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To overcome the two-class imbalanced problem existing in the diagnosis of breast cancer, a hybrid of K-means and Boosted C5.0
(K-Boosted C5.0) is proposed which is based on undersampling. K-means is utilized to select the informative samples near the
boundary. During the training phase, the K-means algorithm clusters the majority and minority instances and selects a similar
number of instances from each cluster. Boosted C5.0 is then used as the classifier. As there is one different instance selection factor
via clustering that encourages the diversity of the training subspace in K-Boosted C5.0, it would be a great advantage to get better
performance. To test the performance of the new hybrid classifier, it is implemented on 12 small-scale and 2 large-scale datasets,
which are the often used datasets in class imbalanced learning. ,e extensive experimental results show that our proposed hybrid
method outperforms most of the competitive algorithms in terms of Matthews’ correlation coefficient (MCC) and accuracy
indices. It can be a good alternative to the well-known machine learning methods.

1. Introduction

Breast cancer is one of the top ten causes of women death
around the world [1]. Until now, the cause of breast cancer
has been still under research, and the most effective treat-
ment depends on the time when the cancer is detected. Now,
early detection is the only way to ensure long survival of the
patients [2, 3], which means, if the breast cancer is detected
timely, the chance of patient survival is increased. ,erefore,
accurate diagnosis of breast cancer has become one of the
challenging problems in the medical science community.

,ere has been a great deal of research on medical breast
cancer diagnosis in the literature, and many of them gained
high classification accuracies. Li et al. [4] presented a novel
supervised feature extraction method called quasiconformal
kernel common locality discriminant analysis (QKCLDA) to
map the input data to a low space, and the obtained clas-
sification accuracy was 97.26%. A hybrid of K-means and
SVM (K-SVM) algorithm was proposed by Zheng et al. [5],
and the obtained accuracy was 97.38%. Pashaei et al. [6] used
a combination of particle swarm optimization with boosted

C5.0 decision tree classifier (PSO+Boosted C5.0) and re-
ported the accuracy of 96.38%. Weng et al. [7] applied a
multiple neural network classifiers (EC) technique to the
breast cancer diagnosis and achieved an accuracy of 96.5%.
Pashaei et al. [8] proposed a novel dimension reduction
method named as binary version of Black Hole Algorithm
(BBHA), which obtained 97.38% accuracy. A knowledge-
based system using the fuzzy logic method (referred to as
EM-PCA-CART-Fuzzy Rule-Based) was developed by
Nilashi et al. [9] to increase the predictive accuracy of breast
cancer disease classification. ,ey improved the accuracy to
93.2% accuracy. All these methods were evaluated on
Wisconsin Diagnostic Breast Cancer Dataset (Wbcd). Peng
et al. [10] incorporated artificial immune into semi-super-
vised learning for unlabeled breast cancer diagnosis data
(referred as Aisl). ,ey obtained 98% and 98.3% accuracies
on Wbcd and Breast Cancer Wisconsin (Bcwo) datasets,
respectively. In 2016, a new model for determination of
kernel bandwidth based on the particle swarm optimization
(PSO) method with nonparameter kernel density estimation
(KDE) was proposed by Sheikhpour et al. [11], and the
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obtained accuracies were 98.45% and 98.53%, respectively.
Wang et al. [12] proposed a SVM-based weighted AUC
ensemble learning model for breast cancer diagnosis on
Wbcd and Bcwo datasets and achieved accuracies of 97.68%
and 97.10%, respectively. In summary, all these methods
show an improvement in accuracy in breast cancer di-
agnosis, but a defect was noted that these methods aimed to
maximize accuracy and used the training accuracy as the
only criterion to evaluate the performance, and this is based
on the assumption of balanced dataset. But in a real ap-
plication, the balanced dataset assumption of medical di-
agnosis is frequently violated, since the examples of the
noncancer class outnumber the examples of the cancer class.

Imbalance problem should be carefully addressed be-
cause traditional methods are designed to maximize the
global accuracy, but exhibit poor generalization for the small
class which is usually the most primary one. ,us, for the
traditional algorithm, rare class is difficult to identify than
the majority class. Hence, the breast cancer diagnosis
problem should be classified from the perspective of class
imbalance.

