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Abstract

The genomic complexity of profound copy-number aberration has prevented effective molecular 

stratification of ovarian cancers. To decode this complexity, we derived copy-number signatures 

from shallow whole genome sequencing of 117 high-grade serous ovarian cancer (HGSOC) cases, 

which were validated on 527 independent cases. We show that HGSOC comprises a continuum of 

genomes shaped by multiple mutational processes that result in known patterns of genomic 

aberration. Copy-number signature exposures at diagnosis predict both overall survival and the 

probability of platinum-resistant relapse. Measuring signature exposures provides a rational 

framework to choose combination treatments that target multiple mutational processes.

Introduction

The discrete mutational processes that drive copy-number change in human cancers are not 

readily identifiable from genome-wide sequence data. This presents a major challenge for 

the development of precision medicine for cancers that are strongly dominated by copy-

number changes, including high-grade serous ovarian (HGSOC), esophageal, non-small-cell 

lung and triple negative breast cancers1. These tumors have low frequency of recurrent 

oncogenic mutations, few recurrent copy number alterations, and highly complex genomic 

profiles2.

HGSOCs are poor prognosis carcinomas with ubiquitous TP53 mutation3. Despite efforts to 

discover new molecular subtypes and targeted therapies, overall survival has not improved 

over two decades4. Current genomic stratification is limited to defining homologous 

recombination-deficient (HRD) tumors5–7 with approximately 20% HGSOC cases having a 

germline or somatic mutation in BRCA1/2 with smaller contributions from mutation or 

epigenetic silencing of other HR genes8. Classification using gene expression predominantly 

reflects the tumor microenvironment and is reliable in only a subset of patients9–11. 
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Detailed genomic analysis using whole genome sequencing has shown frequent loss of RB1, 
NF1 and PTEN by gene breakage events12 and enrichment of amplification associated fold-

back inversions in non-HRD tumors13. However, none of these approaches has provided a 

broad mechanistic understanding of HGSOC, reflecting the challenges of detecting 

classifiers in extreme genomic complexity.

Recent algorithmic advances have enabled interpretation of complex genomic changes by 

identifying mutational signatures — genomic patterns that are the imprint of mutagenic 

processes accumulated over the lifetime of a cancer cell14. For example, UV exposure or 

mismatch repair defects induce distinct, detectable single nucleotide variant (SNV) 

signatures14. The clinical utility of these signatures has recently been demonstrated through 

a combination of structural variant (SV) and SNV signatures to improve the prediction of 

HRD15. Importantly, these studies show that tumor genomes are shaped by multiple 

mutational processes and novel computational approaches are needed to identify coexistent 

signatures. We hypothesized that specific features of copy-number abnormalities could 

represent the imprints of distinct mutational processes, and developed methods to identify 

signatures from copy-number features in HGSOC.

Results

Experimental design and data collection

We generated absolute copy number profiles from 253 primary and relapsed HGSOC 

samples from 132 patients in the BriTROC-1 cohort16 using low-cost shallow whole-

genome sequencing (sWGS; 0.1×) and targeted amplicon sequencing of TP53 
(Supplementary Figure 1). These samples formed the basis of our copy-number signature 

identification. A subset of 56 of these cases had deep whole-genome sequencing (dWGS) 

performed for mutation analysis and comparison with sWGS data. Independent data sets for 

validation included 112 dWGS HGSOC cases from PCAWG17 and 415 HGSOC cases with 

SNP array and whole exome sequence from TCGA8. Supplementary Figure 1a shows the 

REMARK diagram for selection of BriTROC-1 patients. Supplementary Figure 1b outlines 

which samples were used in each analysis across the three cohorts. Clinical data for the 

BriTROC-1 cohort are summarized in Supplementary Table 1 and Supplementary Figure 2. 

Detailed information on experimental design is provided in the Life Sciences Reporting 

Summary.

Identification and validation of copy-number signatures

To identify copy-number (CN) signatures, we computed the genome-wide distributions of 

six fundamental CN features for each sample: the breakpoint count per 10MB, the copy-

number of segments, the difference in CN between adjacent segments, the breakpoint count 

per chromosome arm, the lengths of oscillating CN segment chains and the size of segments. 

These features were selected as hallmarks of previously reported genomic aberrations, 

including breakage-fusion-bridge cycles18, chromothripsis19 and tandem duplication20,21.

We applied mixture modelling to separate the copy-number feature distributions from 91 

BriTROC-1 samples with high quality CN profiles into mixtures of Poisson or Gaussian 
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distributions. This resulted in a total of 36 mixture components (Figure 1a). For each 

sample, the posterior probability of copy-number events arising from these components was 

computed and summed. These sum-of-posterior vectors were then combined to form a 

sample-by-component sum-of-posteriors matrix. To identify copy-number signatures, this 

matrix was subjected to non-negative matrix factorization (NMF)22, a method previously 

used for deriving SNV signatures14.

NMF identified seven CN signatures (Figure 1a), as well as their defining features and 

exposures in each sample. The optimal number of signatures was chosen using a consensus 

from 1000 initializations of the algorithm and 1000 random permutations of the data 

combining four model selection measures (Supplementary Figure 3). We found highly 

similar component weights for the signatures in the two independent cohorts (PCAWG-OV 

and TCGA), demonstrating the robustness of both the methodology and the copy-number 

features (Figure 1b, P<9e-05, median r=0.86. Supplementary Table 2), despite a significant 

difference in exposures to CN signatures 2, 3, 4 and 5 between the cohorts (P<0.05, two-

sided Wilcoxon rank sum test, Supplementary Figure 4).

