmented captured 
biofilm throughout the flowpath of DNBF presented the highest diversity and evenness, 
while that of methanolic augmentation showed the lowest. Such result complied with 
that the growth of denitrifying bacteria growth is most favored with ethanol augmenta-
tion because ethanol catabolism allowed formation of an energy source (NADH2) for 
the microorganisms (Gómez et  al. 2000). The diversity index also revealed that etha-
nol and acetate enhanced captured biofilm presented similar distribution pattern along 
the flowpath of DNBF. However, for the attached biofilm, the sample in the bottom of 
the acetate-fed DNBF had the higher diversity index than the same site samples from 
the other DNBFs, which indicated that acetate was apt to be converted by denitrifying 
microorganism and to be promoted to a higher denitrification rate than the other exter-
nal carbon source. Additionally, the methanol enhanced attached biofilm samples had 
the highest evenness and lowest richness among the DNBFs.

Microbial community structure influenced by different carbon sources

Clone libraries of acetate, ethanol and methanol-fed DNBFs were constructed from 
the biofilm samples of R1-BS1-AB, R2-BS2-CB and R3-BS1-AB, respectively, which 
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Fig. 4  The diversity indices of biofilm samples from different external carbon source fed DNBFs. a Shannon 
diversity index (H); b Shannon evenness (E). R1, R2 and R3 were acetate, ethanol and methanol-fed DNBF. BS1, 
BS2 and BS3 were biofilm sampling at 0, 200 and 400 mm from the bottom of the filter layer. CB and AB were 
captured biofilm and attached biofilm
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presented the highest Shannon diversity among all those samples within a DBPF. The 
obtained clones from 16S rRNA gene clone library of each DNBF were subjected to vir-
tual T-RF simulations and were examined by in silico enzymatic digestion with MspI. 
Then the correlation of T-RFLP peaks and species were established by using in silico 
digestion. When comparing the virtual T-RFs with actual T-RFs, T-RFs of 87, 423, 489 
and 511 bp emerged in acetate-fed DNBF, T-RFs of 80, 82 and 95 bp emerged in ethanol-
fed DNBF and T-RFs of 192, 464 and 490 bp emerged in methanol-fed DNBF; however, 
some actual T-RFs disappeared in the virtual T-RFs. Thus, 25 OUTs were divided for 
denitrifying bacteria of all DNBFs based on T-RFLP profile combined clone libraries and 
silico enzymatic digestion (Additional File 1: Table S1).

From Venn diagram of the OTUs (Additional File 1: Fig. S2), the acetate and ethanol 
augmented biofilm shared the 3 same OTUs, however, that of methanol had exclusive 6 
OTUs. Such result indicates that methanol-fed microbial community structure is con-
siderably different from that of acetate and ethanol-fed. Also, there are some differences 
in the microbial community structure between acetate and ethanol-fed. The 16S rRNA 
gene sequences from the clones representing each of the OTUs were aligned with refer-
ence strains and are presented in the phylogenetic trees (Fig. 5).

Eight OTUs of the acetate-fed biofilm fell into three big phylogenetic groups of Proteo-
bacteria (92 %, including β, γ and δ-proteobacteria), Bacteroidetes (5 %) and Firmicutes 
(3  %). The most dominant β-proteobacteria class, mainly including the genera Thau-
era (81 %, represented by OUT 2a, OUT 6, OUT 11 and OTU12c) and Dechloromonas 
(5  %, represented by OUT 2b and OTU12a) belonging to the family Rhodocyclaceae, 
accounted for 86 % of the total Proteobacteria. Additionally, other genera Pseudomonas 
(γ-proteobacteria class), Desulfatiferula (δ-proteobacteria class), Flavobacterium (Fla-
vobacteriia class, Bacteroidetes phylum) and Fusibacter (Clostridia class, Firmicutes 
phylum) were identified for the acetate-fed biofilm. Eight OTUs of the ethanol-fed 
biofilm fell into two big phylogenetic groups of Proteobacteria (84  %, including β and 
δ-proteobacteria) and Bacteroidetes (6 %), while the class of 10 % clone sequence could 
not be determined. β-proteobacteria class was also the largest class among the denitri-
fying bacteria fed by ethanol with dominant genera of Thauera (41  %, represented by 
OUT 2a) and Dechloromonas (40 %, represented by OUT 2b, OTU12a and OTU12d). 
Furthermore, genera Geobacter (δ-proteobacteria class), Paludibacter (Bacteroidia class, 
Bacteroidetes phylum) and Pedobacter (Sphingobacteriia class, Bacteroidetes phylum) 
were identified for the ethanol-fed bacteria community. The dominated genus Thauera 
has been confirmed to be a typical denitrifier in wastewater denitrification enhanced by 
acetate or ethanol (Lu et  al. 2014). Dechloromonas has been demonstrated as a major 
population in a field-scale ethanol enhanced denitrifying fluidized-bed reactor (Hwang 
et al. 2006), and was also dominant in this study and was only second to Thauera. There-
fore, the dominant genera of Thauera and Dechloromonas, typical denitrifying bacteria, 
resulted in the high denitrification rate and NOx-N removal efficiencies of the acetate 
and ethanol-fed DNBFs.

