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Abstract
Neurodevelopmental disorders (NDDs) are a group of diseases characterized by high heterogeneity and frequently co-occurring
symptoms. The mutational spectrum in patients with NDDs is largely incomplete. Here, we sequenced 547 genes from 1102
patients with NDDs and validated 1271 potential functional variants, including 108 de novo variants (DNVs) in 78 autosomal
genes and seven inherited hemizygous variants in six X chromosomal genes. Notably, 36 of these 78 genes are the first to be
reported in Chinese patients with NDDs. By integrating our genetic data with public data, we prioritized 212 NDD candidate
genes with FDR < 0.1, including 17 novel genes. The novel candidate genes interacted or were co-expressed with known
candidate genes, forming a functional network involved in known pathways. We highlightedMSL2, which carried two de novo
protein-truncating variants (p.L192Vfs*3 and p.S486Ifs*11) and was frequently connected with known candidate genes. This
study provides the mutational spectrum of NDDs in China and prioritizes 212 NDD candidate genes for further functional
validation and genetic counseling.
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Introduction

Neurodevelopmental disorders (NDDs) are complex and het-
erogeneous disorders characterized by impaired motor func-
tion, learning, and verbal and non-verbal communication
resulting from dysfunction during brain development [1–4].
NDDs span a very wide range of neurological and psychiatric

disorders [1, 5] and affect more than 3% of children world-
wide [6]. Although each diagnosis is distinct in clinical set-
tings, in general, NDDs are characterized by high clinical and
genetic heterogeneity. Previous studies have estimated the
heritability of NDDs, with the highest being up to ~ 80%
[7–10]. Multiple phenotype-genotype correlation studies have
revealed that patients carrying deleterious variants in the same
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risk gene have manifested broad clinical phenotypes, includ-
ing impaired social interaction, developmental delay, regres-
sion, and repetitive behavior [11–13]. The high level of het-
erogeneity and similar pathogenetic mechanisms present chal-
lenges for clinical diagnosis and treatment.

Recent studies have reported that targeted sequencing is a
powerful and cost-effective tool for discovering new genetic
risk genes in many diseases, particularly diseases with high
genetic heterogeneity [4, 14, 15]. Both rare inherited and de
novo variants (DNVs) have been demonstrated to contribute
to NDDs [16–18]. Stessman et al. sequenced 208 candidate
genes in patients with NDDs and identified 91 risk genes with
locus-specific significance for disruptive variants in 5.7% of
patients [4].Wang et al. performed targeted sequencing of 189
autism spectrum disorder (ASD) candidate risk genes in
Chinese patients and found that genes identified in European
ASD cohorts were highly relevant in Chinese cohorts [19].
Guo et al. expanded the above study to a larger cohort of
patients and provided support for a multifactorial model of
ASD risk [20]. Some studies have shown that there are mul-
tiple risk genes that are shared between neurodevelopmental
disorders, and integrating datasets at multiple levels is benefi-
cial for the etiology of NDDs [21, 22]. Takata et al. combined
published DNV data and found that integrative analyses was
conducive to identifying significant genes and extending
ASD-related molecular and brain networks [23]. Gonzalez-
Mantilla et al. used multilevel data-integration approach and
identified novel candidate genes for developmental brain dis-
orders [24]. We have previously demonstrated that DNVs,
gene set enrichment analysis, and protein-protein interaction
(PPI)/co-expression analysis can provide new insights into the
genetic mechanisms underpinning NDDs [25–28]. However,
only a few known pathogenetic genes have been described to
explain the genetic causes of NDDs, and the etiology behind
NDDs remains unclear.

Here, we used targeted sequencing to examine 547 genes
from 1102 Chinese patients with NDDs. We identified poten-
tial functional variants and explored the patterns of DNVs in
Chinese patients with NDDs. We then integrated our dataset
with public datasets of neurodevelopmental disorders from the
Gene4Denovo [29] database to prioritize NDD candidate
genes and discover novel candidate genes. Finally, we inves-
tigated whether novel candidate genes were functionally asso-
ciated with known candidate genes using multilevel bioinfor-
matics analysis.

