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Associations between cardiorespiratory fitness and brain health in healthy older adults
have been reported using a variety of cardiorespiratory fitness estimates (CRFe). Using
commonly used methods to determine CRF, we assessed the relationship between
CRFe and executive function performance. Healthy older adults (n = 60, mean age
68 years, 77% women), underwent three CRF tests: a Maximal Graded Exercise Test
performed on a cycle ergometer, the Rockport Fitness Walking Test, and a Non-Exercise
Prediction Equation. Executive function was assessed by a computerized cognitive
assessment using an N-Back task (updating cost) and a Stroop task (interference cost,
global and local switch cost). Multiple hierarchical regression analyses were conducted
to assess the relationship between different CRFe and executive function performance.
Regardless of age and education, cardiorespiratory fitness estimated from the Maximal
Graded Exercise Test and the Rockport Fitness Walking Test was significantly associated
with the global switch cost. All CRFe were associated with the interference cost. No
association was observed between CRFe and local switching costs or the updating
costs. In the present study, not all subcomponents of executive function were related to
CRFe. Interestingly, the executive functions that were associated with CRFe are those
that are known to be the most affected by aging.

Keywords: aging, cardiorespiratory fitness, cognition, executive function, physical activity

INTRODUCTION

The long-term benefits of lifelong physical activity (Larson et al., 2006), particularly on cognitive
aging (Gajewski and Falkenstein, 2015a; Berryman et al., 2018), have been extensively studied.
However, more studies are needed to determine how physical activity interacts with brain health.
One potential mechanism is cardiorespiratory fitness (CRF; Hayes et al., 2013). CRF, expressed as
V̇O2 max, represents the body’s maximal ability to transport and use oxygen, from the atmosphere
to the working muscles (Ross et al., 2016). Integrating multiple physiological systems (pulmonary
ventilation, cardiovascular function, and muscular work), CRF is positively associated with multiple
health outcomes, such as cognitive functions (Hayes et al., 2016), as well as future cognitive states
(Wendell et al., 2014). In older adults, participation in both acute and long-term moderate- to
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vigorous-intensity physical activity, such as aerobic exercise
(known to increase CRF), has been shown to improved brain
function (Erickson et al., 2019).

In the context of aging research, a Maximal Graded Exercise
Test (GXT), the standard procedure for evaluating V̇O2 max,
may not be feasible as it requires critical screening procedures and
medical supervision to optimize safety (Huggett et al., 2005). To
overcome these practical issues, the use of submaximal exercise
tests [such as the Rockport Fitness Walking Test (ROCKPORT)
or a Non-Exercise Prediction Equations (EQUATION)] may
be recommended, although they are likely to be less precise
than a GXT. For example, CRF estimate (CRFe) obtained with
EQUATION, is often based on self-reported measures that
may be subject to memory problems, social desirability, and
participant subjectivity, which could lead to measurement errors
(Wang et al., 2019).

In older adults (n = 86, M age 65.14, 61.6% women), a cross-
sectional study found significant associations between three CRFe
(namely a GXT performed on a treadmill, the ROCKPORT,
and EQUATION) and working memory, processing speed, and
memory complaints (McAuley et al., 2011). In their report,
the authors emphasized the importance of further research to
better quantify potential associations between executive function
(EF) and CRFe, particularly EQUATION. EF is required when
the behavior or information processing to be performed is not
automated and required some control (Klein, 1996). This control
may be necessary because of the unpredictability or novelty of the
situation (Banich, 2009). EF is also needed when two tasks cannot
be processed in parallel in working memory (de Fockert et al.,
2001) or consecutively without affecting performance (flexibility
or switching). The second characteristic of EF is that they
are initiated proactively, voluntarily (even consciously) (Lezak,
1995), and toward a goal (Miller and Cohen, 2001) such as solving
a problem, carrying out a predetermined plan (Unterrainer et al.,
2004) or optimizing performance on a task. Remembering a
phone number for a few minutes would require such control
given the continual updating of information in working memory
(Shiffrin and Schneider, 1977). This control might go against
an automated process (Shallice, 1988) (e.g., inhibition of an
automated response such as reading a word in a Stroop task,
where one must instead name the color of the ink with which the
word is written).