Six OTUs of methanol enhanced bacteria were all belonged to Proteobacteria phy-
lum with subdivision of α, β, and γ-proteobacteria, of which β-proteobacteria class was 
the largest group (90 %) including the genera Thauera (10 %, represented by OUT 1), 
Methyloversatilis (20 %, represented by OUT 16c) and Methylotenera (60 %, represented 
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by OUT 14 and OUT 16b). Methylotenera and Methyloversatilis were exclusively found 
in the methanol - fed bacterial community among the 3 DNBFs. The dominant species 
Methylotenera and Methyloversatilis have been identified in various methanol enhanced 
denitrification systems and were further classified to obligate (growing on C1 com-
pounds only) or restricted facultative (growing on C1 and multi-carbon compounds) 
methylotrophs (Mustakhimov et al. 2013; Lu et al. 2014). Methyloversatilis expresses a 
classic membrane-bound nitrate reductase and typical methylotrophy metabolic path-
ways during reducing nitrate to nitrite in anoxic conditions (Lu et al. 2012; Mustakhi-
mov et  al. 2013). Methylotenera, the most abundant genus in this methanol enhanced 
biofilm-based system, had also been proved to be one of the major species that consume 
methanol in situ (Kalyuhznaya et al. 2009). However, the denitrifying metabolic pathway 
of Methylotenera may be incomplete and will lead to accumulation of nitrous oxide for 
the lack of nitrous oxide reductase (Kalyuhznaya et al. 2009; Mustakhimov et al. 2013), 
which might result in the lowest denitrification rate and NOx-N removal efficiency of 
the methanol-fed reactor among the 3 DNBFs.

In general, the results showed that Proteobacteria phylum dominated the bacteria 
community of the DNBFs enhanced by the different carbon sources and followed by 
Bacteroidetes (Fig. 6), and such phenomenon is consistent with some previous reports 
(Lu et  al. 2014). Also, β-proteobacteria class presented the largest group in all of the 
DNBFs. The acetate and ethanol-fed bacterial community shared the common domi-
nant genus Thauera. Different from that of methanol-fed biofilm, genus Thauera was 

(See figure on previous page.) 
Fig. 5  Phylogenetic trees of 16S rRNA gene sequences retrieved from different external carbon source fed 
biofilm clone library. a Acetate-fed; b ethanol-fed; c methanol-fed. The phylogenetic tree was constructed 
using a neighbor-joining algorithm with Jukes–Cantor distance in MEGA. The T-RFs length and abundance of 
each OTU in the clone library are shown in parentheses
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absolutely the largest species and accounted for 81 % of the acetate-fed biofilm clones. 
Thauera and Dechloromonas accounted for 41 and 40  %, respectively, of the acetate-
fed biofilm clones. Furthermore, the methanol-fed biofilm exclusively occupied an 
amount of methylotrophic bacteria (Methyloversatilis and Methylotenera), which led the 
methanol enhanced DNBF to a limited diversity (Chistoserdova et al. 2009) and an ini-
tial long lag phase (Nyberg et  al. 1992). Moreover, genra Agrobacterium and Thermo-
monas were uniquely observed in the methanol-fed biofilm. Agrobacterium belongs to 
the family Rhizobiaceae (α-Proteobacteria species), which was prevalent denitrifiers in 
some mountain ecosystems (Rich et al. 2003), while Thermomonas belongs to the family 
Xanthomonadaceae (γ-proteobacteria species) and had been reported in the community 
structure of denitrifying cathodic biofilms (Wrighton et al. 2010).

