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It is well known that oxidative stress participates in neuronal 
cell death caused production of reactive oxygen species (ROS). 
The increased ROS is a major contributor to the development 
of ischemic injury. Indoleamine 2,3-dioxygenase 1 (IDO-1) is 
involved in the kynurenine pathway in tryptophan metabolism 
and plays a role as an anti-oxidant. However, whether IDO-1 
would inhibit hippocampal cell death is poorly known. There-
fore, we explored the effects of cell permeable Tat-IDO-1 pro-
tein against oxidative stress-induced HT-22 cells and in a 
cerebral ischemia/reperfusion injury model. Transduced Tat-IDO-1 
reduced cell death, ROS production, and DNA fragmentation 
and inhibited mitogen-activated protein kinases (MAPKs) acti-
vation in H2O2 exposed HT-22 cells. In the cerebral ischemia/ 
reperfusion injury model, Tat-IDO-1 transduced into the brain 
and passing by means of the blood-brain barrier (BBB) sig-
nificantly prevented hippocampal neuronal cell death. These 
results suggest that Tat-IDO-1 may present an alternative stra-
tegy to improve from the ischemic injury. [BMB Reports 2020; 
53(11): 582-587]

INTRODUCTION

Indoleamine 2,3-dioxygenase 1 (IDO-1) is a heme-containing 

enzyme involved in the first step of the kynurenine pathway in 
tryptophan metabolism and is expressed in response to inter-
feron gamma (IFN-) stimulation in the cortex, hippocampus, 
and various cells, including neurons, astrocytes, macrophages, 
and microvascular endothelial cells (1-3). The kynurenine path-
way finally generates kynurenic acid and quinolinic acid. 
Quinolinic acid causes excitotoxicity and neuronal cell death, 
whereas kynurenic acid has antioxidant properties (4, 5). 
IDO-1, a unique cytosolic enzyme, exerts powerful antioxi-
dant effects by means of free radical scavengers (4, 6, 7). Over 
expressed human IDO-1 by gene transfection significantly pro-
tects endothelial cell against damage from oxidative stress and 
lung transplant ischemia/reperfusion injury in an animal model 
(8). It also protects against atherosclerosis by regulation of T 
cells in plasmacytoid dendritic cells (9). Although reactive oxygen 
species (ROS) are important for keeping balance in cellular 
redox signaling, overproduction of ROS is involved in neuro-
nal diseases including ischemia (10-13). Since ROS play cru-
cial roles in the pathogenesis of this disease, antioxidant pro-
tein seems to be a potential therapeutic approach for ischemic 
injury (14, 15).

Mitogen-activated protein kinases (MAPKs) signaling path-
ways, such as extracellular-signal regulated kinase (ERK), c-Jun 
NH2 terminal kinase (JNK), and p38 are associated with cell 
differentiation, cell proliferation, cell survival, and cell death 
(16). Even though several studies have reported that oxidative 
stress-mediated MAPKs activation plays an important role in 
death-receptor-initiated exogenous and mitochondrial apoptotic 
pathways as well as neuronal cell death or neurodegenerative 
disorders (17-19), little is known about the effects of IDO-1 on 
oxidative stress-mediated neuroprotective effects in hippocampal 
cells and a cerebral ischemia/reperfusion injury model.

It is recognized that small molecules can transduce into the 
cell, but larger macromolecules like protein cannot permeate 
owing to their physicochemical characteristics (20, 21). Thus, 
we fused IDO-1 protein with protein transduction domains (PTD), 
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Fig. 1. Construction, purification, and transduction of Tat-IDO-1 pro-
tein. Diagrams of Tat-IDO-1 and control IDO-1 protein (A). Purifi-
cation of Tat-IDO-1 and control IDO-1 protein. We analyzed purified 
Tat-IDO-1 and control IDO-1 protein using 15% SDS-PAGE and 
Western blotting (B). Transduction of Tat-IDO-1 protein into HT-22 
cells. The cells were treated with Tat-IDO-1 and control IDO-1 pro-
tein (0.5-3 M) for 3 h or Tat-IDO-1 and control IDO-1 protein 
(3 M) for various incubation times (10-180 min) (C). Then, trans-
duced Tat-IDO-1 protein levels were assessed by Western blotting, 
and the intensity of the bands was measured by a densitometer. Data 
are repressed as mean ± SEM (n = 3).