Several studies conceive EF as a “fractionable” concept
(Alvarez and Emory, 2006), which relies on distinct cognitive
mechanisms of attentional control. EF can be conceptualized as
a three-factor model (Friedman and Miyake, 2017) that includes
switching (local and global), inhibition, and working-memory
updating. Some studies suggest that the subcomponents of EF
are affected differently by aging. For instance, updating tends to
be less affected by age compared with inhibition and switching
(Maldonado et al., 2020). Moreover, in normal aging, the decline
in global switching (e.g., the cost of maintaining and coordinating
two tasks relative to performing a single task) is known to be more
pronounced and to occur earlier compared to local switching
(e.g., the cost associated with alternating between two tasks)
(Kray and Lindenberger, 2000; Wasylyshyn et al., 2011; Kray and
Dörrenbächer, 2019).

As V̇O2 max has been shown to decrease with age (Hawkins
and Wiswell, 2003), many studies have investigated its relation
to EF in older adults. Understanding the relationship between
CRF and EFs is of particular interest, as they are known to predict
older adults’ ability to maintain independent living (Vaughan and
Giovanello, 2010) and has been associated with many behaviors
that affect daily life, including driving (Anstey et al., 2005),
walking (Mirelman et al., 2012), medication adherence (Insel
et al., 2006), urinary incontinence (Lussier et al., 2013), and use
of problem-solving strategies (Taconnat and Lemaire, 2014). EF
was associated with the Instrumental Activities of Daily Living
(IADL) scale (Cahn-Weiner et al., 2002) and was associated with
a measure of life expectancy and quality of life (Quality Adjusted
Life Year) (Davis et al., 2010) in older women.

Association has been reported in older adults between EF
and GXT CRFe (van Boxtel et al., 1997; Barnes et al., 2003;
Brown et al., 2010; Verstynen et al., 2012; Weinstein et al.,
2012; Berryman et al., 2013; Albinet et al., 2014; Freudenberger
et al., 2016). Moreover, an association between a z-composite
score combining the CRFe provided by the ROCKPORT and
a GXT performed on a treadmill was found with EF (Prakash
et al., 2011). Performance on the ROCKPORT was also directly
associated with inhibition as measured by a flanker task
(Colcombe et al., 2004). In a study assessing physical activity
levels through questionnaires and accelerometers, CRF with the
ROCKPORT and EF with a three-factor model (Miyake et al.,
2000) (but only using a global switching task), only inhibition
was associated with physical activity (Boucard et al., 2012).
As CRF was not measured by GXT, the lack of association
between performance on the global switching task and CRFe
could have been explained by the choice of CRFe. To our
knowledge, no study has used all types of CRF estimation
to assess potential associations with EF, and few studies have
examined all subcomponents of EF. To address this shortcoming,
the objective of this study was to assess in older adults, CRFe
(GXT, ROCKPORT, EQUATION) and their association with
EF [switching (both local and global), inhibition, and working-
memory updating]. Furthermore, to minimize the task impurity
that characterized EF task (Friedman and Miyake, 2017) and
to reduce the effect of processing speed on EF (Albinet et al.,
2012), performance for each EF was computed in terms of
different costs calculated in percentages. We hypothesized that
the EF subcomponents (inhibition and global switching) known
to decline the most during aging would be strongly associated
with the most precise CRFe (GXT and, to a lesser degree,
ROCKPORT). No significant association is expected between EF
subcomponents that are known to be less altered during aging
such as updating and local switching.

MATERIALS AND METHODS

Experimental Procedures
As a screening procedure to optimize participants’ safety, each
participant was assessed by a geriatrician before CRF testing.
The CRF tests [GXT, ROCKPORT, and EQUATION (Jurca
et al., 2005)] were conducted on two non-consecutive days

Frontiers in Psychology | www.frontiersin.org 2 November 2021 | Volume 12 | Article 742184

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-12-742184 October 28, 2021 Time: 15:34 # 3

Predovan et al. Executive Function and Cardiorespiratory Fitness

(7.15 ± 1.66 days apart). On the first day of the assessment,
participants completed a neuropsychological and a geriatric
assessment, followed by a GXT. On the second day, participants
completed a questionnaire assessing their habitual physical
activity levels (Self-Reported Physical Activity) to complete the
EQUATION, and then proceed with the ROCKPORT.