Materials and Methods

Panel Gene Design and Targeted Sequencing

In this study, potential NDD risk genes are collected based on
the following criteria: (1) genes recorded in the Online

Mendelian Inheritance in Man (OMIM) (https://omim.org/)
are associated with NDDs, mainly including autism, cerebral
palsy, mental retardation, and epilepsy; (2) candidate genes in
the NPdenovo database [28]; (3) strong risk genes from the
SFARI Gene database (https://gene.sfari.org/) [30]; and (4)
genes prioritized in our previous NDD-related studies [25,
26, 31, 32]. After removing duplicated genes, 547 target genes
were selected (Table S1).

A total of 935 unrelated trios (probands and their unaffect-
ed parents) and 167 probands without parents were recruited
from China. Genomic DNA (1 μg) extracted from whole
blood was sheared and assembled into a DNA library prior
to targeted sequencing. The Illumina X10 sequencing system
(Illumina, San Diego, CA, USA) was used to generate paired-
end raw data. This panel resulted in an average depth of
181.46× in target regions, and 98.82% of target bases were
covered with depth ≥ 10× on average. This study was ap-
proved by the Institutional Review Board of the State Key
Laboratory of Medical Genetics, School of Life Sciences,
Central South University, Changsha, Hunan, China. All sub-
jects who participated in this study provided informed consent
prior to sample collection.

Variation Detection and Annotation

Quality control of the sequencing data was performed using
Cutadapt [33] and FastQC (https://www.bioinformatics.
babraham.ac.uk/projects/fastqc/) to remove adapter and
unqualified sequences, respectively. BWA-MEM [34] was
employed to align the clean reads to the human reference
genome (hg19). Samtools [35] utilities were used to mark
duplicate reads and generate position-sorted files, while
the Genome Analysis Toolkit HaplotypeCaller was used
to call variants. Comprehensive annotation of all variants
was performed using ANNOVAR [36], including func-
tional implications (gene region, functional effect,
mRNA GeneBank accession number, amino acid change,
cytoband, etc.), functional predictions for missense vari-
ants, and allele frequencies of gnomAD, ExAC, and in-
house data (1113 WES samples and 2469 WGS samples).
Deleterious missense variants (Dmis) were predicted by
ReVe [37] and missense variants with ReVe ≤ 0.7 were
excluded. Only protein-truncating variants (PTVs, includ-
ing stop-gain, stop-loss, frameshift, and splicing) and
Dmis with minor-allele frequencies ≤ 0.1% were defined
as potential functional variants and selected for further
analysis. Sanger sequencing was used to validate all po-
tential functional variants in our study.

Prioritization of Candidate Genes

Using de novo PTVs, together with Dmis and background
DNV rates, we employed the TADA classification tool [38]
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to prioritize candidate genes, with gene exhibiting a false dis-
covery rate (FDR) < 0.1 defined as candidates. First, DNVs
from 935 trios, inherited variants from 1102 probands, and
genetic variants from 3582 in-house Chinese controls
(Table S6) were applied to TADA model, and we prioritized
17 candidate genes with FDR values < 0.1. To increase the
statistical power, we integrated DNVs from 16,807 probands
with different types of NDDs and included 3391 controls from
the Gene4Denovo database (version 1.0) [39] and 208 candi-
date genes with FDR values < 0.1 for further analysis. All
samples integrated in our study have been carefully
deduplicated.

To discover novel candidate genes, we collected known
candidate genes from previous studies and related databases,
and excluded them from the list of candidate genes prioritized
by TADA. Known candidate genes were defined as follows:
(1) genes defined as risk genes in any ten recent publications
involving large-scale exome, whole-genome, or targeted se-
quencing (De Rubeis et al. [17], Sanders et al. [40], Lelieveld
et al. [41], McRae et al. [42], Stessman et al. [43], Yuen et al.
[44], Nguyen et al. [22], Takata et al. [23], Coe et al. [21], and
Satterstrom et al. [45]); (2) genes collected from OMIM that
were associated with neurodevelopmental disorders, includ-
ing intellectual developmental disorder, autism, mental retar-
dation, epileptic encephalopathy, and schizophrenia; (3) genes
belonging to the category of syndromic gene or score category
of 1 or 2 in SFARI Gene [30]. Genes that met any of the above
conditions were classified as known candidate genes. In con-
trast, genes that failed to meet any of the above conditions
above and had no obvious genetic evidence in association
with NDDs in PubMed were classified as novel candidate
genes.