Spatial distribution of dominant denitrifying bacteria of the acetate, ethanol and meth-
anol-fed DNBF, respectively, could be inferred by T-RFLP fingerprinting combined clone 
library. In terms of the attached biofilms, which exhibited immobility and stability com-
paring to captured bioflims, genera Thauera (related to T-RF of 79 bp) and Dechloromonas 
(related to T-RF of 430 bp) dominated the first and second abundance genera throughout 
the flowpath of both the acetate and ethanol -fed DNBF, while the relative abundances of 
Thauera along the flowpath of ethanol-fed were higher than that of acetate-fed. However, 
distinct spatial distribution patterns of dominant denitrifying bacteria of attached biofilm 
of ethanol-fed DNBF were observed, which Methylotenera and Methyloversatilis (related 
to same T-RF length of 490 bp) dominated the first abundance genera, while the relative 
abundance of the second dominated genus Thauera (related to T-RF of 78 bp) increased 
throughout the flowpath. At the inlet of methanol-fed DNBF, microorganisms growing on 
methanol use methylotrophy metabolic pathways (as serine/Glyoxylate Pathway), there-
after, some intermediates of denitrification and metabolism (as acetyl-CoA) might enter 
TCA cycle (Cherchi et al. 2009) along the flowpath from the bottom to top of the DNBF. 
Thus, genus Thauera increased along the flowpath of the methanol -fed DNBF.

Conclusions
The acetate-fed DNBF presented the highest denitrification rate and NOx-N removal 
efficiency. Distinct spatial distribution patterns of T-RFLP fingerprints along the flow-
path of the DNBFs were caused by the different external carbon sources. The ethanol 
enhanced captured biofilms throughout the flowpath of DNBF had the highest diversity 
and evenness, while that of methanol enhanced biofilms was the lowest. β-proteobacteria 
class presented the largest group in all acetate, ethanol and methanol-fed biofilm. Thau-
era and Dechloromonas dominated the acetate and ethanol enhanced denitrifiers, which 
might result in the high denitrification rate and NOx-N removal efficiencies of the ace-
tate and ethanol-fed DNBFs. However, methylotrophic bacteria (Methyloversatilis and 
Methylotenera) exclusively dominated the methanol enhanced DNBF.

Additional file

Additional file 1: Figure S1. T-RFLP fingerprints of biofilm samples from different external carbon source fed 
DNBFs. R1, R2 and R3 were acetate, ethanol and methanol-fed DNBF. BS1, BS2 and BS3 were biofilm sampling at 0, 
200 and 400 mm from the bottom of the filter layer. CB and AB were captured biofilm and attached biofilm.  
Figure S2. Venn diagram of the OTUs for the acetate, ethanol and methanol-fed biofilm. Table S1. OUTs on T-RFLP 
profile combined clone libraries and silico enzymatic digestion.

http://dx.doi.org/10.1186/s40064-016-3451-3


Page 15 of 16Sun et al. SpringerPlus  (2016) 5:1752 

Authors’ contributions
YS carried out the study, designed the experiments and wrote the manuscript; DS participated the experiment and part 
of sequence alignment; XZ participated the experiment and sequence alignment; NS participated part of the experi-
ment; YT supervised the work. All authors read and approved the final manuscript.

Author details
1 Department of Environmental Science and Engineering, Beijing Technology and Business University, No. 11 Fucheng 
Road, HaiDian District, Beijing 100048, People’s Republic of China. 2 State Environmental Protection Key Laboratory 
of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, 
People’s Republic of China. 

Acknowledgements
This study was funded by the Science and Technology Project of Beijing Municipal Institutions (No. KM201210011004) 
and Chinese State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (No. 
SMARC2013D002). We would like to thank Dr. Ning Ding for polish and modification of the language.

Competing interests
The authors declare that they have no competing interests.