Participants
This study was approved by the Ethics Committee of the geriatric
institution where it was conducted and was part of a larger clinical
trial (NCT02455258). Informed consent was obtained from all
participants. Participants were recruited from the community
through advertisements in newspapers, magazines dedicated to
the older adults, flyers, websites, and through the research center’s
pool of participants. To be included, participants had to be
sedentary (less than 150 min of moderate-intensity exercise per
week) and at least 60 years old. Exclusion criteria were the
use of a walking aid or hormone therapy, having undergone
surgery under general anesthesia, participation in a structured
physical activity program within the past 6 months, smoking
within the past 5 years, having been diagnosed and/or treated
for major depression or uncontrolled medical conditions such
as neurological disorders and cardiorespiratory diseases, and
presenting significant or uncorrected perceptual limitations or
significant cognitive impairment [as determined by a cutoff score
of 26 on the Mini-Mental State Examination (Folstein et al.,
1975)]. Table 1 presents the characteristics of the participants
(n = 60, mean age 68 years, 77% women).

Assessment of Cardiorespiratory Fitness
Under the supervision of a geriatrician and a certified
kinesiologist, GXT was performed on a cycle ergometer
(Corival Recumbent, Lode B.V., Groningen, Netherlands) with
a metabolic cart (Moxus, AEI Technologies Inc., Naperville, IL,
United States). The full protocol has been described elsewhere
(Berryman et al., 2013, 2014). The test started at 35W for women
and 50W for men. Participants were instructed to maintain
a pace between 60 and 80 rpm. Each minute, the power of
the ergocycle was increased by 15W. The test ended when the
participant was unable to maintain the required pace. Constant
positive verbal encouragement was given during the test to ensure
maximal effort from the participant. The highest V̇O2 over a 30-
s period was considered as V̇O2 peak (in ml.kg−1.min−1). All
analyses for the GXT included only participants who achieved
a respiratory exchange ratio (RER) greater than 1.1, a value
that qualifies participants’ effort during the test as excellent
(Balady et al., 2010).

For the ROCKPORT, participants were asked to walk one mile
(1,609 m) as fast as possible (Fenstermaker et al., 1992) on an
indoor track. Participants performed this test alone or in small
groups of two to four people. A stopwatch was used to record the
time achieved and heart rate was recorded throughout the test by
a Polar RS 800 beat-to-beat recorder (Polar Electro Oy, Kempele,
Finland). CRF was estimated using an equation that included
age, biological sex, body mass, time to complete the ROCKPORT,
and post-ROCKPORT heart rate (Kline et al., 1987; Fenstermaker
et al., 1992). ROCKPORT CRFe in ml.kg−1.min−1 = 132.853 –

TABLE 1 | Participants’ characteristics, cardiorespiratory fitness,
and cognitive data.

Characteristic

Age 67.65 ± 5.42

Sex 14 (M)/46 (W)

Education (years) 15.20 ± 3.54

Mini-Mental State Examination 27.98 ± 1.55

Body Mass Index 26.82 ± 4.80

Cardiorespiratory fitness

Maximal graded exercise test (ml.kg−1.min−1) 21.24 ± 4.51

Rockport Fitness Walking Test (ml.kg−1.min−1) 18.31 ± 7.57

Non-exercise prediction equation (ml.kg−1.min−1) 24.38 ± 6.52

Rockport Fitness Walking Test completion time (s) 1095.02 ± 105.96

Heart Rate (bpm; rest) 66.47 ± 11.71

Heart Rate (bpm; after Rockport Fitness Walking Test) 117.00 ± 17.17

Self-Reported Physical Activity Questionnaire (score 0 to 4) 1.61 ± 1.18

Cognition: Updating task

N-Back 1 RT (ms) 1014.08 ± 176.22

N-Back 2 RT (ms) 1242.34 ± 254.06

N-Back 1 accuracy (%) 89.5

N-Back 2 accuracy (%) 62.5

Updating cost (%) 23

Cognition: Stroop task

Reading condition RT (ms) 1035 ± 155.56

Counting condition RT (ms) 1054.45 ± 165.84

Inhibition RT (ms) 1194.97 ± 188.82

Switching RT (ms) 1545.88 ± 277.08

Reading condition accuracy (%) 96.32

Counting condition accuracy (%) 96.26

Inhibition accuracy (%) 96.93

Switching accuracy (%) 92.67

Interference cost (%) 14

Global switching cost (%) 21

Local switching cost (%) 19

{0.0769 × [Weight (lb)]} – {0.3877 × [Age (Year)]} +
{6.315 × [Sex (Men = 1, Women = 0)]} – {3.2649 × [Walked
Time (min)]} – {0.1565 × [Post Exercise Heart Rate (beats per
minute)]} (Kline et al., 1987).