Mutational processes underlying copy-number signatures

The majority of cases analysed exhibited multiple signature exposures suggesting that 

HGSOC genomes are shaped by more than one mutational process. As our signature 

analysis reduced this genomic complexity into its constituent components, we were able to 

link the individual copy-number signatures to their underlying mutational processes. To do 

this, we used the component weights identified by NMF to determine which pattern of 

global or local copy-number change defined each signature. For example, for CN signature 

1, the highest weights were observed for components representing low numbers of 

breakpoints per 10MB, long genomic segments and two breaks occurring per chromosome 

arm (Figure 2a, Supplementary Figure 5). Two breaks per chromosome arm suggested that 

the mutational process underlying this signature might be breakage-fusion-bridge (BFB) 

events18.

To test this hypothesis, we correlated CN signature 1 exposures with mutation data, SNV 

signatures, and other measures derived from deep WGS and exome sequencing (Figure 2b-e, 

Supplementary Figures 6, 7, 8 and 9, Supplementary Tables 3, 4, 5, 6, 7 and 8). CN 

signature 1 was anti-correlated with sequencing estimates of telomere length (r=-0.32, 

P=0.009), consistent with BFB events. In addition, CN signature 1 was positively correlated 

with amplification-associated fold-back inversion structural variants (r=0.36, P=0.02), which 

have been strongly implicated in BFB events23 and have also been associated with inferior 

survival in HGSOC13. CN signature 1 was also enriched in cases with oncogenic RAS 

signaling, including NF1 loss and mutated KRAS (p=5e-06, Mann-Whitney test), which has 

previously been shown to induce chromosomal instability as a result of aberrant G2 and 

mitotic checkpoint controls and missegregation24,25. Taken together, these data provide 

independent evidence for BFB arising as a result of oncogenic RAS signaling and telomere 

shortening as the underlying mechanism for CN signature 1.
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We applied these approaches to the remaining signatures to identify statistically significant 

genomic associations using a false discovery rate <0.05 (Figure 2b-e, Figure 3, 

Supplementary Figures 5, 6, 7, 8 and 9, Supplementary Tables 3, 4, 5, 6, 7 and 8).

CN signature 2 showed frequent breakpoints per 10MB, single changes in copy-number 

(resulting in 3 copies), chains of oscillating copy-number, and was significantly correlated 

with tandem duplicator phenotype scores (r=0.3, P=0.004) and SNV signature 5 (r=0.26, 

P=0.02). In addition, this signature was enriched in patients with mutations in CDK12 
(P=0.02, Mann-Whitney test, Supplementary Table 6), in keeping with previous studies that 

have demonstrated large tandem duplication in cases with inactivating CDK12 mutations26.

CN signature 4 was characterised by high copy-number states (4-8 copies) and predominant 

copy-number change-points of size 2. This pattern indicates a mutational process of late 

whole-genome duplication (WGD)27. Significantly increased signature 4 exposure in cases 

with aberrant PI3K/AKT signaling provided further support for late WGD as oncogenic 

PIK3CA induces tolerance to genome doubling28 (P=2e-22, Mann-Whitney test, mutation 

of PIK3CA or amplification of AKT, EGFR, MET, FGFR3 and ERBB2). Signature 4 was 

also seen at higher levels in cases with mutations in genes encoding proteins from Toll-like 

receptor signaling cascades (P=2e-07), interleukin signaling pathways (P=3e-24) and 

CDK12 (P=0.0009), as well as those with amplified CCNE1 (P=2e-10) and MYC 
(P=9e-12). It was also significantly correlated with telomere length (r=0.46, P=4e-05).

CN signature 6 showed extremely high copy-number states and high copy-number change-

points for small segments interspersed among larger, lower-copy segments. This suggests a 

mutational process resulting in focal amplification. Increased signature 6 exposure was 

associated with mutations in genes encoding proteins across diverse pathways, including 

aberrant G1/S cell cycle checkpoint control (through either amplification of CCNE1, 

CCND1, CDK2, CDK4 or MYC, deletion/inactivation of RB1 or mutation in CDK12), Toll-

like receptor signaling cascades and PI3K/AKT signaling (P<0.05). However, as many of 

these statistical associations are marked by gene amplification, it is difficult to determine 

whether the copy number states represent causal events or are simply a consequence of focal 

amplification. Exposure to CN signature 6 was also positively correlated with age at 

diagnosis (r=0.31, P=6e-12) and age-related SNV signature 114 (r=0.43, P=3e-06).

CN signature 5 was significantly associated with predicted chromothriptic-like events using 

the Shatterproof algorithm29 (r=0.44, P=2e-03). Chromothripsis is considered rare in 

HGSOC12,27,30. However, the key component of this signature—the presence of copy-

number change points centered at 0.5 copies—suggests that the events are subclonal. This 

implies that chromothripsis may be an underestimated oncogenic mechanism in HGSOC 

that could reflect ongoing formation and rupture of micronuclei31.

CN signature 3 was characterized by an even distribution of breaks across all chromosomes, 

and copy number changes from diploid to single copy (LOH). CN signature 3 was 

significantly enriched in cases with mutations in BRCA1 and BRCA2, and other HR genes 

including BARD1, PALB2 and ATR (P=0.002, Mann-Whitney test). It was also correlated 

with the HRD-related SNV signature 3 (r=0.32, P=0.002) and anti-correlated with age at 

Macintyre et al. Page 5

Nat Genet. Author manuscript; available in PMC 2019 February 13.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



diagnosis and age-related SNV signature 1 (P<0.05). CN signature 3 was also enriched in 

cases with loss of function mutations in PTEN (P=0.002, Mann-Whitney test). Taken 

together, these data suggest that CN signature 3 is driven by BRCA1/2-related HRD 

mechanisms.