Permutation Test

Spatial and temporal expression data of the human brain were
downloaded from BrainSpan (http://www.brainspan.org/).
For ethical reasons, we removed samples during fetal stages
and selected postnatal cortical samples for further study. We
calculated the Pearson correlation coefficients between any
two genes based on their expression levels. Gene pairs with
|R| > 0.7 were regarded as being co-expressed in the human
brain. The permutation test was performed to compare the
novel and the known candidate gene sets, in order to evaluate
their functional connections. In brief, we compared the num-
ber of co-expressed genes within the novel and the known
candidate gene sets and their connections with a random gene
set of 1,000,000 random iterations.

Functional Network Analysis

We downloaded PPI data from IntAct Molecular Interaction
database (https://www.ebi.ac.uk/intact/) for analysis and

considered gene pairs with an intact-miscore ≥ 0.45 to be
interacting genes. We then constructed a network based on
gene pairs selected from our PPI and co-expression analy-
ses. Novel candidate genes were defined as “seed genes”
that were directly connected and used to form an intercon-
nected functional network. Known NDD candidate genes
directly connected to at least two novel candidate genes
were added to the above network. To further investigate
the functional pathways of novel candidate genes, we per-
formed GO enrichment analysis using MetaScape (https://
metascape.org). Similar pathways were merged into a
single cluster. Network figures were drawn using
Cytoscape v.3.7.2.

Results

DNVs in Our Chinese Cohort

In this study, we sequenced 547 target genes in 1102
Chinese patients with NDDs and identified a set of predict-
ed potential functional variants, including PTVs and Dmis
(Fig. 1 and Table S1). Using Sanger sequencing, we suc-
cessfully validated 1271 potential functional variants, in-
cluding 108 de novo variants (54 de novo PTVs and 54 de
novo Dmis), 975 inherited variants (156 inherited Dmis and
819 inherited PTVs), and 188 undetermined variants (36
PTVs and 152 Dmis) (Fig. S1 and Table S2). We found that
108 DNVs in 78 genes appeared in approximately 10.91%
(102/935) of patients in our Chinese cohort. Among these
78 genes, 36 genes with DNVs are the first to be reported in
Chinese patients. Furthermore, we revealed that 21 genes
carried multiple DNVs, including 28 de novo PTVs and 23
de novo Dmis (Table 1). Both SCN2A andMECP2 were the
most frequently mutated genes, each carrying one de novo
PTV and three de novo Dmis (Table 1). Five genes
(MED13L, GRIN2B, KCNQ2, CTNNB1, and TCF20) car-
ried three DNVs in our Chinese cohort, while another 14
genes (ASH1L , SATB2 , NRXN1 , BCL11A , ADNP ,
SHANK3, MSL2, SYNE1, SYNGAP1, BRAF, GATAD2B,
LLGL1 , SLC2A1 , and KDM5C) carried two DNVs
(Table 1). We manually collected 805 known candidate
genes that have either been reported in studies on large
NDD cohorts or have strong evidence associating them
with NDDs in the OMIM or SFARI Gene databases [17,
21–23, 40–45] (Table S3). We found that of 21 genes with
multiple DNVs that we identified, 20 are classified as
known candidate genes (Table S4). For example, TCF20,
which carries three de novo PTVs (p.S1803Vfs*6,
p.C1795Wfs*13, and p.R1907X), was first reported in a
Chinese cohort. Interestingly, we identified a potential nov-
el NDD risk gene (MSL2) that carries two de novo PTVs
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(p.S560Ifs*11 and p.L266Vfs*3). This study is the first to
report an association between MSL2 and NDDs.