Cardiorespiratory fitness was also estimated with the equation
derived by Jurca et al. (2005): EQUATION. This equation was
designed to consider sex, age, Body Mass Index, and resting
heart rate, as well as self-reported habitual physical activity levels
[as assessed by a Self-Reported Physical Activity questionnaire
(SRPA)]. EQUATION CRFe in ml.kg−1.min−1 = [Sex (Men = 1,
Women = 0)] × (2.77) – Age × (0.10) – Body Mass
Index × (0.17) – Resting Heart Rate × (0.03) + SRPA +
18.07. The SRPA categorizes the participant’s self-reported level
of physical activity. Category 1: Inactive or low levels of physical
activity other than usual daily activities (value = 0). Category
2: Regular (≥5 days/week) participation in physical activities
for at least 10 min at a time and requiring low level of
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exertion (value = 1). Category 3: Engagement in aerobic exercises
at a comfortable pace for 20–60 min per week (value = 2).
Category 4: Participation in aerobic exercises at a comfortable
pace for 1–3 h per week (value = 3). Category 5: Participation
in aerobic exercises at a comfortable pace for over 3 h per
week (value = 4). Table 1 presents participants’ results on all
CRF assessments.

Assessment of Cognitive Functions
Cognitive testing was performed using a computerized tablet-
based EF assessment battery (Lussier et al., 2020), which includes
a digit Stroop task (allowing us to examine the EF inhibition,
global and local switching subcomponents) and an n-back task
(updating). Before each task, detailed instructions appeared
on the screen (which were also read aloud), followed by a
familiarization block.

The digit Stroop task was modeled after the Five Digit test
(de Paula et al., 2017); a digit-Stroop. The Stroop task consisted
of four distinct conditions: reading (60 trials), counting (60
trials), inhibition (60 trials), and switching (73 non-switching
trials and 48 switching trials). Figure 1 illustrates the Stroop task
conditions. Participants were instructed to respond as quickly
as possible while minimizing errors by pressing the buttons on
either the right or left side of the screen with their thumbs. In the
reading condition, participants had to identify the digit (from 1
to 6) displayed on the screen. Up to six digits could be presented
simultaneously on the screen. The digits and the quantity of digits
were always matched (e.g., digit 2 appearing at two locations). In
the counting condition, participants had to report the number of
asterisks (up to six asterisks could be presented). In the inhibition
condition, participants had to report how many digits (up to six)
appeared on the screen. In this condition, the identity of the
digits presented on screen was incompatible with the quantity
of digits displayed (e.g., the digit “4” appearing at five locations
on the screen). In the switching condition, the instructions were
the same as in the inhibition condition, except for the trials
(i.e., 48 switching trials out of the 121 trials) in which the digits
were surrounded by a white frame, indicating that participants
had to report the identity of the digit instead of the number of
digits presented. For all conditions, two consecutive trials never
gave the same answer. Also, the number used as an answer
was equiprobable.

The n-back task included three conditions: 1-back (4 blocks
of 10 trials), 2-back (4 blocks of 10 trials), and 3-back (2 blocks
of 10 trials). Figure 2 illustrates some of the trials of the 2-back
condition. Participants were asked to indicate whether a non-
verbal stimulus displayed on the screen was identical (by pressing
the “=” button) or different (by pressing the “6=” button) to the
one presented n steps earlier in the sequence. The participant had
to use his right thumb to enter his answer. Participants were asked
to be as accurate as possible and to respond within a 3,000 ms
delay. Each block consisted of 40% target and 60% non-target
letters. The duration of the inter-stimulus interval was 750 ms.
During this period, accuracy feedback was presented based on
the participant’s last response, such that the pressed button
turned green (accurate answer) or red (error). If the participant
accuracy was 75% or more in one condition, the following

n-back condition was activated. If not, the task ended. Only the
performance on the 1-back and the 2-back were analyzed because
most participants were unable to perform the 3-back.

Performance on each EF was computed in terms of different
costs calculated as a percentage (interference, local switch, global
switch, and updating cost) using reaction time (RT). When
calculating costs, it is common to compare the more complex
condition to a simpler condition to isolate the process that
differentiates them. Therefore, to isolate the local switching cost
(the cost associated with alternating between two tasks), we used
the performance of the switching trials and the non-switching
trials. To isolate the global switching cost, the cost of maintaining
and coordinating two tasks relative to performing a single task,
we used the performance of the non-switching trials and the
inhibition trials. The rationale is that both trials share the same
visual presentation and instruction, except that in the non-
switching trials the participant has to keep in mind two sets
of instruction and prepare themselves accordingly as they don’t
know in advance which trials (non-switching trials vs. switching
trials) will be presented [task uncertainty (Kray et al., 2002)]. To
isolate the updating cost, we used the respective performance on
the 2-back (which is demanding in terms of updating) and the
performance of the 1-back (which barely necessitates updating).