CN signature 7, like CN signature 3, also demonstrated an even distribution of breaks across 

all chromosomes. By contrast with CN signature 3, single copy-number changes were 

observed from a tetraploid rather than a diploid state (Figure 3). Although there was 

correlation with the HRD-related SNV signature 3, there was no enrichment with BRCA1/2 
mutation, suggesting alternative HRD mechanisms as potential mutational processes.

We also investigated relationships between CN signatures. BRCA1 dysfunction and CCNE1 
amplification have been shown to be mutually exclusive in HGSOC32, and we observed that 

CN signature 3 (BRCA1/2 HRD) and CN signature 6 (marked by aberrant G1/S cell cycle 

checkpoint control) showed mutually exclusive associations (Figure 2b-e). Loss of BRCA1 
and BRCA2 are early driver events in HGSOC, and to investigate acquisition of additional 

mutational processes, we studied four BriTROC-1 cases with deleterious germline BRCA2 
mutations and confirmed somatic loss of heterozygosity at BRCA2 (Figure 4). A diverse and 

variable number of CN signatures was seen in these cases, including substantial exposures to 

CN signature 1 (RAS signaling) in three of the four cases.

Copy-number signatures predict overall survival

We next explored the association between individual CN signature exposures and overall 

survival using a combined dataset of 575 diagnostic samples with clinical outcomes. We 

trained a multivariate Cox proportional hazards model on 417 cases and tested this on the 

remaining 158 cases (Figure 5, Supplementary Table 9). CN signature exposure was 

significantly predictive of survival (Training: P=0.002, log-rank test; stratified by age and 

cohort; Test: P=0.05, C-index=0.56, 95% CI:0.50-0.62; Entire cohort: P=0.002, log-rank 

test; stratified by age and cohort). Across the entire cohort, poor outcome was significantly 

predicted by CN signature 1 (P=0.0008) and CN signature 2 exposures (P=0.03), whilst 

good outcome was significantly predicted by exposures to CN signatures 3 (P=0.05) and 7 

(P=0.006).

Unsupervised hierarchical clustering of samples by signature exposures identified three 

clusters (Figure 5). Despite showing significant survival differences (P=0.004, log-rank test; 

stratified by age and cohort), these clusters did not provide any prognostic information in 

addition to that identified from the Cox proportional hazards model; cluster 2 was dominated 

by patients with high signature 1 exposures (poor prognosis), cluster 3 showed high 

signature 3 exposures (good prognosis) and cluster 1 had mixed signature exposures 

(Supplementary Figure 10).

Copy-number signatures indicate relapse following chemotherapy

Using a generalised linear model, we investigated whether copy-number signatures could be 

used to predict outcome following chemotherapy across 36 patients from the BriTROC-1 

study with paired diagnostic and relapse samples16. The model showed CN signature 1 
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exposures at the time of diagnosis to be significantly predictive of platinum-resistant relapse 

(P=0.02, z-test, Supplementary Table 10).

Using the same 36 sample pairs, we also investigated whether chemotherapy treatment 

changed CN signature exposures. No significant effects on exposures were observed 

following chemotherapy treatment using a linear model that accounted for signature 

exposure at time of diagnosis, number of lines of chemotherapy and patient age (P>0.05, F-

test, Supplementary Table 10). The only variable showing a significant association with 

exposure at relapse was signature exposure at diagnosis (P<0.01, F-test, Supplementary 

Table 11).

Discussion

Copy-number signatures provide a framework that is able to rederive the major defining 

elements of HGSOC genomes, including defective HR8, amplification of CCNE19 and 

amplification-associated fold-back inversions13. In addition, the CN signatures show 

significant associations with known driver gene mutations in HGSOC and provide the ability 

to detect novel associations with gene mutations. We derived signatures using inexpensive 

shallow whole genome sequencing of DNA from core biopsies. These approaches are rapid 

and cost effective, thus providing a clear path to clinical implementation. Copy-number 

signatures open new avenues for clinical trial design by highlighting contributions from 

underlying mutational processes that depend on oncogenic RAS and PI3K/AKT signaling.

We found that almost all patients with HGSOC demonstrated a mixture of signatures 

indicative of combinations of mutational processes. These results suggest that early TP53 
mutation, the ubiquitous initiating event in HGSOC, may permit multiple mutational 

processes to co-evolve, potentially simultaneously. Although further work is needed to 

define the precise timing of signature exposures, early driver events such as BRCA2 
mutation still permit a diverse and variable number of CN signatures in addition to an HRD 

signature (Figure 4). These additional signature exposures may alter the risk of developing 

therapeutic resistance, particularly when only a single mutational process such as HRD is 

targeted.

