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Mitochondrial dynamics, including continuous biogenesis, fusion, fission, and autophagy,

are crucial to maintain mitochondrial integrity, distribution, size, and function, and play

an important role in cardiovascular homeostasis. Cardiovascular health improves with

aerobic exercise, a well-recognized non-pharmaceutical intervention for both healthy

and ill individuals that reduces overall cardiovascular disease (CVD) mortality. Increasing

evidence shows that aerobic exercise can effectively regulate the coordinated circulation

of mitochondrial dynamics, thus inhibiting CVD development. This review aims to illustrate

the benefits of aerobic exercise in prevention and treatment of cardiovascular disease by

modulating mitochondrial function.

Keywords: aerobic exercise, mitochondrial dynamics, myocardial mitochondria, cardiovascular disease,

mitochondrial fusion, mitochondrial fission

INTRODUCTION

Cardiovascular diseases (CVDs) are the leading cause of global mortality and a major contributor
to disability worldwide (1). CVD pathogenesis is a complex biological process, but few feasible
targets exist to prevent or reverse CVD (2). The American College of Cardiology recently reported
significant progress in drug treatment for CVD; however, these drugs always have negative long-
term effects, causing a reduction of 10–20% in the left ventricular mass (3). Therefore, it is
essential to find effective non-pharmaceutical therapies. Aerobic exercise has many benefits to the
cardiovascular system, such as improving the mechanical properties of the heart and enhancing its
contractility to reduce the incidence of many CVDs. Some of these improvements may arise from
effects on mitochondria.

Mitochondria are the energy factories of cells, producing adenosine triphosphate (ATP), and
are the main source of cellular reactive oxygen species (ROS). Dysfunctional mitochondria
limit energy production, increase ROS production, and transmit apoptotic signals, leading
to tissue damage and organ dysfunction (4). Mitochondrial dynamics, which include
mitochondrial biogenesis, fusion, fission, and autophagy, play an important role in maintaining
mitochondrial homeostasis and ensuring mitochondrial function (5). Mitochondrial dynamics
are particularly important for cells with high energy requirements, such as cardiomyocytes,
which continuously require ATP to support heart function (6). Therefore, regulating
mitochondrial dynamics through effective interventions is crucial for preventing and treating
CVDs (7). In animal models of heart failure, Campos et al. found that aerobic exercise
improved the mitochondrial fusion/fission balance and restored cardiac autophagy flux,
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thereby improving cardiac function (8). Here, we will address
the biological mechanisms of mitochondrial dynamics in CVDs
and discuss the mechanism of aerobic exercise in improving
cardiovascular diseases, thereby providing valuable clues for
CVD prevention and treatment.

MITOCHONDRIAL DYNAMICS AND CVDs

Mitochondria are highly dynamic organelles, constantly
undergoing a coordinated cycle of biogenesis, fusion, fission,
and degradation (Figure 1) (9), and forming a complex network
to respond to dynamic changes in energy requirements (10).
Maintaining healthy and functional mitochondrial networks
is critical for physiological adaptation and coping with stress
during development and throughout life (11). Mitochondrial
dynamics consist mainly of mitochondrial fusion and fission.
Mitochondria are easily damaged by various external stimuli.
Damaged mitochondria are cleared by autophagy to maintain
the stability of mitochondrial dynamics, which is important
to ensuring a healthy mitochondrial network. Defects in
this machinery cause a range of diseases especially affecting
the cardiovascular system (12). Notably, mounting evidence
demonstrates that some of the benefits of aerobic exercise against
CVD occur through its effects on three underlying mitochondrial
aspects: mitochondrial biogenesis, mitochondrial fusion and
fission, and mitochondrial autophagy.