Fig. 2. Effects of Tat-IDO-1 protein against oxidative stress-induced 
HT-22 cell damage. Tat-IDO-1 (3 M) and control IDO-1 protein 
(3 M) were pretreated with HT-22 cells for 3 h before treatment 
with 1 mM of H2O2. Intracellular ROS levels were measured by 
DCF-DA staining. Fluorescence intensity was quantified using an 
ELISA plate reader (A). DNA fragmentation was assessed by TUNEL 
staining, and quantitative evaluation of TUNEL positive cells were 
confirmed by cell counting under a phase-contrast microscopy 
(×200 magnification) (B). Scale bar = 50 m. *P ＜ 0.05 and 
**P ＜ 0.01 compared with H2O2-treated cells. Data are re-
pressed as mean ± SEM (n = 3).

such as Tat peptide, which can allow protein to transduce into 
cells. In previous studies, we showed that PTD fusion proteins 
transduced into cells and significantly protected them against 
various oxidative stress-induced diseases (14, 15, 22, 23). In 
this study, we investigated whether Tat-IDO-1 inhibits hippo-
campal cell death in HT-22 cells and a cerebral ischemia/ 
reperfusion injury model. 

RESULTS 

Construction, production, and transduction of recombinant 
Tat-IDO-1 fusion protein 
As shown in Fig. 1A, we constructed recombinant Tat-IDO-1 
and control IDO-1 plasmid. Tat peptide is linked to a human 
IDO-1 gene to permit transduction of a fusion protein into 
cells, whereas a control IDO-1 gene was not linked to the Tat 
peptide. Then, SDS-PAGE and Western blot analysis con-
firmed the purified fusion proteins, Tat-IDO-1 and control 
IDO-1, as shown in Fig. 1B. Purified fusion proteins appeared 
to have the expected molecular weights of 38 and 36 kDa, 
respectively. 

To investigate whether a fusion protein can transduce into 
HT-22 cells, we treated control IDO-1 and Tat-IDO-1 proteins 
with cells for various times (10-180 min) and concentrations 

(0.5-3 M). As expected, Tat-IDO-1 protein was detected in a 
dose- and time-dependent manner (Fig. 1C). Also, transduced 
protein detected not only stability for up to 36 h but also 
distributed both cytosol and nuclei in the cells. In contrast, 
control IDO-1 was not detected (Supplementary Fig. S1). 

Effects of Tat-IDO-1 protein on cell death
To confirm the effect of Tat-IDO-1 proteins on HT-22 cell 
death, HT-22 cells were treated with 1 mM H2O2 before a cell 
viability assay (Supplementary Fig. S2). We found that Tat-IDO-1 
protein increased cell viability up to 72% in the presence of 
the H2O2. To examine how the Tat-IDO-1 protein affects the 
cell viability, we investigated cellular toxicity, ROS generation, 
and DNA damage (Fig. 2A and 2B). We confirmed that Tat- 
IDO-1 protein significantly inhibits the cellular toxicities. How-
ever, there was no significant difference between H2O2 and 
control IDO-1 protein-treated cells.