,e popular mechanism to address the problem of class
imbalance is the ensemble of classifiers with a data-based
approach since the data-based method and classifier training
task can be performed independently [13, 14]. For a data-based
approach, oversampling and undersampling are the most
useful solutions. In the first case, some literature agrees that this
can increase the probability of overfitting [15]. Undersampling
has been proven to be better than oversampling, but it suffers
from high elimination of useful samples [16].

To overcome the limitation of undersampling, a
K-means clustering-based undersampling method is
employed to select the samples near the boundary since the
border samples are the most informative ones and play an
important role in the classification [17–19], thereby pre-
serving the maximum of useful samples. Meanwhile, we can
adjust the strength to reconstruct small size of subset for
training by boosted C5.0, which has been considered as the
most effective algorithms for breast cancer diagnosis
[14, 15, 20]. ,e objective of this paper is to discuss the
clustering-based undersampling method for training boos-
ted C5.0 for class imbalanced data, especially breast cancer
prediction data, and we will mainly focus on the under-
sampling strategy.

,e major contributions of this paper are: (1) a strategy
of using the k-means clustering technique for under-
sampling both majority and minority classes are presented,
(2) an efficient classifier ensemble is considered. Boosting
scheme is used to leverage the strength of base classifier, (3)
an extensive experiment analysis is carried out on 12 real
imbalanced data sets, showing that the proposed method
K-Boosted C5.0 can outperform the results of the literature
and state-of-the-art methods, RUSBoost and SMOTEBoost
which are renowned methods in this area and hence proving
the inherent advantage of the proposed approach.

,e remainder of this paper is organized as follows.
Section 2 describes the research methodology including
instance selection method and model construction. ,e
evaluation metrics and experimental results are presented in

Section 3. Section 4 presents a discussion. Finally, Section 5
concludes the paper and the indication for the intended
direction of future research.

2. Materials and Methods

In this section, we give a detailed description of the K-means
clustering-based undersampling algorithm. ,e processes
are shown in Figure 1. ,e clustering-based undersampling
method is employed to select the border samples in the
majority and minority classes. ,e obtained samples are
combined together, and a balanced training subset is ob-
tained. ,e balanced training subset is used as the input to
the boosted C5.0 classifier.

2.1.Clustering-BasedUndersamplingMethod. Undersampling
is a better choice than oversampling since the oversampling
method increases the likelihood of overfitting; however,
undersampling also suffers from the problem of underfitting,
in other words, useful data might be eliminated. To over-
come the limitation, a clustering-based undersampling
method is proposed. As described in the aforementioned
literature, interior prototypes can be discarded since they
have little effect on classification accuracy, but the border
prototypes are critical with emphasized impact for classi-
fication, that could be important for the induction process.
,us, in our proposed method, we use the clustering-based
undersampling method to select the samples near the
boundary region to rebalance the class distribution without
significant loss of classification accuracy. ,e aim of clus-
tering is to group objects into two clusters. ,us, we can
select the optimal samples which lie to the cluster boundary,
resulting in a balanced dataset with each cluster containing
similar number of data.,e idea behind this implementation
of clustering-based undersampling is to eliminate the ex-
amples from both classes that are distant from the cluster
border since these kinds of examples might be considered
less relevant for learning. In this paper, only the K-means
clustering algorithm is considered because it is simple and
efficient [21].

,is proposed clustering-based undersampling method
has three stages: firstly, clustering the overall samples via
K-means algorithm. Secondly, compute the distance from
each point to the cluster centroid. Finally, the sample whose
distance to the central point is greater than the cluster av-
erage distance is merged, resulting in a modified balanced
data set. ,e remaining samples are used as the testing
subset. We calculate the distance using Euclidean distance.
,e number of clusters was set to two for binary-class
datasets. It should be pointed out that if the obtained subset
is an imbalance dataset after performing instance selection
algorithm, we should change the selection condition that the
samples whose distance to the cluster central points are
greater than half of the average distance of the clusters are
selected and added to the training space. ,e details of the
informative sample selection algorithm are described below.
,e pseudocode presented in Algorithm 1 describes the
clustering-based undersampling algorithm in detail.
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Step 1: randomly select k sample instance from X as the
centroids point in the cluster, k is determined by the
number of clusters.
Step 2: Euclidean metric is used for computing the
distance between each point and the centroid in the
same cluster, and each data point is assigned to its
closest centroid. ,e distance between xi and the point
uk is defined by the following equation:

J ck( 􏼁 � 􏽘
xi∈ck

xi − uk

����
����. (1)

Step 3: compute a new cluster centroid point for re-
ducing the Euclidean distance.
Step 4: repeat steps 3 and 4 until cluster membership
stabilizes.
Step 5: compute the average distance of each number i

to the centroid uk in the same cluster sk, which is
calculated by using the following equation:
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Step 6: create the final training data set 〈X′〉, by
appending the point xi to X′ if J(ck)≺ ηdavg.