MITOCHONDRIAL BIOGENESIS AND CVDs

Mitochondrial biogenesis requires coordination of nuclear and
mitochondrial DNA (12). It is critical to healthy mitochondrial
dynamics and further affects myocardial function. Mitochondrial
biosynthesis is regulated by the peroxisome proliferator–
activated receptor gamma coactivator-1 (PGC-1) family. This
includes PGC-1α, PGC-1β, and peroxisome proliferator-
activated receptor gamma (PPARγ). PGC-1α plays a vital
role in regulating cardiac metabolism. Activation of PGC-
1 family transcription factors under conditions of cellular
energy requirements, such as cell growth, hypoxia, glucose
deprivation, or exercise, enhances mitochondrial remodeling
or biosynthesis and restores intracellular energy balance (13).
PGC-1 knockdown in mice induces cardiomyopathy via
fragmentation and elongation of cardiac mitochondria, which
is related to changes in mitofusin 1 (MFN1), optic atrophy 1
(OPA1), and dynamin-related protein 1 (DRP1) expression (14).

Multiple transcription factors are found downstream of
PGC-1α, and peroxisome proliferator–activated receptors
(PPARs), nuclear respiratory factor 1 (NRF1), and mitochondrial
transcription factor A (TFAM) are all involved in mitochondrial
biogenesis (15). PPARα is a member of the nuclear receptor
superfamily of PPARs. PPARs participate in decomposition and
metabolism of fatty acids and play a key role in maintaining
myocardial energy metabolism (16). Specific knockout of PPARα

results in cardiac hypertrophy and fat accumulation in rats,
and ultimately heart failure leads to animal death (17, 18).
In addition, PPARα can ameliorate cardiac hypertrophy caused

by hypertension. The PPARα/NRF2 signaling pathway protects
the heart from remodeling induced by stress overload, and
up-regulation of PPARα protein expression can improve cardiac
hypertrophy (19). NRF1/2 is a key component in regulating
nuclear coding of mitochondrial proteins and is closely involved
in mitochondrial biogenesis. In models of cardiac hypertrophy
and heart failure, gene expression and protein levels of NRF1 and
TFAM and protein levels of NRF2 are decreased in the cardiac
tissue (20).

AEROBIC EXERCISE IMPROVES CVDs BY
REGULATING MITOCHONDRIAL
BIOGENESIS

Mitochondrial biogenesis is inhibited in CVDs (21). The
number and ATP production of myocardial mitochondria and
mitochondrial synthesis regulatory factors increased in rats
after an 8-week treadmill test, indicating that aerobic exercise
could improve myocardial energy supply and cardiac function
by promoting biosynthesis of myocardial mitochondria (22).
Treadmill exercise helps improve CVDs; thus, aerobic exercise
may exert direct benefit on mitochondrial biogenesis.

In line with this, aerobic exercise can activate the silencing
regulatory protein 3 (SIRT3)/PGC-1α/phosphatidylinositol 3
kinase (PI3K)/Akt signaling pathway, resulting in improved
mitochondrial biogenesis (23). Such physical activity can also
activate the AMPK/PGC-1α pathway in myocardial tissue. PGC-
1α can upregulate expression of mitofusin2 (MFN2) protein,
which promotes mitochondrial biogenesis and mitochondrial
fusion (13). Further, aerobic exercise enhances protein levels
of PGC-1α and NRF2, which increases the mRNA levels of
TFAM and NRF1 and increases mitochondrial DNA replication.
NRF2 promotes expression of various antioxidant enzymes, thus
reducing the oxidative stress level of myocardial tissue (24). Thus,
aerobic exercise can promote expression of PGC-1α, NRF1, and
NRF2, and expression of regulatory factors and induction of
mitochondrial biogenesis improve CVDs.

MYOCARDIAL MITOCHONDRIAL
FUSION/FISSION AND CVDs

Mitochondria constantly undergo fission and fusion. After
mitochondrial fission, offspring mitochondria with higher
membrane potential enter the next round of fusion to maintain
mitochondrial number and function. These processes are
regulated by mitochondrial fusion and fission proteins, and are
particularly important for maintaining normal mitochondrial
function (25). Mitochondrial fusion proteins include MFN1,
MFN2, and OPA1. MFN1 and MFN2 mediate fusion of the outer
mitochondrial membrane (OMM), while OPA1 mediates fusion
of the inner mitochondrial membrane. DRP1 serves as a critical
effector of mitochondrial fission (26).