The costs were computed according to standard procedures
(Li et al., 2018). Interference cost: [(inhibition trial RT – counting
trial RT) / counting trial RT], local switching cost: (switching trial
RT – non-switching trial RT) / non-switching trial RT, global
switching cost: (non-switching trial RT – inhibition trial RT)
/ inhibition trial RT, and updating cost: (n-back 2 trial RT –
n-back 1 trial RT) / n-back 1 trial RT. Only the RTs associated
with a correct response were included in the computation of the
respective cost. Maximum RT of 4,000 ms and a minimum RT of
200 ms were allowed. Table 1 shows participants’ cognitive data.

Statistical Analysis
The normality assumption was tested using the Kolmogorov–
Smirnov test and the Shapiro–Wilk test. The CRFe on the
ergocycle was determined as the reference CRFe in the agreement
analysis. Systematic bias was assessed using a paired t-test.
The magnitude of the difference (Cohen, 1988) was classified
using the effect size approach: small (0.2), moderate (0.5),
and large (0.8). A regression analysis of the differences was
computed to assess proportional bias (Bland and Altman, 1999).
Pearson’s correlation coefficients (r) were also computed to
assess linear relationship between each estimate. The strength
of the associations was interpreted as very weak (0–0.19), weak
(0.2–0.39), moderate (0.40–0.59), strong (0.6–0.79), and very
strong (0.8–1) (Campbell and Swinscow, 2009). Fisher r-to-z
transformations were calculated to assess whether there were
significant differences between the correlation coefficients.

To assess the relationship between CRFe and EF, two-stage
multiple hierarchical regression analyses were performed. Age
and education were entered in the first block. In addition to
age and education, CRF scores (1 analysis for each estimate)
were entered in the second block. Dependent variables were the
interference cost, the local switching cost, the global switching
cost, and the updating cost. All analyses were performed using
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FIGURE 1 | Illustration of the Stroop task condition. The green circle represents the correct response for each condition trail.

Statistical Package for the Social Sciences 27.0 (SPSS Inc.,
Chicago, IL, United States) and statistical significance was set at
p < 0.05.

RESULTS

Cardiorespiratory Fitness Estimates
Agreement Analysis
On the basis of the RER criterion (≥1.1), seven participants
were excluded from GXT-specific analyses. Seven participants
(including one overlapping with the RER criterion) were also
excluded from the ROCKPORT-specific analyses because their
CRFe were deemed to be too low. These participants’ CRFe

FIGURE 2 | Illustration of the 2-back task. The green circle represents the
correct response.

values were below a cutoff (10.8 ml.kg−1.min−1) determined
by previously collected V̇O2 peak data from a GXT performed
on a cycle ergometer in a similar sample of 59 healthy older
adult participants.

In terms of systematic bias, a moderate difference (d = 0.58)
was found between GXT (21.61 ml.kg−1.min−1

± 4.56) and
EQUATION (24.59 ml.kg−1.min−1

± 6.63); t(52) = −4.26,
p < 0.01. A moderate significant difference (d = 0.51) was
also found between GXT (22.35 ml.kg−1.min−1

± 4.25) and
ROCKPORT (20.37 ml.kg−1.min−1

± 6.03); t(46) = 2.75,
p < 0.01. A large significant difference (d = −0.91) was also
noted between EQUATION (25.22 ml.kg−1.min−1

± 6.38)
and ROCKPORT (20.04 ml.kg−1.min−1

± 5.84); t(52) = 6.26,
p < 0.01. Based on the p-value of regression coefficients, no
proportional bias was observed, suggesting that the differences
between the methods were similar across all the CRF levels.

A strong positive correlation was found between GXT and
EQUATION; r(51) = 0.64, p < 0.01. A moderate positive
correlation was observed between GXT and ROCKPORT;
r(45) = 0.58, p < 0.01, and the EQUATION and the ROCKPORT,
r(51) = 0.52, p < 0.01. Using Fisher r-to-z transformation, no
difference was found between correlation coefficients.