When the clustering-based undersampling method is
employed, the redundant samples can be removed, the
scale of samples has been greatly reduced, and the basic
information of the original database can be retained. In
this case, the time and space complexity of the algorithm
can be reduced, and the classification accuracy can be
improved.

2.2. Boosted C5.0. C5.0 is an improved algorithm from C4.5
by Ross Quinlan, and the test attributes by information gain
[22], which has a noticeably lower error rate and uses an
order of magnitude less memory. It creates a decision tree
model in the way of “divide and rule” and prunes the tree by
postpruning algorithm. All the nodes are divided into their
class until the nodes cannot be divided. In addition, the most
worthless in the low splits of the tree is removed or pruned.

Boosting is the most commonly used technique in the
imbalance framework for constructing ensembles. ,e
boosting algorithm repeatedly calls weak learner, each time
feeding it a different distribution over the training data. C5.0
can easily support for boosting, and the boosting technique
can improve the performance. ,e class imbalance can be
considered seriously in medical decision making and
boosted C5.0, which has been widely considered, being now
a well-know method on imbalance learning. ,us, in this
paper, we come up with boosted C5.0 to make use of the
advantage and avoid the shortcoming.

3. Results and Discussion

To clearly observe the impact of clustering-based under-
sampling on imbalance dataset and investigate how the
performance measures behave along with the clustering-
based undersampling degree in depth, we develop ensembles
on imbalanced data sets with different degrees of class
imbalance. In our experiments, the items to be investigated
are as follows: (a) the ability of keeping majority classifi-
cation accuracy and (b) the ability of improving the minority
classification accuracy. ,e experiments are performed by
using a laptop with Windows 10, 2.19GHz Pentium CPU
and 4GB RAM, using Matlab version 2016a and R version
3.4.4. Additionally, boosted C5.0, naı̈ve Bayes and SVM
classifiers, “C50” and “e1071”, and “kernlab” packages have
been used accordingly. For 10-CV algorithm, the “caret”
package has been utilized. All packages with default setting
were used.

In our experiments, k is set to 2 since all classification
tasks are two-class imbalance cases. As for boosted C5.0, we
use 10 trails for boosting. For the SVM classifier, the linear
kernel function is used to avoid overfitting as the most
formative samples have been selected as the training set.

3.1. Dataset. ,e work in this paper confers four experi-
mental studies. In the first study, 2 small-scale breast cancer
datasets are used. In the second study, 10 small-scale datasets
from UCI repository with various imbalance rates and data
set sizes were used. ,ey are all two-class classification
datasets, and if the instances contained in the datasets have

Imbalanced
dataset

Clustering the instances via
K-means algorithm

Compute the distance between each
points and the cluster centroid

Compute the average distance
within each cluster

The distance of
instance to

center > average
distance

Add to the
training subset

Add to the
testing subset

Boosted C5.0
classification

 

Figure 1: Block diagram for the proposed classification model.
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the missing values in different attributes, they will be dis-
carded from the datasets. ,ese datasets are all represen-
tative ones that have been used in breast cancer diagnosis
and imbalance learning in the literature. ,e third one was
based on two large-scale datasets used by Lin et al. [23]. ,e
fourth one discusses the computational time in seconds for
each of the methods against each dataset. ,e data set in-
formation is summarized in Table 1.

3.2. Performance Measures. Overall accuracy becomes
meaningless when the learning concern is how to find
minority examples effectively [24]. Other performance
criteria must be considered, and as pointed out by Raeder
et al. [25], the choice of evaluation metrics plays an im-
portant role in imbalanced learning. However, some per-
formance criteria such as G-mean, the area under curve
(AUC), and F-measure are the commonly used ones in the
class imbalance learning community. But, as suggested in the
literature [26], if the classes are unbalanced, computing
MCC is more appropriate than others since it represents the
quality of unbalanced binary classification. ,e MCC is
calculated according to the confusion matrix in Table 2 as
follows:

MCC �
TN × TP − FN × FP

�����������������������������������
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

􏽰 .