In CVDs, mitochondrial morphology and fusion-related
proteins exhibit alterations. For example, severe mitochondrial
fragmentation occurs in myocardial ischemia–reperfusion injury
(I/R) models, which significantly inhibits OPA1 expression
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FIGURE 1 | Diagram of mitochondrial dynamics. Mitochondrial biogenesis is the process by which new mitochondria are formed in the cell after mitochondrial fusion.

Mitochondrial biogenesis is activated by numerous different signals which can lead to mitochondrial fission and damaged mitochondria are degraded by autophagy.

(27). Further, there is an abnormal increase in myocardial
mitochondria, downregulation of mitochondrial biogenesis-
related genes, and aggravation of cardiomyopathy after specific
deletion of Mfn1 and Mfn2 in the mouse myocardium
(28). Mitochondrial fission was caused by translocation of
phosphorylated DRP1 from the cytoplasm to the mitochondria
(26). The use of DRP1 inhibitor reduced DRP1 translocation
to the mitochondria, improved the structure and function of
the mitochondria, and alleviated myocardial hypertrophy and
myocardial fibrosis (29, 30). Besides the positive changes in
mitochondrial dynamics in cardiovascular diseases, inhibiting
mitochondrial fission may also lead to heart impairment (31, 32).
Therefore, both mitochondrial fusion and fission are essential
for CVD development. A balanced state of mitochondrial
fission and fusion are conducive to disease prevention and
improved prognosis.

AEROBIC EXERCISE IMPROVES CVDs BY
REGULATING MITOCHONDRIAL FUSION
AND FISSION

In CVDs, mitochondria exhibit a high rate of fission and
a low rate of fusion, resulting in imbalanced mitochondrial
dynamics (12). Notably, aerobic exercise can increase expression
of PGC-1α mRNA and protein to improve the level of MFN2
protein and promote mitochondrial fusion (33). Swimming
training can downregulate the mir-30B-p53-DRP1 pathway,
reduce the contents of p53 and DRP1 proteins in the
mouse myocardium, and inhibit myocardial mitochondrial
fission (34). The swimming training lasted 8 weeks, 5
days/week. At the beginning, the swimming duration is
30min. The swimming time was increased by 10min ever
week. Therefore, swimming duration maintained at 90min
after 7–8 weeks. Then, the mice trained twice a day with
an interval of 6 h. Aerobic exercise training can induce

increased mitochondrial fusion (upregulating the expression
of MFN2 and OPA1 proteins) and decreased mitochondrial
fission (downregulating the expression of DRP1 protein), and
promote mitochondrial kinetic remodeling, effectively alleviating
mitochondrial dysfunction in rats with myocardial infarction
(MI) (35). After moderate aerobic exercise training, the mRNA
levels of Ppargc1α, Opa1,Mfn2, and Drp1 significantly increased
and the diastolic parameters improved in spontaneously
hypertensive rats (SHRs) (22). These results suggest that aerobic
exercise maintains the balance of mitochondrial fusion and
fission in the SHR myocardium and improves mitochondrial
function. A comparison of the myocardial mitochondria of
animals with heart failure who exercised vs. did not exercise
revealed that the number of myocardial mitochondria in
the exercise group was decreased and mitochondrial size
was increased. Further experiments showed that exercise
increased MFN1, MFN2, and DNM1L GTPase activity in the
myocardium and reversed the translocation of DNM1L to
the mitochondria (8). Therefore, aerobic exercise may have
protective effects on the balance of mitochondrial fusion and
fission in CVDs.

MYOCARDIAL MITOCHONDRIAL
AUTOPHAGY AND CVDs

Mitochondrial autophagy is a selective form of autophagy,
which is specialized to remove aging or irreversibly damaged
mitochondria and plays a decisive role in control of
mitochondrial quality (36). Mitochondrial autophagy and
fission can coordinate with each other, and mitochondrial
autophagy can remove damaged mitochondrial parts
formed by mitochondrial fission and keep mitochondria
healthy (37). DRP1 migration and mitochondrial autophagy
activation occur almost simultaneously after transverse
aortic constriction (TAC) treatment, indicating that
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mitochondrial autophagy is closely related to mitochondrial
fission (38).