Relation Between Cardiorespiratory
Fitness Estimates and Executive
Function
Because the analysis included fewer than five independent
variables, a sample size of 60 was considered adequate (Harris,
1985). The assumption of singularity was met, as no independent
variable correlated with another at 0.70 or greater. Hierarchical
regressions were calculated to predict EF costs based on Age and
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Education (Model 1) and Age, Education, and a CRFe (Model
2). Note that Age is included in the computation of ROCKPORT
and EQUATION. Significant associations were observed between
Age and GXT (−0.32) and Age and ROCKPORT (−0.47),
whereas no significant association was found between Age and
the EQUATION. Tolerance (>0.2) and VIF (<10) were all
within acceptable limits. Mahalanobis distance scores indicated
no multivariate outliers. Table 2 presents the summary results of
the hierarchical regressions.

For each cost, no significant regression was found with Model
1. For the global switching cost, Model 2 with GXT, ROCKPORT
or EQUATION, explained 13% (p < 0.01), 16% (p < 0.01), and
4% (p = ns) of the variance, respectively. For the interference cost,
Model 2 with GXT, ROCKPORT or EQUATION explained 17%
(p < 0.05), 16% (p < 0.05), and 18% (p < 0.05) of the variance,
respectively. For the local switching cost and the updating cost,
no significant regression was found for Model 2, regardless of
the CRFe included. Figure 3 represents the scatter plots of the
associations between CRFe and EF costs.

Table 3 shows the regression coefficients. In Model 2 with
GXT, CRF (β = −0.361, p < 0.01) was significantly related to
global switching cost. In addition, GXT (β = −0.320, p < 0.05)
and Education (β =−0.261, p < 0.05) were significant predictors
of the interference cost. In Model 2 with ROCKPORT, CRF
(β = −0.442, p < 0.01) and Age (β = −0.326, p < 0.05)
were significant predictors of the global switching cost. Also,
ROCKPORT (β = −0.321, p < 0.05) and Education (β = −0.209,
p < 0.05) were significant predictors of the interference cost. For
Model 2 with EQUATION, CRF (β = −0.321, p < 0.05) was a
significant predictor of the interference cost.

DISCUSSION

The purpose of this study was to examine the associations
between three CRFe (GXT, ROCKPORT, EQUATION) and
EF (switching, inhibition, and working-memory updating) in
healthy older adults. All CRFe were associated with the
interference cost. We found significant negative relationships
between the global switching cost and the GXT as well as the
ROCKPORT. This suggests that exercise-based protocols, such
as GXT and ROCKPORT, appear to be better predictors of the
relationships between CRF and EF, as they yielded consistent
results for the different EF subcomponents. While the variances
explained by each CRFe are statistically significant, they remain
small and should be interpreted with caution in terms of clinical
significance. No significant relation was observed between the
global switching cost and EQUATION. Such a discrepancy could
stem from the inherent challenge of self-reporting physical
activity levels (Sylvia et al., 2014), a variable included in the
EQUATION. No relationship was observed between the three
CRFe and the local switching costs or the updating costs. It has
been reported that global switching is more sensitive to age-
related decline compared to local switching (Verhaeghen and
Cerella, 2002; Wasylyshyn et al., 2011; Ferguson et al., 2021).
Therefore, it is possible that similarly to updating, local switching
is less sensitive to age-related decline in CRF.

Although our study highlighted the diversity of EFs, as not
all EFs subcomponents are related to CRFe, we cannot reject the
possibility that the associations between GXT and ROCKPORT
CRFe and the global switching and interference cost, are related
to shared cognitive processes. This would be compatible with
the proposal that the inhibition function depends on more
fundamental processes (i.e., goal maintenance and management)
that are shared with other EFs (Friedman et al., 2008, 2011), and
in the case of the present study, particularly with global switching.

Correlation coefficients between the three CRFe
(characterized as moderate to strong) were similar to previous
studies (Mailey et al., 2010; McAuley et al., 2011), suggesting
that the three CRFe are equivalent. However, in our study,
we detect the presence of a systematic bias. The EQUATION
and the ROCKPORT estimates, respectively, overestimated
and underestimated the GXT score. Previous studies have also
reported overestimation of CRF by the EQUATION (McAuley
et al., 2011) and underestimation of CRF by the ROCKPORT
(Fenstermaker et al., 1992; Warren et al., 1993) when compared
to a GXT performed on a treadmill. Despite these differences in
agreement between each CRFe, similar negative associations were
found between each CRFe and interference cost. Our findings also
suggest that education is a significant predictor of interference
cost in the model that included GXT or ROCKPORT. Further
research in older adults is needed to explain how educational
attainment (regardless of the effect of age) might affect a specific
cognitive domain (Boller et al., 2017).