(3)

In this study, the class of interest is known as the positive
class, while all others are known as negative. Hence, the
noncancer class is given “negative” and the cancer is given
“positive.”

3.3. Experiment I. ,e data sources are taken from the
breast cancer machine learning repository, which are Wbcd
and Bcwo datasets. ,ese are the complete and representative
datasets. ,us, the testing results are reliable and valuable.

We compare the results with RUSBoost [27] and
SMOTEBoost [28] which are all representative approaches
combining resampling techniques with classifier ensemble.
In addition, K-Boosted C5.0 is compared with SMOTE-
Boosted C5.0 utilizing 10 fold-cross validation methods. ,e
parameters of over and under in SMOTE algorithm are 100
and 300.,e value of η is set to 0.25 and 1 inWbcd and Bcwo
datasets. Note that in the SMOTE-Boosted C5.0, we first
generate data by SMOTE and then classify the samples by
boosted C5.0 algorithms based on the 10 fold-cross

validation sample selection method. ,ese results are re-
ported in terms of six measures: accuracy, sensitivity,
specificity, G-mean, AUC, and MCC.

Table 3 reports the value of performance on each dataset,
and the best performance is highlighted in bold typeface. In
order to perform a comprehensive comparison of our
proposed method, the comparison results using K-Boosted
C5.0 in Wbcd and Bcwo datasets compare with different
predicting methods in the literature listed in Tables 4 and 5.

For comparison purpose, the performance of K-Boosted
C5.0 on Wbcd and Bcwo datasets is compared with that of
other methods from the literature. Tables 4 and 5 report the
results of K-Boosted C5.0 and different classification
methods for Wbcd and Bcwo, respectively. ,e symbol “—”
in Tables 4 and 5 indicates that we do not get the data from
the reference.

From the results of Tables 4 and 5, one observed that
K-Boosted C5.0 is significantly better than the results of the
literature. For the Wbcd dataset, K-Boosted C5.0 has ob-
tained 98.2% accuracy with 30 features. It should be pointed
out that for the Wbcd dataset, a new method based on the
modified correlation rough set FS and MLP classifier was

Input: the data set 〈X〉.
X � xi􏼈 􏼉, i � 1, 2, . . . , n is the set of D-dimensional points, uk is the centroid point, davg is the average distance of eachmember i to the
centroid uk in same cluster sk, Xi

j denotes the jth input element of member i, Xuk

j denotes the jth input element of the centroid uk, N
is the total number of data points, D is the dimension of an input vector, K is the number of clusters, and η is a factor to control the
number of training samples.
Output: the final training data with informative samples 〈X′〉.

ALGORITHM 1: ,e clustering-based undersampling procedure.

Table 1: Experimental datasets.

Datasets No. of data
samples

No. of
features

Imbalance
ratio

Small-scale datasets
(1) Abalone 731 8 16.4
(2) Bcwo 683 9 1.8577
(3) Pima 336 8 2.027
(4) Redwine1 837 11 3.21
(5) Redwine2 880 11 3.42
(6) Redwine3 734 11 12.85
(7) Redwine4 691 11 12.04
(8) Wbcd 569 30 1.8
(9) Whitewine 1043 11 5.4
(10) Yeast1 707 8 1.8975
(11) Yeast2 626 8 2.840
(12) Yeast3 892 8 1.08
Large-scale dataset
(1) Breast cancer 102294 117 16319
(2) Protein homology
prediction 145751 74 11146

Table 2: Confusion matrix.

Predicted positive Predicted negative
Actual positive True positive (TP) False negative (FN)
Actual negative False positive (FP) True negative (TN)
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used, and the obtained accuracy was 100%. In this method,
only 3 features are obtained using an 80-20 train-test scheme
[29].,ese results show that the proposedmodel can achieve
high classification performance when working with fewer
feature variables, but in reality, it does so at cost of efficiency;
in addition, the accuracies of K-Boosted C5.0 and FSMLP
were not significantly different from each other on this
dataset.

