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ABSTRACT

Melatonin is the main biochronologic molecular mediator of circadian rhythm and sleep. It is also a powerful antioxidant
and has roles in other physiologic pathways. Melatonin deficiency is associated with metabolic derangements including
glucose and cholesterol dysregulation, hypertension, disordered sleep and even cancer, likely due to altered immunity.
Diabetic nephropathy (DN) is a key microvascular complication of both type 1 and 2 diabetes. DN is the end result of a
complex combination of metabolic, haemodynamic, oxidative and inflammatory factors. Interestingly, these same factors
have been linked to melatonin deficiency. This report will collate in a clinician-oriented fashion the mechanistic link
between melatonin deficiency and factors contributing to DN.
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INTRODUCTION

Melatonin is an indolamine that is present in almost every or-
ganism from bacteria to humans [1]. In mammals, the site of

hormonal melatonin production is the pineal gland, but melato-
nin is also produced in peripheral tissues for local autocrine and
paracrine actions. Pineal melatonin production is restricted to
the night and its production duration follows the duration of
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the night. Melatonin mainly regulates biological rhythms and
has a role in coordinating behavioural and physiological adapta-
tions to the night/day cycle and seasons [2].

Diabetic nephropathy (DN) is a microvascular complication
of diabetes and is the leading cause of renal failure. Blood pres-
sure regulation, glycaemic control and management of hyperli-
pidaemia are still the mainstays of therapy. These have not
resulted in a cure [3, 4]. Melatonin-based therapy may be an-
other pathway for therapeutic synergy.

DN is driven by the metabolic derangement causing haemo-
dynamic changes, oxidative stress and inflammation. In early
stages, DN is characterized by glomerular hyperfiltration and
podocyte loss [5, 6]. While melatonin deficiency causes meta-
bolic derangements, haemodynamic changes, oxidative stress
and inflammation, the potential nephroprotective effects of
melatonin are understudied. In this review we summarized the
current literature about the effect of melatonin on the develop-
ment of DN and the underlying pathophysiology.

Melatonin synthesis is tied to light and the day/night
cycle

Melatonin (N-acetyl-5-methoxy tryptamine) is a tryptophan-
derived small molecule showing pleiotropic actions, including
antioxidant properties [7]. In mammals, melatonin is centrally
produced by the pineal gland, acting as a hormone and, in addi-
tion, melatonin is produced in several central and peripheral
tissues (e.g. retina, astrocytes, gastrointestinal tract, bone mar-
row, lymphocytes and skin) where it acts as a paracrine/auto-
crine factor [8, 9].

Melatonin secretion is tightly regulated (Figure 1). Pineal
gland melatonin strictly with nocturnal production depends on
two factors: first, circadian timing by the suprachiasmatic hypo-
thalamic nucleus, and second, the nocturnal production is re-
stricted to the night due the so-called photoinhibition of its
production by light acting through the retinal melanopsinergic
system originating in the intrinsic photosensitive ganglion cells
[10]. However, in spite of being produced only during the night
and in the dark, melatonin effects might be expressed not only
during the night (immediate effects) but also during the day
when melatonin is no longer circulating (prospective effects) [2].
Superior cervical ganglia provide sympathetic innervation to
the pineal gland, releasing norepinephrine that stimulates the
rate-limiting steps that convert tryptophan to melatonin in the
pineal gland [2, 11]. Melatonin is not stored but is immediately
released into the bloodstream and cerebrospinal fluid, bathing
the brain and organs simultaneously. It has a short (40-min)
half-life and is metabolized in the liver and kidneys and ex-
creted renally as 6-sulfatoxymelatonin [12].

Melatonin activates two kinds of G-protein-linked mem-
brane receptors, MT1 (high affinity) and MT2 (low affinity),
which are encoded by the MTNR1A and MTNR1B genes, respec-
tively. These receptors are expressed in multiple tissues such as
heart and arteries, adrenal gland, kidney, lung, liver, gallblad-
der, small intestine, adipocytes, ovaries, uterus, breast, prostate,
skin and central nervous system. They are also expressed by T
and B lymphocytes [13]. However, receptor-expressing cells and
tissues are not the only targets of melatonin physiologic actions
since melatonin expresses non-receptor-dependent mecha-
nisms of action such as, e.g., the direct nitrogen and oxygen rad-
ical species chelating antioxidant effects. As an antioxidant,
melatonin protects DNA from oxidative damage [14–17], espe-
cially from mitochondrion-derived free radicals [18]. Melatonin
also regulates ubiquitin-linked proteasomes to inhibit Ca2þ/

calmodulin-dependent protein kinase II activity and decreases
protein catabolism [19]. It additionally activates extracellular
signal-regulated kinase and G-protein q subunit signalling [19].