We then employed probability of loss-of-function intoler-
ance (pLI) [46] analysis from ExAC and residual variation
intolerance scores (RVIS) [47] to evaluate the functional im-
pact of genes with multiple DNVs. According to the scores
of pLI and RVIS, we ranked them and used percentiles as
an indicator of gene intolerance. Genes with low-percentile
RVIS or pLI were more likely to be intolerant to genetic
variants. As expected, it was shown that genes with multi-
ple DNVs both exhibited significantly lower percentile pLI
(p = 4.10 × 10−10, two-tailed Wilcoxon rank-sum test) and
RVIS (p = 1.55 × 10−10, two-tailed Wilcoxon rank-sum
test) than background genes (Fig. S2a). In particular, 20
of the 21 multiple DNV genes ranked in the top 50% of
pLI and RVIS (Table 1), suggesting that they are less tol-
erant of damaging variants.

Inherited X-Linked Hemizygous Variants

We identified seven inherited X-linked hemizygous vari-
ants in six genes (Table S5). Among these seven variants,
three variants, including two Dmis (p.R270C on PTCHD1
and p.R197H on SLC16A2) and one splicing variant
(c.1030-1G>C on SLC9A7), were recorded in the dbSNP
or gnomAD database. The remaining four variants, includ-
ing three Dmis (p.Q153R on ATP6AP2, p.R287C on
ARHGEF9, and p.C517Y on PLXNA3) and one frameshift
(p.N136Kfs*30 on SLC16A2) are reported here for the first
time. Compared with the 805 known candidate genes, we
note that five of the above genes are classified as known
candidate genes and three (PTCHD1, ATP6AP2, and
SLC9A7) are reported for the first time in Chinese patient
with NDDs. In addition, we identified a novel candidate
gene (PLXNA3) carrying a novel hemizygous missense

Table 1 Genes with multiple DNVs in our probands

Gene
symbol

DNVs
(n = 935)

Inherited or state
unknown (n =
1102)

DNVs from
Gene4Denovo
(n = 16,807)

RVIS
(percentile)

pLI
(percentile)

Gene function

SCN2A 1 PTV, 3
Dmis

1 PTV, 3 Dmis 18 PTVs, 32 Dmis − 2.51 (1.05%) 1.00 (0.72%) Nervous system development

MECP2 1 PTV, 3
Dmis

1 Dmis 9 PTVs, 10 Dmis − 0.32
(30.25%)

0.70 (24.62%) Chromatin binding

MED13L 3 PTVs 2 Dmis 18 PTVs, 11 Dmis − 1.61 (3.34%) 1.00 (0.57%) Brain development

GRIN2B 1 PTV, 2
Dmis

2 Dmis 4 PTVs, 15 Dmis − 2.48 (1.10%) 1.00 (2.19%) Nervous system development

KCNQ2 1 PTV, 2
Dmis

1 PTV, 3 Dmis 2 PTVs, 25 Dmis − 1.25 (5.97%) 1.00 (5.39%) Regulation of neuronal
excitability

CTNNB1 3 PTVs 1 Dmis 19 PTVs − 1.07 (8.10%) 1.00 (4.20%) Wnt signaling

TCF20 3 PTVs 3 Dmis 11 PTVs − 3.82 (0.34%) 1.00 (2.84%) Wnt signaling

ASH1L 2 PTVs 3 Dmis 7 PTVs − 3.89 (0.31%) 1.00 (0.16%) Chromatin organization

SATB2 2 PTVs - 11 PTVs, 5 Dmis − 1.31 (5.37%) 1.00 (4.97%) Chromatin binding

NRXN1 2 Dmis 3 PTVs, 11 Dmis 2 PTVs, 5 Dmis − 1.88 (2.30%) 1.00 (3.22%) Nervous system development

BCL11A 2 PTVs 1 Dmis 6 PTVs, 3 Dmis − 1.67 (3.07%) 0.83 (20.63%) Brain development

ADNP 2 PTVs 5 Dmis 26 PTVs, 1 Dmis − 1.54 (3.72%) 1.00 (5.98%) Chromatin binding

SHANK3 2 PTVs 2 PTVs 9 PTVs - 1.00 (4.13%) Nervous system development

MSL2 2 PTVs 1 Dmis 1 PTV − 0.72
(15.01%)

0.89 (18.19%) Chromatin organization

SYNE1 2 Dmis 4 PTVs, 16 Dmis 3 Dmis − 1.10 (7.70%) 3.75E-27
(99.45%)