Received: 28 October 2015   Accepted: 29 September 2016

References
APHA (1998) Standard Methods for the examination of water and wastewater, 20th edn. American Publication Health 

Association, Washington, DC
Baytshtok V, Lu H, Park H, Kim S, Yu R, Chandran K (2009) Impact of varying electron donors on the molecular microbial 

ecology and biokinetics of methylotrophic denitrifying bacteria. Biotechnol Bioeng 102:1527–1536
Cherchi C, Onnis-Hayden A, El-Shawabkeh I, Gu AZ (2009) Implication of using different carbon sources for denitrification 

in wastewater treatments. Water Environ Res 81:788–799
Chistoserdova L, Kalyuzhnaya MG, Lidstrom ME (2009) The expanding world of methylotrophic metabolism. Annu Rev 

Microbiol 63:477–499
Delatolla R, Berk D, Tufenkji N (2008) Rapid and reliable quantification of biofilm weight and nitrogen content of biofilm 

attached to polystyrene beads. Water Res 42:3082–3088
Douterelo I, Sharpe RL, Boxall JB (2013) Influence of hydraulic regimes on bacterial community structure and composi-

tion in an experimental drinking water distribution system. Water Res 47:503–516
Ginige MP, Hugenholtz P, Daims H, Wagner M, Keller J, Blackall LL (2004) Use of stable-isotope probing, full-cycle rRNA 

analysis, and fluorescence in situ hybridization-microautoradiography to study a methanol-fed denitrifying micro-
bial community. Appl Environ Microbiol 70:588–596

Ginige MP, Keller J, Blackall LL (2005) Investigation of an acetate-fed denitrifying microbial community by stable isotope 
probing, full-cycle rRNA analysis, and fluorescent in situ hybridization-microautoradiography. Appl Environ Micro-
biol 71:8683–8691

Gómez MA, González-López J, Hontoria-García E (2000) Influence of carbon source on nitrate removal of contaminated 
groundwater in a denitrifying submerged filter. J Hazard Mater 80:69–80

González JM, Simó R, Massana R, Covert JS, Casamayor EO, Pedrós-Alió C, Moran MA (2000) Bacterial community struc-
ture associated with a dimethylsulfoniopropionate-producing north Atlantic algal bloom. Appl Environ Microbiol 
66:4237–4246

Guven D (2009) Effects of different carbon sources on denitrification efficiency associated with culture adaptation and 
C/N ratio. Clean Soil Air Water 37:565–573

Hallin S, Pell M (1998) Metabolic properties of denitrifying bacteria adapting to methanol and ethanol in activated 
sludge. Water Res 32:13–18

Hallin S, Rothman M, Pell M (1996) Adaptation of denitrifying bacteria to acetate and methanol in activated sludge. Water 
Res 30:1445–1450

Hallin S, Lydmark P, Kokalj S, Hermansson M, Sorensson F, Jarvis A, Lindgren PE (2005) Community survey of ammonia-
oxidizing bacteria in full-scale activated sludge processes with different solids retention time. J Appl Microbiol 
99:629–640

Hallin S, Throbäck IN, Dicksved J, Pell M (2006) Metabolic profiles and genetic diversity of denitrifying communities in 
activated sludge after addition of methanol or ethanol. Appl Environ Microbiol 72:5445–5452

Hamlin HJ, Michaels JT, Beaulaton CM, Graham WF, Dutt W, Steinbach P, Losordo TM, Schrader KK, Main KL (2008) 
Comparing denitrification rates and carbon sources in commercial scale upflow denitrification biological filters in 
aquaculture. Aquac Eng 38:79–92

Hwang C, Wu WM, Gentry TJ, Carley J, Carroll SL, Schadt C, Watson D, Jardine PM, Zhou J, Hickey RF, Criddle CS, Fields MW 
(2006) Changes in bacterial community structure correlate with initial operating conditions of a field-scale denitrify-
ing fluidized bed reactor. Appl Microbiol Biotechnol 71:748–760

Jeong J, Hidaka T, Tsuno H, Oda T (2006) Development of biological filter as tertiary treatment for effective nitrogen 
removal: biological filter for tertiary treatment. Water Res 40:1127–1136

Kalyuhznaya MG, Martens-Habbena W, Wang T, Hackett M, Stolyar SM, Stahl DA, Lidstrom ME, Chistoserdova L (2009) 
Methylophilaceae link methanol oxidation to denitrification in freshwater lake sediment as suggested by stable 
isotope probing and pure culture analysis. Environ Microbiol Rep 1:385–392



Page 16 of 16Sun et al. SpringerPlus  (2016) 5:1752 

Kraft B, Strous M, Tegetmeyer HE (2011) Microbial nitrate respiration–genes, enzymes and environmental distribution. J 
Biotechnol 155:104–117

Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nuecleic acid techniques in bacterial 
systematics. Wiley, London, pp 115–147

Lepère C, Boucher D, Jardillier L (2006) Succession and regulation factors of small eukaryote community composition in a 
lacustrine ecosystem (Lake Pavin). Appl Environ Microbiol 72:2971–2981

Lu H, Nuruzzaman F, Ravindhar J, Chandran K (2011) Alcohol dehydrogenase expression as a biomarker of denitrification 
activity in activated sludge using methanol and glycerol as electron donors. Environ Microbiol 13:2930–2938

Lu H, Kalyuzhnaya M, Chandran K (2012) Comparative proteomic analysis reveals insights into anoxic growth of Methyl-
oversatilis universalis FAM5 on methanol and ethanol. Environ Microbiol 14:2935–2945

Lu H, Chandran K, Stensel D (2014) Microbial ecology of denitrification in biological wastewater treatment. Water Res 
64:237–254

Lv XM, Shao M, Li CL, Li J, Xia X, Liu DY (2014) Bacterial diversity and community structure of denitrifying phosphorus 
removal sludge in strict anaerobic/anoxic systems operated with different carbon sources. J Chem Tech Biotechnol 
89:1842–1849

Mustakhimov I, Kalyuzhnaya MG, Lidstrom ME, Chistoserdova L (2013) Insights into denitrification in Methylotenera mobi-
lis from denitrification pathway and methanol metabolism mutants. J Bacteriol 195:2207–2211

Nyberg U, Aspegren H, Andersson B, Jansen JLC, Villadsen IS (1992) Full-scale application of nitrogen removal with 
methanol as carbon source. Water Sci Technol 26:1077–1086

Osaka T, Shirotani K, Yoshie S, Tsuneda S (2008) Effects of carbon source on denitrification efficiency and microbial com-
munity structure in a saline wastewater treatment process. Water Res 42:3709–3718

Rich JJ, Heichen RS, Bottomley PJ, Cromack K Jr, Myrold DD (2003) Community composition and functioning of denitrify-
ing bacteria from adjacent meadow and forest soils. Appl Environ Microbiol 69:5974–5982

Rocher V, Laverman AM, Gasperi J, Azimi S, Guérin S, Mottelet S, Villières T, Pauss A (2015) Nitrite accumulation during 
denitrification depends on the carbon quality and quantity in wastewater treatment with biofilters. Environ Sci 
Pollut Res 22:10179–10188

Srinandan CS, D’souza G, Srivastava N, Nayak BB, Nerurkar AS (2012) Carbon sources influence the nitrate removal activity, 
community structure and biofilm architecture. Bioresour Technol 117:292–299

Tindall BJ, Rosselló-Móra R, Busse HJ, Ludwig W, Kämpfer P (2010) Notes on the characterization of prokaryote strains for 
taxonomic purposes. Int J Syst Evol Microbiol 60(Pt 1):249–266

Warneke S, Schipper LA, Matiasek MG, Scow KM, Cameron S, Bruesewitz DA, McDonald IR (2011) Nitrate removal, com-
munities of denitrifiers and adverse effects in different carbon substrates for use in denitrification beds. Water Res 
45:5463–5475

Wrighton KC, Virdis B, Clauwaert P, Read ST, Daly RA, Boon N, Piceno Y, Andersen GL, Coates JD, Rabaey K (2010) Bacterial 
community structure corresponds to performance during cathodic nitrate reduction. ISME J 4:1443–1455

Zhang ML, Jiang S, Tanuwidjaja D, Voutchkov N, Hoek EMV, Cai B (2011) Composition and variability of biofouling organ-
isms in seawater reverse osmosis desalination plants. Appl Environ Microbiol 77:4390–4398


	Microbial diversity and community structure of denitrifying biological filters operated with different carbon sources
	Abstract 
	Background
	Methods
	Experimental reactor description
	DNBF reactor operation
	Biofilm samples collection and DNA extraction
	PCR amplification of the 16S rRNA gene
	T-RFLP analysis
	Cloning and sequencing
	T-RFs identification and phylogenetic assignment

	Results and discussion
	Performance of the DNBF reactors
	Spatial distribution of microbial community and diversity of the DNBFs
	Microbial community structure influenced by different carbon sources

	Conclusions
	Authors’ contributions
	References