For the Bcwo dataset, it is evident from Table 5 that the
proposed K-Boosted C5.0 has a higherMCC of 93.6%.When
our algorithm is compared with the results of the literature,
the results are similar in term of accuracy, but our method
has almost perfect sensitivity, specificity, and G-mean.
,erefore, it is possible to say that the proposed K-Boosted
C5.0 algorithm performs as better as the state-out-method
results of the literature. Note that K-Boosted C5.0 gets the
higher accuracy and G-mean in two breast cancer datasets.
,ese results illustrate the availability of choosing K-Boosted
C5.0 as the classifier for breast cancer diagnosis. In order to
further investigate the effectiveness of K-Boosted C5.0, we
also provide some insight into clustering undersampling
method and the MCC measure at different levels of im-
balance rate.

3.4. Experiment II. In order to illustrate the generalization
performance of the K-Boosted C5.0 method, our experiments
are tested on ten data sets which are shown in Table 1. In these
experiments, η is set to 0.5 in Yeast1 dataset, 0.7 in Redwine1
dataset, 0.8 in Redwine4 dataset, 0.9 in Abalone dataset, 1 in
Yeast2 and Yeast3 datasets, 1.2 in Redwine2 dataset, 1.35 in
Whitewine dataset, 1.5 in Pima dataset, and 1.6 in Redwine3
dataset. Especially, we have, respectively, selected ten different
values (including 10, 3, 8, 4, 3, 1, 7, 1, 3, and 8) as the trial

values in our ensemble method. Table 6 provides the results of
the experiments on ten imbalanced datasets, and the best
MCC is highlighted in bold typeface.

,e accuracy, sensitivity, specificity, G-mean, AUC, and
MCC of four approaches on ten datasets are presented in
Table 6. All the datasets are unbalanced. ,us, MCC is used
to evaluate performance. In order to show the behavior of
the K-Boosted C5.0 method, Figure 2 reports the value of
MCC from the entire dataset by K-Boosted C5.0, SMO-
TEBoost, RUSBoost, and SMOTE-Boosted C5.0. As can be
seen from Table 6 and Figure 2, it is clear that MCC of
K-Boosted C5.0 is significantly better than all the other state-
of-the-art methods, benefiting from the clustering-based
undersampling technique.

3.5. Experiment III. In the third experimental study, for the
clear observation of the impact of clustering-based under-
sampling on imbalanced data sets, two different classifiers
were constructed, namely, the support vector machine
(SVM) and naive Bayes (NB). In addition, in order to
evaluate the performance of the proposed ensemble ap-
proach, RUS is used as the baseline for performance com-
parisons. As indicated by the performance results in
Figure 3, the proposed clustering-based undersampling
method combined with the boosted C5.0 ensemble classifier
demonstrated the highest classification performance in
terms of MCC over these two large-scale datasets. As it can
be observed from the results listed, K-Boosted C5.0 has an
outstanding performance, and the K-Boosted C5.0, K-SVM,
and K-NB are significantly better than RUSBoost in these
two large-scale datasets. ,is improvement in classification
ofMCC is mainly due to the clusteringmethod.,ese results
can lead us to conclude that the K-means clustering-based

Table 3: Performance comparison based on Wbcd and Bcwo datasets.

Dataset Method Accuracy Sensitivity Specificity G-mean AUC MCC

Wbcd

K+ boosted C5.0 0.982 0.9375 1 0.9682 0.969 0.956
SMOTEBoost 0.964 0.946 0.978 0.9619 0.963 0.924
RUSBoost 0.944 0.93 0.954 0.942 0.942 0.886

SMOTE-Boosted C5.O 0.925 0.939 0.911 0.9248 0.925 0.847

Bcwo

K+ boosted C5.0 0.975 0.991 0.969 0.9799 0.980 0.936
SMOTEBoost 0.92 0.98 0.89 0.934 0.933 0.839
RUSBoost 0.936 0.926 0.944 0.9350 0.934 0.8539

SMOTE-Boosted C5.0 0.937 0.934 0.941 0.9375 0.937 0.8756

Table 4: Performance comparison based on the Wbcd dataset.