High exposure to CN signature 3, characterised by BRCA1/2-related HRD, is associated 

with improved overall survival, confirming prior data showing that BRCA1/2 mutation is 

associated with long survival in HGSOC33,34. Conversely, high exposure to signature 1, 

which is characterised by oncogenic RAS signaling (including NF1, KRAS and NRAS 
mutation), predicts subsequent platinum-resistant relapse and poor survival. This suggests 

that powerful intrinsic resistance mechanisms are present at the time of diagnosis and can be 

readily identified using CN signature analysis. This hypothesis is supported by the presence 

of exposure to CN signature 1 in germline BRCA2-mutated cases (Figure 4) as well as our 

previous work demonstrating the expansion of a resistant subclonal NF1-deleted population 

following chemotherapy treatment in HGSOC35 and poor outcomes in Nf1-deleted murine 

models of HGSOC36. Our CN signature analysis of BRCA2-mutated cases also concurs 

with PCAWG/ICGC data showing that over half (9/16) of NF1-mutated cases also harboured 

mutations in BRCA1 or BRCA212. These data suggest a complex interplay between RAS 
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signaling and HRD. Thus, RAS signaling may be an important target, especially in first line 

treatment, to prevent emergence of platinum-resistant disease.

We found that CN signature exposures were not significantly altered between diagnosis and 

disease relapse in 36 sample pairs with a median interval of 30.6 months16. This suggests 

that the underlying mutational processes in HGSOC are relatively stable and that genome-

wide patterns of copy-number change mainly reflect historic alterations to the genome 

acquired during tumorigenesis37. Relative invariant genomic changes were also observed in 

the ARIEL2 trial, where genome-wide loss-of-heterozygosity was used to predict HRD, and 

only 14.5% (17/117) cases changed LOH status between diagnosis and relapse7.

Larger association studies will be required to further refine CN signature definitions and 

interpretation. The application of our approach to other tumour types is likely to extend the 

set of signatures beyond the robust core set identified here. Basal-like breast cancers, 

squamous cell and small cell lung carcinoma, which all have high rates of TP53 mutation 

and genomic instability2, are promising next targets. Although it is likely that the strong 

associations have identified the driver mutational processes for CN signatures 1 and 3, 

functional studies will be required to establish causal links for the remaining signatures. For 

example, CN signature 6 was significantly associated with multiple mutated pathways, and 

this association was primarily driven by amplification of target genes. As this signature 

represented focal amplification events, it is difficult to determine whether amplification of 

specific genes drives the underlying mutational process or the amplifications emerge as a 

consequence of strong selection of advantageous phenotypes. Our data does not provide 

timing information for exposures and there is the real possibility that one mutational process 

may well drive the emergence of other mutational processes. For example, the association 

between signature 6 and PI3K signalling is also shared with signature 4.

Other limitations of this work are technical: we integrated data from three sources, using 

three different pre-processing pipelines, and the ploidy determined by different pipelines can 

have a significant effect on the derived signatures. For example, high-ploidy CN signature 4 

was predominantly found in the sequenced samples that underwent careful manual curation 

to identify whole-genome duplication events. When extending to larger sample sets, a 

unified processing strategy with correct ploidy determination is likely to produce improved 

signature definitions. Another technical limitation is the resolution of copy-number calling 

from sWGS (limited to 30kb bins) and future application to large cohorts of deeply 

sequenced samples will be needed to improve the resolution of the CN signatures.

Efforts to identify discrete, clinically relevant subtypes of disease have been successful in 

many cancer types38–40. However, HGSOC lacks clinically-relevant patient stratification, 

which is reflected in continued poor survival. We show that HGSOC genomes are shaped by 

multiple mutational processes that preclude simple subtyping. Thus, our results suggest that 

HGSOC is a continuum of genomes. By dissecting the mutational forces shaping HGSOC 

genomes, our study paves the way to understanding extreme genomic complexity, as well as 

revealing the evolution of tumors as they relapse and acquire resistance to chemotherapy.
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Online Methods

Patients and samples

The BriTROC-1 study has been described previously16. Characteristics of the 142 patients 

included in this study are given in Supplementary Table 1. The study is sponsored by NHS 

Greater Glasgow and Clyde and ethics/IRB approval was given by Cambridge Central 

Research Ethics Committee (Reference 12/EE/0349). The study enrolled patients with 

recurrent ovarian high-grade serous or grade 3 endometrioid carcinoma who had relapsed 

following at least one line of platinum-based chemotherapy and whose disease was 

amenable either to image-guided biopsy or secondary debulking surgery. At study entry, 

patients were classified as having either platinum-sensitive relapse (i.e. relapse six months or 

more following last platinum chemotherapy) or platinum-resistant relapse (i.e. relapse less 

than six months following prior platinum chemotherapy) (Supplementary Figure 2). All 

patients provided written informed consent. Access to archival diagnostic formalin-fixed 

tumor was also required. Survival was calculated from the date of enrolment to the date of 

death or the last clinical assessment, with data cutoff at 1 December 2016. At subsequent 

relapse or progression after chemotherapy following study entry, patients could optionally 

have a second biopsy under separate consent.

DNA was extracted from 300 samples of 142 patients - 158 methanol-fixed relapse biopsies 

and 142 FFPE archival diagnostic tissues. Germline DNA was extracted from blood samples 

of 137 patients.

Tagged-amplicon sequencing

Mutation screening of TP53, PTEN, EGFR, PIK3CA, KRAS and BRAF was performed on 

all 300 samples using tagged-amplicon sequencing as previously described16. DNA 

extracted from blood was analyzed by tagged-amplicon sequencing for BRCA1 and BRCA2 
germline mutations.

Shallow whole genome sequencing (sWGS)

Libraries for sWGS were prepared from 100ng DNA using modified TruSeq Nano DNA LT 

Sample Prep Kit (Illumina) protocol41. Quality and quantity of the libraries were assessed 

with DNA-7500 kit on 2100 Bioanalyzer (Agilent Technologies) and with Kapa Library 

Quantification kit (Kapa Biosystems) according to the manufacturer's protocols. Sixteen to 

twenty barcoded libraries were pooled together in equimolar amounts and each pool was 

sequenced on HiSeq4000 in SE-50bp mode.