Nucleotide binding

SYNGAP1 1 PTV, 1
Dmis

1 Dmis 31 PTVs, 1 Dmis − 2.30 (1.36%) 1.00 (1.79%) Postsynaptic signaling

BRAF 2 Dmis 1 Dmis 10 Dmis − 0.97 (9.63%) 1.00 (2.83%) Calcium ion binding

GATAD2B 2 PTVs 2 Dmis 11 PTVs − 0.65
(16.92%)

1.00 (6.34%) Chromatin remodeling

LLGL1 2 Dmis 2 Dmis, 2 PTV 1 Dmis − 1.70 (2.94%) 0.98 (12.10%) Axon development

SLC2A1 2 Dmis 1 Dmis 4 PTVs, 1 Dmis − 0.92
(10.49%)

0.94 (15.56%) Brain development

KDM5C 2 Dmis - 3 PTVs, 2 Dmis − 2.71 (0.88%) 1.00 (7.02%) Chromatin organization

PTVs, protein-truncating variants, including frameshift, splicing, stop-gain, and stop-loss; Dmis, deleterious missense variants with ReVe score > 0.7
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variant (p.C517Y). A previous study has described an ASD
patient from Maghreb carrying a rare inherited missense
variant (p.D863E) in PLXNA3 [48], suggesting that it may
contribute to autism.

Prioritization of Candidate Genes

Previous studies have demonstrated that both DNVs and rare
inherited variants (RIVs) contribute significantly to NDDs
[49–54]. Therefore, we integrated data on DNVs and RIVs
and employed TADA [38] to prioritize candidate genes in
NDDs (Table S6). Based on DNVs and RIVs identified in
our study, we prioritized 17 candidate genes (SCN2A,
KCNQ2, SATB2, SHANK3, GATAD2B, NRXN1, MED13L,
SYNGAP1, BRAF, MECP2, GRIN2B, TCF20, CTNNB1,
ASH1L, ADNP, BCL11A, and LLGL1) with FDR values <
0.1 (Table S7). To increase the power of candidate gene de-
tection [17, 22, 43, 55–57], we integrated data from public
datasets of NDD cohorts (N = 16,807) with that of controls
(N = 3391) from the Gene4Denovo [39] database (Table S8),

and prioritized 208 candidate genes with FDR values < 0.1, in
which 193 candidate genes reached an FDR < 0.05
(Table S9). Together with the six genes characterized by
inherited X-linked hemizygous variants, in total, we priori-
tized 212 NDD candidate genes, with 17 genes defined as
novel candidate genes (including 13 genes with FDR values
< 0.05, three genes with 0.05 ≤ FDR < 0.1 (Table 2), and one
gene with an inherited X-linked hemizygous variant). We ob-
served that the 212 candidate genes prioritized in our study
exhibited significantly lower percentile pLI scores (p < 2.20 ×
10−16, two-tailedWilcoxon rank-sum test) and RVIS (p < 2.20
× 10−16, two-tailed Wilcoxon rank-sum test; Fig. S2b), con-
sistent with the result regarding genes with multiple DNVs. A
similar result was observed among the 17 novel candidate
genes (p = 0.0394 and p = 1.74 × 10−4; two-tailed Wilcoxon
rank-sum test; Fig. S2c), suggesting that these novel NDD
candidate genes were likely to be intolerant of functional
variants.

In addition, we found that DNVs and inherited X-linked
hemizygous variants in 212 candidate genes were identified

547 target

genes

1,102 Chinese NDD

probands

Targeted sequencing

Raw data

Variations (VCF)

BWA & GATK

Predicted functional

variants (PTVs and Dmis)

ANNOVAR

935 probands with parents

167 probands without parents

Validated variants (DNVs, 

rare inherited variants or 

state unknown)

Sanger sequencing 

(proband and parents)

BWA , GATK &

ANNOVAR

PTVs of 3,582 Chinese 

controls 

TADA model

DNVs of 16,807 NDD 

probands and 3,391

controls from 

Gene4Denovo

NDD: neurodevelopmental disorder

DNV: de novo variant

PTVs: protein-truncating variants

Dmis : deleterious missense variants

with ReVe score > 0.7

Functional variants: PTVs and Dmis

FDR < 0.1

208 candidate genes

Validated functional 

hemizygous variants

6 candidate genes

Manual 

selection

merge & unique

212  candidate genes

Filter: known candidate genes

17 novel candidate genes

STRING

BrainSpan

Protein-protein interaction, 

co-expression analysis and 

functional network analysis

The novel candidate genes are significantly

interacted with known risk genes.