Effects of Tat-IDO-1 protein on signaling pathways under 
oxidative stress
To explore whether there was an association between Tat- 
IDO-1 protein and signaling pathways, we investigated apop-
tosis and MAPK signaling pathways in H2O2 exposed HT-22 
cells. Tat-IDO-1 protein reduced Bax expression levels more 
than did the cells treated only with H2O2. In contrast, Bcl-2 
expression levels were increased by Tat-IDO-1 protein. In 
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Fig. 4. Effect of Tat-IDO-1 on ischemic injury in a cerebral ische-
mia/reperfusion model. Neuroprotective effects of transduced Tat- 
IDO-1 protein were analyzed by the CV, GFAP, Iba-1, and F-JB 
immunostaining in the CA1 region of the hippocampus of the 
gerbil brain 7 days (n =10 per groups) after ischemic injury. 
Relative numeric analysis of CV, GFAP, Iba-1, and F-JB-positive 
neurons in CA1 region. Scale bar = 400 m and 50 m (CV), 
25 m (GFAP and Iba-1), and 50 m (F-JB). **P ＜ 0.01, sig-
nificantly different from the vehicle group.

Fig. 3. Effect of Tat-IDO-1 protein on signaling pathways in HT- 
22 cells. Tat-IDO-1 (0.5-3 M) and control IDO-1 protein (3 M) 
were treated with HT-22 cells for 3 h before H2O2 (1 mM). 
Expression levels Bax and Bcl-2 (A), cleaved Caspase-3 and -9 
(B), and MAPKs (C) were detected by Western blotting with 
indicated specific antibodies. The protein band intensities were 
measured by densitometer. **P ＜ 0.01 compared with H2O2- 
treated cells. Data are repressed as mean ± SEM (n = 3).

addition, Tat-IDO-1 protein reduced cleaved Caspase-3 and -9 
expression levels, whereas control IDO-1 proteins did not 
affect apoptotic protein expression levels (Fig. 3A and 3B).

As shown in Fig. 3C, phosphorylation of MAPKs (p38, ERK 
and JNK) expression levels were increased by H2O2. However, 
Tat-IDO-1 protein reduced phosphorylation of MAPKs ex-
pression levels dose-dependently. Control IDO-1 protein showed 
patterns similar to those of cells exposed only to H2O2. 

Effects of Tat-IDO-1 protein on a cerebral ischemia/ 
reperfusion injury model
We investigated whether Tat-IDO-1 protects against ischemic 
injury in a cerebral ischemia/reperfusion injury model. Cresyl 
violet (CV) staining showed that neuronal cell death was 
markedly increased in the vehicle- or control IDO-1-treated 
group. However, neuronal cell death was significantly inhi-
bited in the Tat-IDO-1-treated group. Also, ionized calcium- 

binding adapter molecule 1 (Iba-1), Fluoro-Jade B (F-JB), and 
glial fibrillary acidic protein (GFAP) staining were drastically 
increased in the vehicle- or control IDO-1-treated group. In 
contrast, Iba-1, GFAP, and F-JB staining were significantly re-
duced in the Tat-IDO-1-treated group (Fig. 4).

DISCUSSION

IDO-1 is a key enzyme in tryptophan metabolism and is 
known to induce the production of metabolite kynurenic acid 
and quinolinic acid. Kynurenic acid promotes cell survival 
against oxidative stress, whereas quinolinic acid induces cell 
death (24, 25). Since many studies have demonstrated that 
IDO-1 protein expression is highly associated with various 
diseases, including Alzheimer’s disease, cancer, and diabetes, 
IDO-1 is generally known to be a marker of those diseases, 
and inhibition of IDO protein expression is considered to be a 
target for various disease therapies (26, 27). On the other 
hand, other studies have shown that IDO-1 expression sig-
nificantly inhibits oxidative stress-induced cell death by exer-
ting powerful antioxidant functions in cancer, inflammation, 
and neuronal diseases (28-30). Even though some studies have 
suggested that the IDO-1 protein can be a therapeutic agent for 
neuronal and immune-related diseases (2, 3, 9), the effects of 
IDO-1 protein in brain ischemia are not fully investigated yet.

PTD has been known as a tool to overcome the delivery 
limit of a wide array of compounds, such as peptides and 
proteins in vitro and in vivo (20, 21, 31) and extensive 
experiments have shown that PTD fusion protein is transduced 
into cells and tissues (14, 15, 31-35). In this study, we showed 
that cell permeable Tat-IDO-1 fusion protein is transduced into 
HT-22 cells. Although Tat-IDO-1 protein transduction ability 
showed patterns similar to those of other Tat fusion protein 
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studies, the transduction time of Tat-IDO-1 protein is longer 
than that of other Tat fusion proteins. The difference in trans-
duction time may depend on various factors, such as protein 
size, polarity, and protein shape. 