ML method Accuracy (%) Sensitivity (%) Specificity (%) G-mean (%) MCC
QKCLDA 97.26 — — —
K-SVM 97.38 — — —
PSO+Boosted c5.0 96.38 97.70 94.28 —
Aisl 98.00 95.9 98.7 —
PSO-KDE 98.45 100 97.99 —
EC 96.5 —
BBHA 97.38 95.79 98.57 —
EM-PCA-CART-fuzzy
Rule-based 93.2 — — —
FSMLP 100 100 100 100
K-Boosted C5.0 98.2 93.75 100 96.82 95.6
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undersampling method can be effective to solve the im-
balance problem for large-scale datasets that contain rela-
tively large number of instances and imbalance rations. In
addition, using the Boosting C5.0 ensemble method is
preferable to using other traditional methods.

3.6. Experiment IV. In the fourth experimental study, the
CPU time of the proposed method K-Boosted C5.0 was

compared with the baseline algorithms, RUS and SMOTE,
over ten small-scale datasets. In order to make the obser-
vation more convincing, the CPU time of the proposed
method K-Boosted C5.0 was compared with RUS over two
large-scale datasets. Figure 4 shows the result obtained by
K-means, RUS, and SMOTE samplingmethods using the ten
datasets. Figure 5 shows the results obtained by K-means
and RUS sampling methods using breast cancer and protein
homology datasets, respectively. It is worth to note, for large-

Table 6: Result comparison based on different datasets.

Dataset Method Accuracy Sensitivity Specificity G-mean AUC MCC

Abalone

K-Boosted C5.0 0.960 0.2 0.992 0.445 0.596 0.299
SMOTEBoost 0.822 0.628 0.834 0.724 0.730 0.264
RUSBoost 0.592 0.802 0.58 0.682 0.69 0.15

SMOTE-BoostedC5.0 0.618 0.635 0.601 0.618 0.624 0.232

Pima

K-Boosted C5.0 0.766 0.640 0.820 0.725 0.730 0.454
SMOTEBoost 0.75 0.646 0.8 0.719 0.723 0.432
RUSBoost 0.714 0.792 0.676 0.732 0.733 0.446

SMOTE-BoostedC5.0 0.713 0.742 0.684 0.712 0.713 0.425

Redwine1

K-Boosted C5.0 0.823 0.517 0.905 0.684 0.823 0.446
SMOTEBoost 0.784 0.544 0.858 0.683 0.701 0.397
RUSBoost 0.702 0.656 0.718 0.686 0.69 0.34

SMOTE-BoostedC5.0 0.688 0.715 0.661 0.687 0.688 0.377

Redwine2

K-Boosted C5.0 0.902 0.681 0.969 0.812 0.825 0.712
SMOTEBoost 0.826 0.85 0.82 0.835 0.835 0.59
RUSBoost 0.82 0.852 0.812 0.832 0.832 0.577

SMOTE-BoostedC5.0 0.844 0.865 0.822 0.8432 0.843 0.691

Redwine3

K-Boosted C5.0 0.834 0.410 0.866 0.596 0.637 0.194
SMOTEBoost 0.89 0.12 0.948 0.337 0.545 0.054
RUSBoost 0.764 0.46 0.788 0.602 0.634 0.171

SMOTE-BoostedC5.0 0.567 0.509 0.625 0.564 0.573 0.137

Redwine4

K-Boosted C5.0 0.940 0.263 0.989 0.510 0.626 0.38
SMOTEBoost 0.916 0.28 0.964 0.520 0.623 0.317
RUSBoost 0.678 0.64 0.682 0.661 0.660 0.152

SMOTE-BoostedC5.0 0.618 0.635 0.601 0.618 0.624 0.232

Whitewine

K-Boosted C5.0 0.925 0.650 0.961 0.79 0.805 0.625
SMOTEBoost 0.804 0.838 0.798 0.818 0.818 0.502
RUSBoost 0.794 0.85 0.784 0.816 0.817 0.49

SMOTE-BoostedC5.0 0.796 0.801 0.792 0.796 0.797 0.593

Yeast1

K-Boosted C5.0 0.952 0.957 0.949 0.953 0.957 0.898
SMOTEBoost 0.762 0.722 0.788 0.754 0.754 0.497
RUSBoost 0.798 0.694 0.852 0.769 0.773 0.552