The novel candidate genes are significantly

co-expressed with known risk genes.

The novel candidate genes are significantly 

enriched NDD-associated pathways as 

similar as the known risk genes.

3,582 Chinese 

controls (1,113 WES 

+ 2,469 WGS)

Fig. 1 Study workflow. This
study consisted of four parts: (1)
sample collection; (2) identifica-
tion and validation of variants; (3)
prioritization of candidate genes;
(4) functional network analysis of
novel and known candidate
genes. PTVs, protein-truncating
variants; Dmis, deleterious mis-
sense variants
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in ~ 10.59% (99/935) and ~ 0.94% (7/745) of patients in our
study, respectively (Table 3). DNVs and inherited X-linked
hemizygous variants in known candidate genes accounted
for ~ 10.05% (94/935) and ~ 0.81% (6/745) of patients,
whereas in novel candidate genes, these variants accounted
for ~ 0.53% (5/935) and ~ 0.13% (1/745) of patients, re-
spectively. Inherited or state unknown variants in all can-
didate genes were detected in ~ 35.75% (394/1102) of all
patients (Table 3).

Functional Characteristics of Prioritized Candidate
Genes

We next employed MetaScape [58] to perform functional en-
richment analysis. As expected, these candidate genes were
significantly enriched in NDD-associated pathways, such as
synapse organization, covalent chromatin modification, head
development, behavior, and regulation of ion transport [17,
59–63] (Fig. S3). Interestingly, the novel candidate genes

Table 2 Novel candidate genes prioritized by TADA analysis

Gene
symbol

DNVs
(n = 935)

Inherited or state
unknown
(n = 1102)

DNVs from
Gene4Denovo
(n = 16,807)

FDR RVIS
(percentile)

pLI
(percentile)

Gene summary

SMAD6 - 1 Dmis 3 PTVs, 1 Dmis 4.83E−04 - 6.97E−06 (78.89%) Developmental and cellular process

SPG7 - 3 PTVs, 3 Dmis 5 Dmis 8.89E−04 − 0.91 (10.60%) 1.38E−18 (98.28%) Anterograde axonal transport

MSL2 2 PTVs 1 Dmis 1 PTV 9.62E−04 − 0.72 (15.01%) 0.90 (18.20%) Chromatin organization

CYP27C1 - 2 PTVs, 3 Dmis 1 PTV, 3 Dmis 1.39E−03 − 0.89 (11.06%) 1.85E−04 (70.01%) Retinal metabolic process; retinol
metabolic process

ITSN1 - 2 Dmis 3 PTVs, 2 Dmis 1.89E−03 − 2.89 (0.76%) 1.00 (0.87%) Regulation of modification of
postsynaptic actin cytoskeleton

PSD3 - 1 PTV, 2 Dmis 3 PTVs, 1 Dmis 2.11E−03 0.09 (56.40%) 0.85 (19.80%) Nervous system development

POLR3A 1 Dmis 5 Dmis 2 PTVs, 1 Dmis 2.99E−03 − 2.26 (1.40%) 7.39E−14 (96.18%) Nervous system development

UBR3 - - 3 PTVs 5.41E−03 - 1.00 (5.02%) Chromatin organization; nervous
system development

GALNT18 - 2 Dmis 2 PTVs, 1 Dmis 7.34E−03 − 1.07 (8.11%) 4.77E−02 (47.21%) Metabolism of proteins

DCX - - 2 PTVs, 1 Dmis 7.43E−03 − 0.67 (16.20%) 0.86 (19.34%) Axoneme assembly

LRRC4 - - 1 PTV, 2 Dmis 2.56E−02 − 0.84 (11.90%) 0.88 (18.68%) Nervous system development

SPAG9 1 PTV 3 Dmis 1 PTV 3.15E−02 − 1.20 (6.59%) 1.00 (1.67%) Spinocerebellar ataxia 35