Mitochondrial autophagy may occur through Parkin-
dependent or Parkin-independent mechanisms (12). In Parkin-
mediated mitotic phagocytosis, PTEN-induced putative kinase 1
(PINK1) recruits Parkin to the outer membrane of mitochondria.
Once recruited to the mitochondria, Parkin ubiquitinates
several mitochondrial outer membrane proteins, including
the mitochondrial fusion proteins MFN1 and MFN2, Miro,
Translocase of OMM 20, and voltage-dependent anion channel.
Then, the selective autophagy adapter protein P62/Sequestosome
1 is recruited to the mitochondria to interact with LC3 and
initiate mitochondrial autophagy (36, 37, 39). Meanwhile,
ubiquitination and proteasome degradation of MFN1 and
MFN2 results in mitochondrial fission and fragmentation, which
further induces mitochondrial autophagy (40). PINK1 and
Parkin protein levels are significantly reduced in heart failure
models (41). PINK1 knockout mice have a significantly increased
number of atherosclerotic lesions (42). Also, Parkin knockout
mice show excessive myocardial hypertrophy, myocardial
fibrosis, and left ventricular systolic dysfunction in response to
TAC (43).

Parkin-independent mitochondrial autophagy occurs
independently of Parkin; some autophagy receptor proteins
are located in mitochondria and interact with LC3 to recruit
autophagosomes to damaged mitochondria. These autophagy
receptor proteins include BCL-2/adenovirus E1B19-kDa
interacting protein 3 (BNIP3), NIX (also called BNIP3L),
and Fun14 Domain–containing 1 (FUNDC1) (36, 44, 45).
Lowering of BNIP3 protein levels impairs mitochondrial
function, which in turn leads to impaired myocardial cell
function (46); also, FUNDC1 gene knockout exacerbates I/R
injury (47).

Mitochondrial autophagy has a significant protective effect
on the heart, and autophagy activation is observed in the
boundary region of the subacute stage of MI (1 week after

MI) (48). Enhancement of autophagy with rapamycin 2 weeks
after coronary artery ligation ameliorates cardiac dysfunction
and maladaptive remodeling, whereas inhibition of autophagy by
buffamycin A1 worsens cardiac dysfunction (49). In conclusion,
insufficient mitochondrial autophagy is closely related to
CVD development.

AEROBIC EXERCISE IMPROVES CVDs BY
REGULATING MITOCHONDRIAL
AUTOPHAGY

CVD pathology is associated with weakening of mitochondrial
autophagy. Yet, 8 weeks of aerobic exercise on a treadmill
can increase the LC3II/LC3I ratio, and thus upregulate
Beclin1, LC3, and BNIP3 in the rat myocardium to promote
myocardial autophagy (50). For treadmill excise study, rats
were trained on a treadmill with an exercise intensity and
schedule set at 70% of maximum aerobic capacity. The
training group run for 60 min/day, 5 days per week at
10 m/min speed for 8 weeks. After the treadmill excise
training, PINK1, Parkin, ubiquitin, P62, and LC3 levels
were significantly increased in the rat skeletal muscle (51).
Consistent with this finding, exercise improves the oxidative
capacity of myocardial mitochondria in animals with heart
failure, and this improvement in oxidative capacity is related
to reconstruction of autophagy flux. Exercise stimulates
mitochondrial autophagy flux by increasing Parkin recruitment
in myocardial mitochondria (8). Notably, aerobic exercise
training enhances the PINK1/Parkin signaling pathway,
thus inducing mitochondrial autophagy (52). This physical
activity also upregulates SIRT3 expression, enhances the
antioxidant capacity of the body, improves the quality of
mitochondria, and helps alleviate cardiac dysfunction in
mice after MI (53). These studies suggested that aerobic
exercise induces mitochondrial autophagy and improves

TABLE 1 | Comparison of different exercise training programs.

Treadmill Swimming

Time 60 min/day 10 or 60 min/day 20–60 min/day 60 min/day 20–60 min/day

Frequency 5 days/week 6 days/week Every day Every day 5 days/week

Period 8 weeks 8 weeks 11 weeks 4 weeks 8 weeks

Protocol Ran on a treadmill at

60–70% VO2max intensity

for 60 minutes.