Central and peripheral effects of melatonin

Melatonin regulates the circadian sleep–wake and body temper-
ature cycles [20, 21]. This chronobiologic effect involves the hy-
pothalamic suprachiasmatic nucleus as imaged by magnetic-
resonance imaging [22, 23].

The metabolic role of melatonin has been studied in rats,
where pinealectomy leads to increased body weight owing to
increased food intake and reduced energy expenditure [24].
Replacing melatonin in these rats reduced body weight and
food intake and increased brown fat activation [25, 26].
Interestingly, post-menopausal women taking daily melatonin
supplementation in a randomized placebo-controlled trial re-
duced fat mass and increased lean mass [27]. In addition to
these indirect antidiabetic effects, melatonin directly increases
pancreatic beta cell survival and function [28–30] by increasing
insulin secretion through glucagon-like peptide-1 sensitization
[31]. In a population-based study, lower melatonin levels
were independently associated with the risk of developing type
2 diabetes, possibly because melatonin regulates glucose toler-
ance [2, 32–34], and of insulin release in a complex feedback
loop [35, 36].

Melatonin also regulates haemodynamic equilibrium.
Pinealectomized rats became hypertensive, and this was re-
solved with melatonin supplementation [37]. Separately, 24-h
light exposure (and the resultant melatonin suppression)
causes hypertension via sympathetic drive and renin–angioten-
sin system activation (vasoconstriction and volume retention)
[37, 38]. These mechanisms are activated by cardiovascular sys-
tem melatonin receptors [39]. Also, melatonin acts on mito-
chondria regulation to maintain a healthy cardiovascular
system [40]. In addition, direct brain actions of melatonin also
reduce sympathetic tone and downregulate adrenal gland activ-
ity via the hypothalamus [41, 42]. Melatonin also modulates the
baroreflex set point [43] and regulates heart rate via the medulla
[44] and vasoconstriction and vasodilation via direct activation
of vessel melatonin receptors [39, 45, 46]. In this regard, melato-
nin deficiency leads to blood pressure non-dipping or reverse
dipping at night [47, 48]. In summary, because melatonin has
cardiovascular and metabolic effects, derangements can result
in diabetes and obesity (Figure 2).

DN occurs inconsistently and shortens lifespan

Technically, DN is defined as decreased glomerular filtration
rate (GFR) and/or elevated urinary albumin excretion (30–
300 mg/day microalbuminuria, >300 mg/day macroalbuminu-
ria). Not all diabetics develop DN, but the reasons are unclear.
Type 2 diabetics are more likely than type 1 diabetics to develop
DN, although there are confounders such as older age and more
frequent cardiovascular disease and atherosclerosis [49]. In any
case, DN increases the risk of death in both type 1 and type 2
diabetics [50, 51] and ultimately progresses to end-stage kidney
disease requiring renal replacement therapy by dialysis or
transplantation [52]. However, albuminuria is inconsistently as-
sociated with a DN progression and some patients progress
without albuminuria [53]. DN biopsies show a variety of pathologic
findings involving almost every portion of the nephron, notably
basement membrane thickening, podocyte loss and interstitial fi-
brosis [49]. A key pathogenic pathway is hyperglycaemia increasing
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mitochondrial substrate oxidation [49] to activate the reduced
form of nicotinamide adenine dinucleotide phosphate (NADPH) ox-
idase, thus uncoupling nitric oxide synthase [54], resulting in the
generation of reactive oxygen species (ROS). Excess ROS causes cell
dysfunction, apoptosis and inflammation, and decreasing ROS ex-
posure is beneficial [49, 55].

Other factors contributing to chronic kidney disease (CKD)
progression include hypertension and impaired autoregulation,
leading to hypoperfusion and inappropriate renin–angiotensin
system activation [56] in both type 1 and 2 diabetes [57, 58]. Loss
of renal autoregulation allows systemic hypertension to directly
hit the glomerulus [59, 60]. Glucose-mediated endothelial

FIGURE 1: Melatonin secretion is regulated by diurnal rhythms of the body. Its secretion is increased during sleep and decreased during the daytime. Its systemic

effects are regulated by activating MT1 (high affinity)/MT2 (low affinity) receptors. It is degraded in the liver and kidney.