ST3GAL6 - - 2 PTVs 3.23E−02 0.07 (55.10%) 1.06E−03 (64.45%) Pre-NOTCH Expression and
processing

YTHDC1 - - 2 PTVs 8.48E−02 − 0.61 (18.16%) 1.00 (1.0864%) Chromatin regulation/acetylation

RRAGC - 1 Dmis 2 Dmis 9.00E−02 − 0.25 (34.05%) 0.602 (27.41%) Regulation of TORC1 signaling

DNAH17 1 Dmis 3 PTVs, 16 Dmis 1 PTV, 3 Dmis 9.58E−02 - - Developmental process

PTVs, protein-truncating variants, including frameshift, splicing, stop-gain, and stop-loss; Dmis: deleterious missense variants with ReVe score > 0.7

Table 3 The contribution of prioritized candidate genes to our Chinese probands

Class Known candidate genes (n = 195) Novel candidate genes (n = 17)

FDRTADA_combined < 0.05 (n = 193) 180 13 genes: MSL2, SPAG9, POLR3A,
CYP27C1, DCX, GALNT18, ITSN1,
LRRC4, PSD3, SMAD6, SPG7,
ST3GAL6, UBR3

0.05 ≤ FDRTADA_combined < 0.1 (n = 15) 12 3 genes: DNAH17, RRAGC, YTHDC1

Genes with X-linked hemizygous (n = 6) 5 1 gene: PLXNA3

Chinese probands with DNVs (n = 935) 94 (10.05%) 5 (0.53%) Subtotal: 99 (10.59%)

Chinese probands with X-linked hemizygous variants (n = 745) 6 (0.81%) 1 (0.13%) Subtotal: 7 (0.94%)

Chinese probands with inherited or state unknown variants (n = 1102) 345 (31.31%) 49 (4.45%) Subtotal: 394 (35.75%)

PTCHD1 and ARHGEF9 were in two groups, including FDRTADA_combined < 0.05 and genes with X-linked hemizygous
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were also involved in similar biological pathways. For exam-
ple,MSL2was implicated in covalent chromatin modification,
LRRC4 was involved in chemical synaptic transmission, and
PLXNA3 was associated with head development and
axonogenesis.

We also performed functional cell-specific enrichment
analyses [64, 65] to investigate whether candidate genes were
associated with specific tissues or cells. By analyzing the
mouse transcriptomic profiling datasets of different develop-
mental stages and brain regions, we found that the 212 NDD
candidate genes tended to be enriched in the cortex and stria-
tum during the middle fetal stage (Fig. S4a). In the cell-
specific enrichment analyses, we observed a highly significant
enrichment in Drd1 + and Drd2 + spiny neurons of
neostriatum and rods (Fig. S4b), similar to data reported in a
previous study [21]. These results suggest that the 212 NDD
candidate genes are functionally associated with the etiology
of NDDs.

Functional Network Analysis Between Known and
Novel Candidate Genes

To investigate correlations between novel and known candi-
date genes, we performed a permutation test to estimate the
relationship between these genes based on co-expression gene
pairs identified from the BrainSpan atlas. We found that 15 of
the 17 novel candidate genes (p = 2.35 × 10−3, permutation
test, Fig. S5a) were co-expressed with 285 known candidate
genes (p = 3.72 × 10−4, permutation test, Fig. S5b), with 523
connections between them (p = 8.80 × 10−5, permutation test,
Fig. S5c), suggesting that the novel candidate genes are sig-
nificantly co-expressed with the known candidate genes and
are more likely to be related to the pathology of NDDs.

To further investigate the functional relationship between
novel and known candidate genes, we constructed a functional
network by integrating PPI data from IntAct and brain expres-
sion data from BrainSpan. Only known candidate genes di-
rectly interacting/co-expressed with at least two novel candi-
date genes were added to the network. The co-expressed/PPI
network encompassed 159 genes, including 11 novel candi-
date genes and 148 known candidate genes (Fig. 2). These
genes were enriched in several biological processes known
to be related to NDDs, such as covalent chromatin modifica-
tion (GO:0016569, p = 2.35 × 10−12, Fisher’s exact test),
chemical synaptic transmission (GO:00072686, p = 7.31 ×
10−12, Fisher’s exact test), and brain development
(GO:0007420, p = 1.23 × 10−7, Fisher’s exact test).
Furthermore, these genes showed a significant enrichment of
previously reported gene sets: FMRP targets [66] (p < 2.22 ×
10−16, Fisher’s exact test), and genes essential in mice [67] (p
< 2.22 × 10−16, Fisher’s exact test). It is worth noting that six
novel candidate genes (UBR3, PLXNA3, ITSN1, MSL2,
LRRC4, and SPAG9) were significantly involved in functional