In the first 4 weeks, 10

m/min, 0% slope, 10

min/day. Then 20 m/min,

5% slope, 60 min/day for

4 weeks.

The speed and incline of the

treadmill gradually increased.

Starting with low workloads

(25min, 35% Vmax and 0%

gradient), to the end of high

workloads (60min, 70%Vmax

and 25% gradient).

The rats initially ran 30min

daily at a speed of 10

m/min and gradually

increased by 10min in

duration and 2 m/min in

speed each day until

reaching 60min per day at

a speed of 16 m/min.

Training time was

increased by 10min per

week.

Influence

on

mitochondrial

dynamics

Promoted fusion and

inhibited fission

(expression of MFN2,

PGC-1α and OPA1

increased, expression of

DRP1 decreased).

Promoted biogenesis

(expression of PGC-1α

and NRF2 increased).

Promoted autophagy

(expression of LC3II and P62

increased).

Promoted biogenesis

(SIRT1/PGC-1α signaling

pathway was activated).

Promoted fusion and

inhibited fission

(expression of MFN1,

MFN2, and OPA1

increased, expression of

DRP1 decreased).
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CVDs by increasing the expression of autophagy-related and
mitochondrial autophagy–related proteins.

CONCLUSIONS AND PERSPECTIVES

Abundant evidence illustrates the key role of mitochondrial
dynamics in cardiac homeostasis. Imbalanced mitochondrial
fusion and fission, insufficient mitochondrial autophagy, and
weakened mitochondrial biogenesis are the pathological factors
leading to CVD occurrence and development. Regular aerobic
exercise is a simple and effective way to balance mitochondrial
dynamics and improve mitochondrial function, which can
build human health. MFN2 and OPA1, which are beneficial
to mitochondrial fusion and biogenesis, can be elevated
by aerobic exercise. DRP1-induced mitochondrial fission can
be inhibited by aerobic exercise in cardiovascular diseases.
PINK1/parkin signaling is still the main targeting pathway
that induces mitochondrial autophagy following aerobic exercise
in cardiovascular diseases. However, one study indicated
that acute exercise had no effect on the proteins involved
in mitochondrial dynamics. Indeed, after exercise training,
the proteins involved in mitochondrial dynamics changed
significantly in normotensive control rats, but remained
unchanged in spontaneously hypertensive rats (22). This
finding aligned with another study finding that myocardial
mitochondrial dynamics-related proteins did not change after
acute exercise in rats (54).

Aerobic exercise can prevent or alleviate CVDdevelopment by
regulating proteins involved inmitochondrial dynamics. Exercise
can reduce mitochondrial fission, enhance mitochondrial fusion
and improve mitochondrial autophagy or biogenesis. Regarding
to the type of exercise, we compared some excise programs
of treadmill training with swimming, and also summarized
the influence of different exercise programs on mitochondrial
dynamics (Table 1). Treadmill training seems to have a greater

effect on modulation of the cardiac proteome than swimming
(55).While we can control the intensity and duration of treadmill
training to calculate the amount of exercise, swimming training is
more difficult to control. Some animals do not exhibit continuous
swimming behavior, but rather tend to dive or swing, which
results in intermittent hypoxia and may affect interpretation of
the results.

Mitochondrial dynamics, including mitochondrial biogenesis,
mitochondrial fusion or fission, and mitochondrial autophagy,
can be used as disease prevention and treatment targets
under exercise intervention. Moreover, the balance between
mitochondrial dynamics may be a key factor in disease
occurrence or development. However, the mechanism of
aerobic exercise intervention in mitochondrial dynamics
is complex and needs further long-term research due to
its gradual effects and individual differences. Improper
exercise can also lead to arthritis, decreased immunity,
etc. Therefore, verified and reasonable individualized
exercise prescription has important guiding significance for
health. It is important to carry out long-term and proper
exercise intervention.

The concept of aerobic exercise for disease prevention is
increasingly popular, while the number of subhealthy people
and older adults is increasing every year. Reasonable exercise
prescription intervention for these populations or people with
a tendency for organ disease development can significantly
reduce disease occurrence. Further studies are needed to explore
this idea.
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