Prior to sequencing we estimated the required sequencing depth by adapting calculations 

made in previous work that explored the relationship between sequencing depth (reads per 

sample) and copy number calling accuracy42. Based on these analyses, we devised a power 

calculator for sWGS copy number analysis (see URL 1, described in 43). We estimated that 

with an average ploidy of 3 and purity of 0.65, a sequencing depth of at least 2.7 million 

reads is required to detect single, clonal copy-number changes (minimum 60kb) at 90% 

1https://gmacintyre.shinyapps.io/sWGS_power/
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power and alpha 0.05. After analysis we determined that BritROC 3-star samples had an 

average purity of 0.66, ploidy of 2.7, and were sequenced to an average depth of 8.6 million 

reads. This allowed us to detect single copy-number changes with 90% power, and alpha 

0.05 down to subclonal frequencies of 55%.

Deep whole genome sequencing

Deep whole-genome sequencing was performed on 56 tumors with confirmed TP53 
mutations and matched normal samples, of which 48 passed quality control. Libraries were 

constructed with ~350-bp insert length using the TruSeq Nano DNA Library prep kit 

(Illumina) and sequenced on an Illumina HiSeq X Ten System in paired-end 150-bp reads 

mode. The average depth was 60× (range 40-101×) in tumors and 40× (range 24-73×) in 

matched blood samples.

Variant calling

Read alignment and variant calling of tagged-amplicon sequencing data were processed as 

described41. Deep WGS samples were processed with bcbio-nextgen44 using Ensemble 

somatic variants called by two methods out of VarDict45, Varscan46 and FreeBayes47. 

Somatic SNV calls were further filtered based on mapping quality, base quality, position in 

read, and strand bias as described40. In addition, the blacklisted SNVs from the Sanger 

Cancer Genomics Project pipeline derived from a panel of unmatched normal samples were 

used for filtering48.

Data download

PCAWG-OV—Consensus SNVs and INDELs (October 2016 release), consensus structural 

variants (v 1.6), consensus copy-number calls (January 2017 release), donor clinical (August 

2016 v7-2) and donor histology information (August 2016 v7) for 112 ovarian cancer 

samples were downloaded from the PCAWG data portal. ABSOLUTE49 copy-number calls 

were used for analysis.

TCGA—ABSOLUTE49 copy-number profiles from Zack et al27 for 415 ovarian cancer 

TCGA samples were downloaded from Synapse50. SNVs for these samples were 

downloaded from the Broad Institute TCGA Genome Data Analysis Center (Broad Institute 

TCGA Genome Data Analysis Center: Firehose stddata__2016_01_28 run. doi:10.7908/

C11G0KM9, Broad Institute of MIT and Harvard). Donor clinical data were downloaded 

from the TCGA data portal.

Absolute copy-number calling from sWGS

Segmentation—sWGS reads were aligned and relative copy-number called as 

described41. After inspection of the TP53 mutation status and relative copy-number profiles 

of the 300 sequenced BriTROC-1 samples, 47 were excluded from downstream analysis for 

the following reasons: low purity (24), mislabeled (7), pathology re-review revealed sample 

was not HGSOC (3), no detectable TP53 mutation (13). Of the 253 BriTROC-1 samples 

analysed, 111 were FFPE-fixed. Fifty seven out of 253 showed an over segmentation artefact 
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(likely due to fixation). A more strict segmentation was subsequently applied to these 

samples to yield a usable copy-number profile.

Absolute copy number—We combined relative copy-number profiles generated by 

QDNAseq42 with mutant allele frequency identified using tagged amplicon sequencing in a 

probabilistic graphical modelling approach to infer absolute copy-number profiles. Using 

Expectation-Maximisation, the model generated a posterior over a range of TP53 copy-

number states, using the TP53 mutant allele frequency to estimate purity for each state. The 

TP53 copy-number state that provided the highest likelihood of generating a clonal absolute 

copy-number profile was used to determine the final absolute copy-number profile. To test 

the validity of this approach, we compared purity and ploidy estimates derived from sWGS 

to those derived from 60× WGS using the Battenberg algorithm for copy-number calling51. 

Pearson correlation coefficients were computed for both ploidy and purity estimates using 

34 3-star (see Quality rating) BriTROC-1 samples with matched sWGS and WGS 

(Supplementary Figure 11).

Quality rating—Following absolute copy-number fitting, samples were rated using a 1-3 

star system. 1-star samples (n=54) showed a noisy copy-number profile and were considered 

likely to have incorrect segments and missing calls. These were excluded from further 

analysis. 2-star samples (n=52) showed a reasonable copy-number profile with only a small 

number of miscalled segments. These samples were used (with caution) for some subsequent 

analyses. 3-star samples (n=147) showed a high-quality copy-number profile that was used 

in all downstream analyses. The maximum star rating observed per patient was 1-star in 15 

patients, 2-star in 26, and 3-star in 91 patients. Seventy-two out of 111 FFPE-fixed samples 

(64%) were amenable to signature analysis. This is consistent with typical sequencing 

success rates for archival material52.