FIGURE 2: Melatonin deficiency may increase the risk for development of diabetes, obesity, cardiovascular and kidney disease. Melatonin has multiple health benefits

on multiple organs.
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dysfunction promotes microvascular rarefaction and renal hyp-
oxia [49, 61]. Not surprisingly, lowering blood pressure is protec-
tive in hypertensive DN [62–64]. Insulin resistance is linked to
CKD [65, 66]. Thus insulin receptor deletion in podocytes leads
to glomerular damage similar to that observed in DN [67].
Compensatory insulin hypersecretion promotes kidney fibro-
genesis through actions in insulin-responsive cells, further con-
tributing to progressive renal disease [68]. Obesity independently
promotes inflammation and growth factor activity, thus promot-
ing CKD progression [49]. In this regard, inappropriate recruit-
ment of activated T cells and macrophages favours glomerular
and tubulointerstitium inflammation and DN progression [69,
70]. Therapeutic approaches targeting inflammatory mediators
decrease albuminuria and GFR loss in animals and humans with
DN [71, 72].

Melatonin measurement in diabetes

Melatonin levels are known to vary in a diurnal pattern, with se-
cretion in humans occurring mostly at night. Interestingly, the
complications of diabetes impair this secretion. Retinal percep-
tion of light may disturb melatonin dynamics in patients with
diabetic retinopathy. Autonomic neuropathy may impair inner-
vation of pinealocytes, which leads to altered melatonin hae-
modynamics in diabetes. These diabetic consequences are less
discussed than the common cardiovascular and lower extrem-
ity peripheral vascular consequences [73].

Hikichi et al. [74] compared both the night- and daytime mel-
atonin secretion in non-diabetic and diabetic subjects. They
found that diabetics had lower melatonin at night but daytime
levels were not affected by diabetes. In another study, Tutuncu
et al. [73] designed a study to determine melatonin dynamics in
type 2 diabetic patients and its relationship with the autonomic
nervous system. They measured melatonin levels between 2
and 4 a.m. and 4 and 6 p.m. and compared these in 36 diabetics
versus 13 non-diabetics. Again, like with Hikichi et al., diabetics
had lower nighttime melatonin levels and less of a melatonin
surge into nighttime, both statistically significant findings.
Patients carrying a diagnosis of autonomic neuropathy showed
lower night- and daytime melatonin levels compared with non-
diabetics (both statistically significant). Retinopathy did not af-
fect the findings but the authors suggested that the partici-
pants’ degree of retinopathy was not severe enough to generate
a signal [73]. Prior to these studies, O’Brien et al. [75] had already
shown that a physiological increase in nocturnal plasma mela-
tonin concentration is not observed in diabetic patients with
neuropathy compared with age-matched non-diabetic controls.
The compilation of studies supports the hypothesis that mela-
tonin dysregulation is a novel diabetic complication. Future
studies may focus on melatonin dynamics graded by the sever-
ity of diabetic neuropathy.

Melatonin and DN

Sleep patterns are linked to diabesity via insulin resistance and
metabolic syndrome [76, 77] and the disturbed sleep–diabetes
link [78] is likely driven by melatonin deficiency [79]. In fact,
type 2 diabetics with decreased sleep had higher 24-h urinary
albumin and protein excretion as markers of more severe DN
[80]. Moreover, diabetes-derived hyperglycaemia induces a re-
duction in melatonin production, aggravating sleep and meta-
bolic medical conditions [81].

Peschke et al. [82] showed that serial nocturnal plasma mela-
tonin levels were significantly lower in six diabetic patients

compared with five non-diabetic controls. Although this study
involves only a small number of patients, the performance of
serial measurements improves the validity of the study [82].
Melatonin levels also vary with microvascular diabetic compli-
cations. Nocturnal plasma melatonin levels were studied in 56
patients by Hikichi et al. [74]. Interestingly, they found that the
patients with diabetic proliferative retinopathy had lower mela-
tonin levels than healthy patients. However, non-retinopathy
diabetics did not demonstrate this finding. Kor et al. [83] com-
pared the melatonin levels in 40 type 1 diabetic children and 30
non-diabetic controls. The mean melatonin level in the diabetic
group was 6.75 6 3.52 pg/mL and the mean melatonin level in
the control group was 11.51 6 4.74 pg/mL (P< 0.01). In their rela-
tively small cross-sectional study, Robeva et al. [84] showed that
nocturnal insulin and plasma melatonin levels correlated posi-
tively in metabolic syndrome patients but not healthy control
patients. Melatonin deficiency may predispose to DN via vaso-
active, metabolic, inflammatory, apoptotic and fibrogenic path-
ways (Figure 3).

Activation of Rho-associated kinases promotes endothelial–
mesenchymal transformation [85–87] and DN progression,
which is prevented by inhibiting this pathway [88]. In cultured
cells, microRNA 497 attenuated Rho-associated kinase signal-
ling [89]. Mesenchymal stem cell therapy improved renal func-
tion in rat DN and melatonin improved renal recovery by
increasing antioxidant defences and decreasing immune activa-
tion [90].