SMOTE-BoostedC5.0 0.723 0.734 0.712 0.723 0.723 0.45

Yeast2

K-Boosted C5.0 0.951 0.924 0.958 0.941 0.941 0.855
SMOTEBoost 0.932 0.904 0.94 0.922 0.921 0.836
RUSBoost 0.93 0.938 0.926 0.928 0.931 0.824

SMOTE-BoostedC5.0 0.9116 0.8934 0.9388 0.9158 0.916 0.821

Yeast3

K-Boosted C5.0 0.646 0.575 0.706 0.637 0.641 0.28
SMOTEBoost 0.618 0.618 0.612 0.615 0.616 0.232
RUSBoost 0.64 0.544 0.728 0.629 0.636 0.27

SMOTE-BoostedC5.0 0.598 0.450 0.735 0.575 0.593 0.195

Table 5: Performance comparison based on the Bcwo dataset.

ML method Accuracy (%) Sensitivity (%) Specificity (%) G-mean (%) MCC (%)
Aisl 98.3 94.3 99.6 96.91
PSO-KDE 98.53 95.79 100 —
K-Boosted C5.0 97.48 1 96.17 98.07 93.6
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scale datasets, using SMOTE the CPU time is larger than one
hour, since the long runtime is required by finding the
nearest neighbor. ,e proposed K-means undersampling
approach significantly outperformed all methods over ten
small-scale and two large-scale datasets.

In order to confirm whether or not the comparative
methods are significant, the Friedman test with 95% con-
fidence level [30] is carried out. All the methods in ten small-
scale datasets are sorted according to the mean ranks on
their MCC performance measures since MCC is the ac-
cepted measure in class imbalance learning [26]. ,e al-
ternative hypothesis is that there is no significant difference
among these methods. Subsequently, Table 7 displays the
p-value which is less than 0.05. ,is means that an observed
difference in these algorithms is significant. For the purpose

of formally confirming which method is better, we con-
ducted the Nemenyi test at the significance level 0.05 [31].

Figure 6 plots the methods according to their ranks. ,e
“∗” denotes the respective average rank of each method, and
the critical difference is represented by the line segment in its
right. As it can be observed from the results of Figure 4 listed,
the K-Boosted C5.0 method performs significantly better
than other combinations for classification of imbalanced
data sets.

4. Discussion

On the basis of our experimental analysis of the proposed
method, following discussions are taken into consideration:

(a) MCC indicates that our proposed K-Boosted C5.0
approach is the best hybrid classifier for imbalanced
datasets.

(b) In terms of accuracy, our proposed algorithm can
maintain a good classification accuracy of overall
class data except for the Redwine3 dataset. ,ese
improvements in classification accuracy are mainly
due to the clustering-based undersampling method.
For Redwine3, the best accuracy (89%) is obtained by
the SMOTEBoost method which adds SMOTE into
the boosting algorithms. In practice, SMOTE has
good ability to balance dataset but how to choose
sampling rate, which is crucial to its performance,
and can be a time-consuming task. ,us, this fact
restricts its use, and the performance is not stable.
Experimental results show that the proposed
K-Boosted C5.0 algorithm achieves relatively high,
stable classification performance with less fixed
parameters in most cases. So the proposed
K-Boosted C5.0 is strongly desirable.

(c) In terms of G-mean, AUC, sensitivity, and specificity
indicate that the proposed K-Boosted C5.0 exhibits
unstable generalization. ,ese are probably a con-
sequence of different sensitivities of classifiers to
various imbalance rates and other factors. Overall,
we would indicate that our study considers all as-
pects of the imbalance problem, whereas the pre-
vious literature only focuses on accuracy.

(d) A comparison between using K-Boosted C5.0 and
SMOTE-Boosted C5.0 over small-scale datasets
shows that the proposed clustering-based under-
sampling method is better than SMOTE. Boosted
C5.0 was validated by comparison with SVM and
naive Bayes. ,is result can lead us to conclude that
combining the clustering-based undersampling
method with Boosted C5.0 provides the highest rate
of classification MCC.