Copy-number signature identification

Preprocessing—91 3-star BriTROC-1 absolute copy-number profiles were summarized 

using the genome-wide distribution of six different features (outlined in Figure 1):

1. Segment size - the length of each genome segment;

2. Breakpoint count per 10MB - the number of genome breaks appearing in 10MB 

sliding windows across the genome;

3. Change-point copy-number - the absolute difference in CN between adjacent 

segments across the genome;

4. Segment copy-number - the observed absolute copy-number state of each 

segment;

5. Breakpoint count per chromosome arm - the number of breaks occurring per 

chromosome arm;

6. Length of segments with oscillating copy-number - a traversal of the genome 

counting the number of contiguous CN segments alternating between two copy-

number states, rounded to the nearest integer copy-number state.
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Mixture modelling—For each of the feature density distributions, we applied mixture 

modelling to identify its distinct components. For distributions representing segment-size, 

change-point copy-number, and segment copy-number we employed mixtures of Gaussians. 

For distributions representing breakpoint count per 10MB, length of segments with 

oscillating copy-number, and breakpoint count per chromosome arm we employed mixtures 

of Poissons. Mixture modelling was performed using the FlexMix V2 package in R53. The 

algorithm was run for each distribution with the number of components ranging from 2-10. 

The optimal number of components was selected as the run showing the lowest Bayesian 

Information Criterion, resulting in a total of 36 components (see Figure 1 and 

Supplementary Table 3 for breakdown). Next, for each copy-number event, we computed the 

posterior probability of belonging to a component. For each sample, these posterior event 

vectors were summed resulting in a sum-of-posterior probabilities vector. All sum-of-

posterior vectors were combined in a patient-by-component sum-of-posterior probabilities 

matrix.

Signature identification—The NMF Package in R54, with the Brunet algorithm 

specification55 was used to deconvolute the patient-by-component sum-of-posteriors matrix 

into a patient-by-signature matrix and a signature-by-component matrix. A signature search 

interval of 3-12 was used, running the NMF 1000 times with different random seeds for each 

signature number. As provided by the NMF Package54, the cophenetic, dispersion, 

silhouette, and sparseness coefficients were computed for the signature-by-component 

matrix (basis), patient-by-signature matrix (coefficients) and connectivity matrix (consensus, 

representing patients clustered by their dominant signature across the 1000 runs). 1000 

random shuffles of the input matrix were performed to get a null estimate of each of the 

scores (Supplementary Figure 3). We sought the minimum signature number that yielded 

stability in the cophenetic, dispersion and silhouette coefficients, and that yielded the 

maximum sparsity which could be achieved without exceeding that which was observed in 

the randomly permuted matrices. As a result, 7 signatures were deemed optimal under these 

constraints and were chosen for the remaining analysis.

Signature assignment—For the remaining 26 2-star patient samples, and the 82 

secondary patient samples (from patients with 2- or 3-star profiles from additional tumor 

samples), the LCD function in the YAPSA package in Bioconductor56 was used to assign 

signature exposures.

Copy-number signature validation

The signature identification procedure described above was applied to copy-number profiles 

from two independent datasets: 112 whole-genome sequenced (approximately 40×) HGSOC 

samples processed as part of ICGC Pan-Cancer Analysis of Whole Genomes Project17, 

(denoted here as PCAWG-OV) and 415 SNParray profiling of HGSOC cases as part of 

TCGA27. The number of signatures was fixed at 7 for matrix decomposition with NMF. 

Pearson correlation was computed between the BriTROC-1 signature-by-component weight 

matrix and each of the PCAWG-OV and TCGA signature-by-component matrices, signature 

by signature (Supplementary Table 2).
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Association of copy-number signature exposures with other features

Association of signature exposures with other features was performed using one of two 

procedures: for a continuous association variable, correlation was performed; for a binary 

association variable, patients were divided into two groups and a Mann-Whitney test was 

performed to test for differences in signature exposure medians between the two groups. A 

more detailed explanation of each of these association calculations is given below. (Note: of 

the 48 deep WGS BriTROC-1 samples that passed QC, only 44 had matched 2- and 3-star 

sWGS copy-number profiles. As signature exposures from sWGS were used for BriTROC-1 

sample associations, only these 44 samples could be used).

Age at diagnosis—Patient age at diagnosis for 112 PCAWG-OV samples and 415 TCGA 

samples was used to compute Pearson correlation with signature exposures.

Amplification associated fold-back inversions—For 111 PCAWG-OV samples, the 

fraction of amplification associated fold-back inversion events per sample was calculated as 

the proportion of head-to-head inversions (h2hINVs) within a 100kb window amplified 

region (copy number ≥5) relative to the total number of SV calls per sample. 94 samples had 

at least 1 h2hINV event out of which 58 had h2hINV events in amplified regions. On 

average they accounted for 4% of SV calls. As these are rare events, only samples showing a 

non-zero fraction of fold-back inversions (n=67) were used to compute Pearson correlation 

with signature exposures.

Telomere length—Telomere lengths of 44 deep WGS tumor samples from the 

BriTROC-1 cohort were estimated using the Telomerecat algorithm57. Telomere length 

estimates ranged from 1.5kb - 11kb with an average of 4kb. Correlation between telomere 

length and copy-number signature exposures was calculated with age and tumor purity as 

covariates using the ppcor package in R58.