Melatonin also modulates renin–angiotensin system activa-
tion, in general, and particularly in DN [91–93]. Thus the renin–
angiotensin system was upregulated in CKD patients with im-
paired melatonin secretion at night [94]. In subtotally nephrec-
tomized rats, treatment with melatonin for 4 weeks improved
remnant kidney function and decreased intrarenal renin–angio-
tensin activation and interstitial fibrosis [95]. In cultured cells,
melatonin reduced the expression of apoptotic proteins in re-
sponse to a diabetic milieu, resulting in increased podocyte
numbers. Melatonin prevented angiotensin-2-driven pro-apo-
ptotic protein transcription and protected mitochondrial mem-
branes in a dose-dependent manner [96]. In rats with
streptozotocin-induced DN, the combination of melatonin and
taurine decreased glomerular inflammation and proteinuria,
independent of serum glucose levels [97]. In the same model,
melatonin also increased nitric oxide availability and nephro-
protective protein levels, including those of antioxidant pro-
teins such as superoxide dismutase [98], and also decreased
kidney cell apoptosis [99], improving histological kidney dam-
age [100]. Nephroprotection by melatonin is not limited to DN,
but extends to potential clinical complications of diabetic
patients. Thus melatonin reduced the inflammation marker
interleukin-33 (IL-33) in streptozotocin-induced DN rats with
contrast-induced nephropathy [101] and protected against
adriamycin-induced podocytopathy [102]. It additionally inhib-
ited and normalized NADPH oxidase activity, a key driver of oxi-
dative stress that is upregulated in obese Zucker diabetic rats
[103–105].

Macrophages are the predominant kidney infiltrating cells in
DN [106, 107] and macrophage infiltration in biopsy specimens
predicts GFR loss in DN [108]. Therapeutic manoeuvres that de-
crease macrophage infiltration also decrease albuminuria and
slow DN regression [109, 110]. The nuclear factor jB (NF-jB)
transcription factor is a master regulator of inflammation, con-
tributing to DN progression by promoting macrophage recruit-
ment and activation [111]. Macrophages secrete transforming
growth factor b1, a pro-fibrotic factor that plays a key role in DN-
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associated kidney fibrosis [112]. Melatonin modulates macro-
phage recruitment and activation via multiple pathways, includ-
ing NF-jB activation [1]. Thus melatonin decreases M1 pro-
inflammatory macrophage and increases M2 anti-inflammatory
and reparative macrophages [113], blunting inflammatory
cytokine secretion (IL-1b, IL-6 and tumour necrosis factor a)
and decreasing free radical production, while increasing the
release of anti-inflammatory cytokine such as IL-10 from M2
macrophages [1].

Finally, it is important to correlate melatonin deficiency
with obesity and hypertension since these are commonly dis-
cussed predisposing factors for DN. Obesity and hypertension
frequently coexist [114] and are associated with oxidative stress
and inflammation, especially at the vascular level. Specifically,
kidney oxidative stress and inflammation contribute to hyper-
tension [115].

As suggested above, melatonin has both anti-inflammatory
and antioxidant effects due to cyclooxygenase synthase inhibi-
tion and multilevel inflammasome inhibition for cytokines,
chemokines and adhesion molecules [116]. Melatonin decreases
blood pressure via reduced NF-jB activation and reduced renal
inflammation in spontaneously hypertensive rats [117]. Qiao et
al. [118] demonstrated that melatonin reduced hypertension
and inflammatory cellular infiltration of the renal tubules.

Melatonin has many antioxidant effects. Those highlighted in
the literature include reduction of oxidative stress, renal inflam-
mation, proteinuria and progression of renal damage in rats with
low renal mass [119]. Melatonin exerts renoprotective and anti-
hypertensive effects by increasing nitric oxide bioavailability
[120]. Melatonin deficiency is also related with obesity. Melatonin
reduces body fat content, especially visceral fat, and improves
metabolic condition via reduced free fatty acids, reduced hyper-
glycaemia and reduced insulin levels alongside improved high-
density lipoprotein and adiponectin levels [25, 121–123].

It was shown that the amplitudes of the nocturnal pineal
[124] and serum melatonin peaks decreased significantly in

obese animals. Daily melatonin supplementation significantly
reduced body weight as well as plasma glucose, leptin, triglycer-
ide and total cholesterol levels of the rat models of high-fat
diet-induced obesity [125, 126]. The summary of evidence sup-
ports the hypothesis that melatonin deficiency plays a role
in the development of kidney disease vis-à-vis obesity and
hypertension.

CONCLUSION

Melatonin links sleep to metabolic and haemodynamic equilib-
rium. Melatonin activates the cardiovascular system and
kidney receptors to protect from DN in preclinical models.
Furthermore, melatonin levels are associated with human DN
outcomes. Only human randomized controlled trials will con-
firm whether melatonin improves renal outcomes in diabetics
and increases survival.
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