Excessive production of ROS induced by oxidative stress 
causes irreversible degeneration of proteins, nucleic acids, and 
lipids, and ultimately leads to cell death (36). In this study, we 
showed that transduced Tat-IDO-1 protein markedly inhibited 
H2O2-induced cell death, ROS generation, and DNA fragmen-
tation. It has been reported that overexpressed IDO-1 protein 
inhibited H2O2-induced cell death, DNA damage, and intra-
cellular ROS levels in an ischemic injury rat model, prevented 
H2O2-induced HUVEC cell death, and prevented neuronal cell 
death by free radical scavengers (8, 37). Our finding that 
Tat-IDO-1 protein inhibited HT-22 cell death induced by 
oxidative stress coincides with those reports suggesting that 
IDO-1 acts as an antioxidant protein. 

Oxidative stress altered the expression levels of Bax and 
Bcl-2 protein, led to cell death, and expressed high levels of 
activated cleaved Caspase-9 and Caspase-3 (38, 39). In 
addition, it is well known that anti-apoptotic protein (Bcl-2) 
expression levels were reduced and pro-apoptotic protein 
(Bax) expression levels were increased under excessive oxida-
tive stress (38, 40). Our data also showed that Tat-IDO-1 
protein regulated apoptotic protein expression levels, including 
Bax, Bcl-2, cleaved Caspase-9 and Caspase-3. 

It is well known that MAPKs (p38, ERK, and JNK) signaling 
pathways are highly associated with oxidative stress-induced 
cell death (41-43). Other studies have shown that overexpres-
sion of IDO-1 protein inhibited the activation of Akt and 
MAPKs signaling pathways and regulated apoptotic protein 
expression levels in neuronal cells under excessive oxidative 
stress (44, 45). Our results showed the same patterns, indica-
ting that Tat-IDO-1 protein inhibits neuronal cell death by 
regulation of apoptosis, Akt, and MAPKs signaling pathways 
under oxidative stress.

Since it has been reported that ROS is a major risk factor in 
ischemic injury and plays crucial roles in the pathogenesis of 
ischemia/reperfusion injury (13, 36), we examined whether 
Tat-IDO-1 protein protects against ischemic injury in a cere-
bral ischemia/reperfusion injury animal model. Several studies 
have demonstrated that activated astrocytes and microglia cells 
are highly associated with ischemic injury; these cells were 
increased in brain ischemia, and their reactivities were in-
creased in the hippocampus and led to neuronal cell death by 
release of pro-inflammatory cytokines and neuroinflammatory 
response (46-49). Also, Liu (2007) demonstrated that overexpres-
sed IDO-1 protein significantly ameliorates lung ischemia/ 
reperfusion injury (8). In this study, we showed that Tat-IDO-1 
protein markedly reduced activation of microglia and 
astrocytes and reduced neuronal cell damages significantly in 
an ischemic injury animal model. Therefore, we suggest that 
IDO-1 protein may represent a potential therapeutic strategy 
against lung ischemia/reperfusion injury as well as brain ische-

mic injury. However, further studies are needed to elucidate 
the exact protective mechanism on ischemic injury. 

In summary, we showed that transduced Tat-IDO-1 protein 
inhibited oxidative stress-induced HT-22 cell death by reducing 
cellular cytotoxicity as well as regulation of cellular signaling 
pathways, such as apoptosis and MAPKs and Tat-IDO-1 protein 
transduced into the hippocampal CA1 region of the brain, and 
markedly ameliorates neuronal cell death. Therefore, Tat-IDO-1 
protein can be a candidate as a useful therapeutic agent for 
ischemia.

MATERIALS AND METHODS

See supplementary information for this section.
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