Chromothripsis—Copy-number and translocation information from 111 PCAWG-OV 

samples were used to detect chromothripsis-like events using the Shatterproof software with 

default parameters29. Shatterproof, a state-of-the-art software, incorporates a wide range of 

hallmarks of chromothripsis in its detection algorithm as a precise definition of 

chromothripsis remains elusive. Govind et al. recommend a threshold of 0.37 based on their 

observations that normal samples produced a low number of calls with low scores 

(maximum 0.37) while prostate, colorectal and small cell lung cancer samples that were 

known to have chromothriptic events, produced the highest scores 29. Previous studies have 

reported a low incidence of chromothriptic events in HGSOC 12,27,30. The number of calls 

per sample in the PCAWG-OV samples ranged from 5 to 47 with an average of 23. The 

score per call ranged from 0.15-0.62 with a median of 0.38. Therefore, a conservative 

threshold was set at the 95th percentile of our distribution of scores to minimise false 

positives and calls with scores greater than 0.48 were used to obtain a count of 

chromothriptic events per sample. As chromothriptic events are rare in HGSOC, only 

samples showing a non-zero number of events (n=61) were used to compute Pearson 

correlation with signature exposures. Of 61 samples with scores above the threshold, 49 
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(80.3%) had 1-2 events, 11 samples (18%) had 3-6 events and 1 sample (1.6%) had 10 

events.

Tandem duplicator phenotypes—Tandem duplicator phenotype (TDP) scores were 

calculated for 111 PCAWG-OV samples using the method described in Menghi et al21. The 

number of duplication events per chromosome normalized by chromosome length per 

sample was used to calculate a score relative to the expected number of duplication events 

per chromosome per sample. The scores ranged from -1.11 to 0.53 with an average score of 

0.02.

Mutational signatures—Motif matrices were extracted using the SomaticSignatures R 

package59 and the weights of all known COSMIC signatures were determined using the 

deconstructSigs R package60 for 44 deep WGS BriTROC-1 samples and 109 PCAWG-OV 

samples. SNV signatures showing an exposure >0 for at least one sample were retained. The 

rcorr function in the Hmisc R package61 was used to calculate the correlation matrix 

between the remaining SNV and CN signature exposures.

The significance of all observed correlations was estimated from a t-distribution where the 

null hypothesis was that the true correlation was 0. All reported p-values have been adjusted 

for multiple testing with Benjamini & Hochberg (BH) method62. Comparison plots can be 

found in Supplementary Figure 6.

Mutated pathways—A combined set of 479 samples (44 deep WGS BriTROC-1, 112 

PCAWG-OV and 323 TCGA) showing at least one driver mutation was used for mutated 

pathway enrichment analysis. We focused on 765 driver genes reported by Cancer Genome 

Interpreter (CGI)63. SNVs, INDELs, amplifications (CN>5) or deletions (CN<0.4) affecting 

these genes were considered bona fide driver mutations if CGI predicted them as TIER1 or 

TIER2 (Supplementary Tables 4 and 5, see URL 2, run date: 2018-01-13). 320 of the 765 

genes were mutated in a least one case. These genes were used to test for enriched pathways 

in the Reactome database using the ReactomePA R package64 with a p-value cutoff of 0.05 

and q-value cutoff of 0.05. Pathways mutated in at least 5% of the cohort (n≥24) were 

retained. For each pathway, patients were split into two groups: those with mutated genes in 

the pathways, and those with wild-type genes in the pathways. A one-sided Mann-Whitney 

was carried out for each signature to determine if the exposure was significantly higher in 

mutated cases versus wild-type cases. After multiple testing correction using the Benjamini 

& Hochberg method (thresholding the p-value <0.005 and the median difference in 

exposures ≥0.1), 186 pathways were significantly enriched. Visual inspection revealed 

significant redundancy in the list and 9 representative pathways were manually selected as a 

final output (Supplementary Table 6).

Mutated genes—A combined set of 479 samples (44 deep WGS BriTROC-1, 112 

PCAWG-OV and 323 TCGA) was used test if signature exposures were significantly higher 

in cases with mutated driver genes, including NF1, PTEN, BRCA1, BRCA2, PIK3CA, 

MYC and CDK12. Patients were split into two groups: those with the mutated gene and 

2https://www.cancergenomeinterpreter.org/home
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those with wild-type genes. A one-sided Mann-Whitney was carried out for each signature 

to determine if the exposure was significantly higher in mutated cases versus wild-type 

cases. After multiple testing correction using the Benjamini & Hochberg method 

(thresholding the p-value <0.05 and the median difference in exposures ≥0.0.08), 10 gene/

signature combinations were significantly enriched (Supplementary Table 6).

Survival analysis

Censoring and truncation—Overall survival in BriTROC-1 patients was calculated 

from the date of enrolment to the date of death or the last documented clinical assessment, 

with data cutoff at 1 December 2016. As the BriTROC-1 study only enrolled patients with 

relapsed disease, left truncation was used in the survival analysis. In addition, cases where 

the patient was not deceased were right censored. Survival data for the PCAWG-OV and 

TCGA cohorts were right censored as required (left truncation was not necessary). The 

combined samples were split into training (100% BriTROC-1, 70% PCAWG-OV and 70% 

TCGA = 417) and test (30% PCAWG-OV and 30% TCGA = 158) cohorts. All of the 

BriTROC-1 samples were used in the training set to avoid issues calculating prediction 

performance on left-truncated data.

Cox regression—As the signature exposures for a given sample summed to 1, it was 

necessary to select one normalizing signature to perform regression. Signature 5 was chosen 

as it showed the lowest variability across the cohorts. To avoid division errors all 0 signature 

exposures were converted to 0.02. The remaining signature exposures were normalized 

taking the log ratio of their exposure to signature 5’s exposure. A Cox proportional hazards 

model was fitted on the training set, with the signature exposures as covariates, stratified by 

cohort (BriTROC-1, PCAWG-OV:AU, PCAWG-OV:US, TCGA) and age (<39; 40:44; 

45:49; 50:54; 55:59; 60:64; 65:69; 70:74; 75:79; >80), using the survival package in 

Bioconductor65. After fitting, the model was used to predict risk in the test set and 

performance was assessed using the concordance index calculation in the survcomp package 

in Bioconductor47. A final Cox regression was performed using all data for reporting of 

hazard ratios and p-values.