(e) To show the adaptation and generation capability of
our proposed K-Boosted C5.0, we compare the results
obtained by K-boosted C5.0 with the baseline ap-
proaches, RUSBoost and SMOTEBoost, over all the
datasets. According to these results, the K-Boosted
C5.0 delivers the optimal tested performance with the
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Figure 2: MCC result comparison based on different datasets.
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Figure 3: Classification of MCC of the different classifiers over the
breast cancer and protein homology datasets.
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least amount of time, which was observed to be
significantly different from the other (p< 0.05). It is
interesting to note that the results of this paper are
visible in medical field associate of ted with breast
cancer disease and on large datasets. Note that
according to the results of our experiment, the in-
stance selection method which was proposed by Liu
et al. [18], Chen et al. [17], and Lee et al. [8] in
selecting the important instance can be resolved by

applying cluster algorithms. In summary, the clus-
tering-based undersampling is beneficial for instance
selection. ,is finding provides more alternatives for
selecting efficient instances classification models.

(f ) Notably, Lin et al. [23] concluded that
AdaBoost +C4.5 is the best ensemble classifier for
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Figure 4: Computational efficiency of approaches on 12 datasets.
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Figure 5: Computational efficiency of approaches on breast cancer
and protein homology datasets.

Table 7: Mean rank of the Friedman test over the four classification
algorithms.

p-value K-Boosted
C5.0 SMOTEBoost RUSBoost SMOTE-

BoostedC5.0
7.488e − 08 4 2.25 1.917 1.83

1 1.5 2 2.5 3 3.5 4
Rank

0
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SMOTEBoost

RUSBoost

SMOTE-boosted C5.0
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Figure 6: Results of the pairwise comparisons of methods using the
Nemenyi post hoc test.
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breast cancer classification. ,us, in order to illus-
trate the good performance of the tree ensemble, we
compare the results of K-Boosted C5.0, K-SVM, and
K-NB. It is obvious from the results that the best
classification MCC was obtained by the K-Boosted
C5.0 method. ,is observation is consistent with the
previous analyses. In addition, K-Boosted, K-SVM,
K-NB, and RUSBoost are also compared over large-
scale datasets, revealing the importance of the
clustering-based undersampling method. ,erefore,
the above results demonstrate that the clustering-
based undersampling method outperforms the other
classical methods. ,is finding provides us another
alternative as handling imbalanced classification
problem.

From the experimental result on overall datasets, we
found that, it is worth noting that K-Boosted C5.0 obtains
the highest classification MCC but suffers from parameter
setting, which is crucial to its classification performance.
From a large body of the literature in breast cancer di-
agnosis, most methods are designed to maximize the
overall classification accuracy only; not much work has
been conducted for solving a breast cancer prediction task
as a class imbalance problem. Actually, the accuracy,
specificity, and sensitivity indices of the literature methods
show controversial results on the breast cancer diagnosis.
In addition, the accuracy of these classifiers is higher, yet
lack specificity since the accuracy is overwhelmed by the
instances in the majority class, by ignoring the instance in
the minority class. Such imbalanced class distribution
significantly hinders predictive performance and causes
learning bias towards the majority class and leads toward
poor generalization. Clustering technique groups the
dataset into two clusters, and we select the informative
majority and minority class instance from each cluster.
With the help of clustering-based undersampling, the
original data set is balanced. Our proposed K-Boosted C5.0
has shown its promising predictive performance in breast
cancer diagnosis, balancing and remaining high MCC, and
accuracy.

5. Conclusion and Future Work

In this paper, we propose a K-Boosted C5.0 algorithm based
on undersampling to address the diagnosis of breast cancer
and class imbalance problem. Our proposedmethod consists
of two steps: firstly, K-means clustering is used to group the
classes and find informative samples. We consider the in-
stances which are close to the border of the cluster as the
informative ones. We then set the distance parameter to
make the majority and minority classes equal in number.
Afterwards, Boosted C5.0 is performed for classification.
Empirically, according to the experimental results, the
K-Boosted C5.0 improves the performance significantly
without increasing algorithm complexity. Furthermore, a
clustering-based undersampling method actually provides a
new way how to handle the class imbalance problem in an
efficient manner.

A balanced, informative, and diverse training subset is
obtained via k-means clustering in this work to encourage us
to take this step further. In future, we would like to explore
what are the effects of η, the parameter that can lead to
improving the performance, in order to realize the impor-
tance of the number of instances in the training set that
should be in consideration. We are also concerned with
ensemble diversity that can enhance both overall and mi-
nority class performance.
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