Based on our results, CRFe explains a small percentage of
variance in EF performance in older adults. Further research is
needed to explain how this occurs and how CRF interacts with
other mechanisms associated with brain health. For example, the
cerebral circulation hypothesis (Rogers et al., 1990) suggests a
better vascularization of the frontal lobes. This would benefit
performance in tasks requiring EF, as they depend on the integrity
of the subcortical frontal circuit, which includes the prefrontal
cortex (Gunning-Dixon and Raz, 2003; Alvarez and Emory,
2006). The hypothesis of neurotrophic stimulation (Spirduso,
1980) proposed that the benefit could be related to the production
of growth factors, such as Brain-derived neurotrophic factor
(BDNF; Szuhany et al., 2015) and Insulin-like growth factor 1
(IGF-1; Cheng et al., 2000) that affect brain metabolism. Other
hypotheses also point to preserved vessel elasticity (Gauthier
et al., 2015), highlight the importance of inflammation-related
markers (Cotman et al., 2007) and their impacts namely on
sarcopenia and muscle strength (Schaap et al., 2006), or posit that
dopaminergic neurotransmission (Backman et al., 2010) possibly
changes after physical exercise (Petzinger et al., 2015).

An important limitation of this study is the small sample size,
which limits the number of predictors we could use. Also, because
the sample was homogeneous, the potential effect of biological
sex could not be analyzed. Furthermore, the cross-sectional
design does not allow conclusions to be drawn about the causality
of the relationship between CRFe and EF. Another limitation of
our study is that the use of beta blockers, potentially related to a
reduction in CRF (Nielen et al., 2019), was not evaluated.

One of the strengths of the present study lies in the detailed
analyses of the respective EF. From the creation of the tasks
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TABLE 2 | Summary of regression analyses predicting executive function performance.

R2 1R2 1F R2 1R2 1F

Global switching cost Interference cost

Model 1 0.014 0.014 0.401 Model 1 0.079 0.079 2.456

Model 2 (GXT) 0.129 0.115 7.425* Model 2 (GXT) 0.170 0.091 6.108*

Model 1 0.014 0.014 0.401 Model 1 0.079 0.079 2.456

Model 2 (ROCK) 0.164 0.150 10.048* Model 2 (ROCK) 0.158 0.079 5.240*

Model 1 0.014 0.014 0.401 Model 1 0.079 0.079 2.456

Model 2 (EQUA) 0.040 0.026 1.500 Model 2 (EQUA) 0.179 0.100 6.822*

Local switching cost Updating cost

Model 1 0.001 0.001 0.033 Model 1 0.015 0.015 0.434

Model 2 (GXT) 0.002 0.000 0.022 Model 2 (GXT) 0.019 0.004 0.197

Model 1 0.001 0.001 0.033 Model 1 0.015 0.015 0.434

Model 2 (ROCK) 0.020 0.019 1.079 Model 2 (ROCK) 0.025 0.010 0.548

Model 1 0.001 0.001 0.033 Model 1 0.015 0.015 0.434

Model 2 (EQUA) 0.003 0.001 0.084 Model 2 (EQUA) 0.032 0.016 0.930

Model 1, Age and education; Model 2, Age and education and cardiorespiratory fitness estimate.
*p < 0.05.
GXT, Maximal graded exercise test; EQUA, Non-exercise prediction equation; ROCK, Rockport Fitness Walking Test.

FIGURE 3 | Scatter plots of the associations between cardiorespiratory fitness estimates and executive functions costs.
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TABLE 3 | Regression coefficients of the demographic and cardiorespiratory fitness predictors of executive function performance.