Unsupervised clustering of patients using signature exposures

Hierarchical clustering of the exposure vectors of the 575 samples used in the survival 

analysis was performed using the NbClust66 package in R. The optimal number of clusters 

was 3 as determined by a consensus voting approach across 23 metrics for choosing the 

optimal numbers of clusters. 12/23 metrics reported 3 clusters as the optimal number. A Cox 

proportional hazards model was fitted using the cluster labels as covariates, stratified by 

cohort (BriTROC-1, PCAWG-OV:AU, PCAWG-OV:US, TCGA) and age (<39; 40:44; 

45:49; 50:54; 55:59; 60:64; 65:69; 70:74; 75:79; >80), using the survival package in 

Bioconductor65.

Analysis of copy-number signature changes during treatment

Thirty-six BriTROC-1 cases with matched diagnosis and relapse samples were used to 

investigate the effects of treatment on signature exposures. A linear model was fitted to test 

for treatment effects with exposure at relapse as the dependent variable and exposure at 
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diagnosis, age at diagnosis, number of lines of chemotherapy, and days between diagnosis 

and relapse as independent variables. Prior to fitting, age at diagnosis was centered and 

exposures transformed by log(x+0.1) to ensure normality. Fitting was done using the lm() 
function in R.

To test whether signature exposures at diagnosis were predictive of platinum sensitivity, a 

generalized linear model with Binomial error was fitted using type of relapse (platinum-

sensitive or platinum-resistant) as the dependent variable and exposure at diagnosis and age 

at diagnosis as independent variables.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Copy-number signature identification from shallow whole genome sequence data and 
validation in independent cohorts
a. Step 1: Absolute copy-numbers are derived from sWGS data; Step 2: genome-wide 

distributions of six fundamental copy-number features are computed; Step 3: Gaussian or 

Poisson mixture models (depending on data type) are fitted to each distribution and the 

optimal number of components is determined (ranging from 3–10) ; Step 4: the data are 

represented as a matrix with 36 mixture component counts per tumor. Step 5: Non-negative 
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matrix factorization is applied to the components-by-tumor matrix to derive the tumor-by-

signature matrix and the signature-by-components matrix.

b. Heat maps show component weights for copy number signatures in two independent 

cohorts of HGSOC samples profiled using WGS and SNP array. Correlation coefficients are 

provided in Supplementary Table 2.
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Figure 2. Linking copy-number signatures with mutational processes
a Component weights for copy number signature 1. Barplots (upper panel) are grouped by 

copy number feature and show weights for each of the 36 components. The middle panel 

shows the mixture model distributions which are shaded by the component weight - solid 

colours have a high weight and transparent have low weight (contrasting colours are 

randomly assigned). Lower panel shows genome-wide distribution (histogram or density) of 

each copy number feature, across the BriTROC-1 cohort, with coloured plots indicating 
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important distributions (> 0.1 component weight). (Note: similar plots for other CN 

signatures are shown in Figure 3 and Supplementary Figure 5).

b Associations between CN signature exposures and other features. Purple indicates positive 

correlation and orange negative correlation (see also Supplementary Figure 6). Numbers at 

the right of the panel indicate cases included in each analysis. Only significant correlations 

are shown (P<0.05).

c Associations between CN signature exposures and SNV signatures. Purple indicates 

positive correlation and orange negative correlation (see also Supplementary Figure 6). The 

number at the right of the panel indicates cases included in the analysis.

d and e Difference in CN signature exposures between cases with mutations in specific 

genes (d) and mutated/wildtype reactome pathways (e). The absolute difference in mean 

signature exposures was calculated for cases with and without mutations. Colors in filled 

circles indicate extent of difference. Only differences with FDR P<0.05 (Mann-Whitney 

test) are shown (see also Supplementary Figure 7).

Numbers at the right of the panel indicate cases with mutations (SNVs, amplifications or 

deletions) in each gene/pathway.
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Figure 3. The seven copy-number signatures in HGSOC
Description of the defining component weights, key associations and proposed mechanisms 

for the seven copy number signatures.

*only the top three mutated genes for each of the pathways associated with CN signatures 4, 

6 and 7 are shown (the list of all significant genes is provided in Supplementary Tables 7 and 

8).
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Figure 4. CN signature exposures of four BriTROC-1 patients with germline BRCA2 mutations 
and somatic loss of heterozygosity
Stacked bar plots show copy-number signature exposures for four BriTROC-1 cases with 

pathogenic germline BRCA2 mutations and confirmed somatic loss of heterozygosity 

(LOH) at the BRCA2 locus.
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Figure 5. Association of survival with copy-number signatures
Upper panel: Stacked barplots show CN signature exposures for each patient. Patients were 

ranked by risk of death estimated by a multivariate Cox proportional hazards model 

stratified by age and cohort, with CN signature exposures as covariates.

Middle panel: The matrix indicates group for each patient assigned by unsupervised 

clustering of CN signature 1, 2, 3 and 7 exposures (see also Supplementary Figure 10).

Lower panel: Linear fit of signature exposures ordered by risk predicted by the Cox 

proportional hazards model.
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