β B p β B p

Global switching cost Interference cost

Age −0.233 −0.005 0.090 Age 0.170 0.000 0.897

Education −0.113 −0.004 0.382 Education −0.261 −0.006 0.042*

GXT −0.361 −0.010 0.009* GXT −0.320 −0.006 0.017*

Age −0.326 −0.008 0.026* Age −0.030 0.000 0.834

Education −0.115 −0.004 0.365 Education −0.256 −0.006 0.047*

ROCK −0.442 −0.007 0.002* ROCK −0.321 −0.004 0.026*

Age −0.132 −0.003 0.332 Age 0.080 0.001 0.522

Education −0.065 −0.002 0.628 Education −0.209 −0.005 0.096

EQUA −0.163 −0.003 0.225 EQUA −0.321 −0.004 0.012*

Local switching cost Updating cost

Age −0.012 0.000 0.936 Age 0.127 0.004 0.387

Education 0.027 0.001 0.844 Education 0.098 0.005 0.479

GXT 0.021 0.000 0.883 GXT 0.063 0.003 0.659

Age 0.058 0.001 0.706 Age 0.048 0.002 0.756

Education 0.039 0.001 0.773 Education 0.079 0.004 0.567

ROCK 0.157 0.002 0.303 ROCK −0.113 −0.003 0.462

Age −0.013 0.000 0.924 Age 0.085 0.003 0.536

Education 0.023 0.001 0.868 Education 0.098 0.005 0.472

EQUA 0.039 0.001 0.774 EQUA −0.130 −0.004 0.339

GXT, Maximal graded exercise test; EQUA, Non-exercise prediction equation; ROCK, Rockport Fitness Walking Test.
*p < 0.05.

to the cost computation, initiatives were taken to isolate age-
related declines in EF from a more general decline in processing
speed. The use of a computerized assessment may be more
sensitive to detect differences in EF in a sample of healthy
older adults than traditional neuropsychological assessment
(Erickson et al., 2019). This study is innovative in measuring
three different CRFe in the same sample of older adults,
including a GXT performed on a cycle ergometer. Estimation
of CRF during a GXT performed on a cycle ergometer has
been reported in numerous intervention studies (Blumenthal
et al., 1991; Fabre et al., 2002; Jonasson et al., 2016) and offers
many advantages in terms of cost, space, portability and ease
of simultaneous measurement of other physiological measures
(Smith et al., 2016). Indeed, a test without weight-bearing
(Huggett et al., 2005) that does not depend upon the participants’
walking ability, especially on a treadmill, might be easier to
implement in frail older adults, populations with balance issues,
increased risks of falls, orthopedic restrictions (Beltz et al., 2016),
joint pain or poor lower limb control (e.g., after a stroke)
(Tang et al., 2013).

This study expands our knowledge about the relationship
between CRFe and cognitive functions. We examined
whether different CRFe were similarly associated with each
EF subcomponent in healthy older adults. Comparable relations
were observed between the GXT and ROCKPORT estimates
with each EF subcomponents. The absence of a relation
between the EQUATION and global switch cost indicates that

exercise-based protocols might be more suitable in assessing
the relationship between CRF and cognition in older adults
The EF subcomponent that was associated with CRFe as
measured by the GXT and ROCKPORT, are those known to
be the most affected by aging (Maldonado et al., 2020). In
their meta-analysis of cross-sectional studies, Maldonado et al.
(2020) primarily computed EF performance in terms of RTs
or accuracies for a single task, which may limit their ability to
isolate EF performance from a more general age-related change
in processing speed. Although the use of a difference score
computation used in the present study may reduce the likelihood
that these associations reflect age differences in processing
speed, it cannot exclude it. Therefore, our results should also be
interpreted with caution.

Aging is a multifactorial process, however, growing evidence
shows that age-related changes in EF performance are related
to changes in the integrity of several brain regions (Milham
et al., 2002; Jolly et al., 2017), including the prefrontal cortex
(Allen et al., 2005; Lemaitre et al., 2005; Coubard et al., 2011).
In cross-sectional studies, higher CRF was associated with larger
hippocampal volume (Erickson et al., 2009) and had a protective
effect on white matter integrity (Marks et al., 2007; Johnson
et al., 2012). As CRF is a modifiable factor, improving CRF
through the adoption of an active lifestyle could possibly mitigate
the brain from age-related insult. The same conclusion could
be applied to a reduction of cerebrovascular risk factors. In
a recent study, Veldsman et al. (2020) report that in older
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adults, cerebrovascular risk factors were associated with reduced
integrity of the frontoparietal network that affects EF.

Future studies assessing the associations between CRFe
and EF subcomponents (particularly inhibition and global
switching costs as assessed in the present study) could
benefit from the use of neuroimaging techniques such
as fMRI (Nashiro et al., 2018), functional near-infrared
spectroscopy (Lague-Beauvais et al., 2013; Mekari et al., 2019)
and electroencephalography (Gajewski and Falkenstein, 2015b;
Gajewski et al., 2018). We also encourage investigators to examine
the association between cognitive function (particularly EF) and
CRFe in clinical populations, such as people living with mild
cognitive impairment (Stuckenschneider et al., 2018), as they are
known to present global switching impairment (Belleville et al.,
2008). The present results support the promotion of the use of
exercise-based protocols to assess CRF when possible and the
inclusion of at least one task per EF subcomponents. We also
recommended the standardization of the cognitive test batteries
used (Voss et al., 2019), since it would improve the comparability
between studies from different research groups.
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