clusters known to be associated with NDDs. For example,
MSL2, UBR3, SPAG9, and PLXNA3 are involved in chroma-
tin organization, while ITSN1, SPAG9, and PLXNA3 have
been implicated in nervous system development. In addition,
we found that nine novel candidate genes showed co-expres-
sion/interaction with more than two known candidate genes
(Fig. S6). For example, POLR3A, which was the most fre-
quently connected novel gene, was co-expressed/interacted
with 99 known candidate genes. Other genes (LRRC4,
ITSN1, UBR3, PLXNA3, MSL2, SPAG9, PSD3, and
YTHDC1) were connected with more than five candidate
genes. These results suggest that novel candidate genes are
functionally associated with known risk genes and that these
11 novel candidate genes may have a stronger influence in the
etiology of NDDs.

Discussion

Previous studies have provided evidences that targeted se-
quencing and integrative analyses play a critical role in the
discovery of novel candidate genes [21–24]. Based on
targeted sequencing of 547 target genes, we identified 108
DNVs, accounting for ~ 10.91% (102/935) of our Chinese
cohort. Among the genes with DNVs in our study, most genes
have been reported to be associated with NDDs in previous
studies, suggesting that genes identified in our Chinese cohort
are relevant in other populations. Among the 108 DNVs, 60
DNVs were not recorded in public databases (including
dbSNP, gnomAD, Gene4Denovo [39], and PubMed), consis-
tent with the findings of Georgi et al., who reported that re-
currently mutated amino acid sites in genes are rarely detected
[68]. These results highlight the role of DNVs in the genetic
heterogeneity of NDDs. In addition, we identified 21 genes
with multiple DNVs present in 51 Chinese patients, and our
analyses suggest that these genes display significant intoler-
ance to damaging variants. Consistent with previous ASD
study [19], SCN2A is the most frequent gene with multiple
DNVs in the Chinese population. Compared with the known
candidate genes, 20 of 21 genes with multiple DNVs were
classified as known candidate genes. Notably, this study is
the first to report TCF20 (with its three de novo PTVs) as a
candidate NDD gene in a Chinese cohort.

By integrating information regarding DNVs from public
datasets with our results, we prioritized 212 candidate genes,
confirming that combing public NDD datasets is beneficial for
the discovery of candidate genes [22–24]. Consistent with our
analyses of genes with multiple DNVs, the 212 identified
candidate genes were more intolerant of damaging variants.
In addition, we demonstrated that the 212 candidate genes are
closely associated with the etiology of NDDs from the per-
spective of biological pathway and functional cell-specific
enrichment analyses. These results suggest that most of the
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212 candidate genes identified in our study truly contribute to
NDDs and they are worth validating in genetic functional
studies or replicating in cohorts.

In this study, we prioritized 17 novel candidate genes and
revealed similar functional characteristics between these novel
candidate genes and other known candidate genes. Through
functional network analysis, we observed that novel candidate
genes frequently interacted/were co-expressed with known
candidate genes, and genes in the network were enriched in
NDD-associated clusters, as described in previous studies [4,
17, 23, 69, 70]. Interestingly, six novel candidate genes were
closely connected with known candidate genes and were in-
volved in NDD-associated clusters, suggesting that these nov-
el candidate genes are more likely to be associated with
NDDs. For example, ITSN1 (with an FDR value < 0.01 in
the TADA analysis) was involved in nervous system devel-
opment and synapse organization and connected with 64
known candidate genes. Jakob et al. reported that loss of the
signaling scaffold intersectin 1 (ITSN1) in mice led to defec-
tive neuronal migration and ablates Reelin stimulation of hip-
pocampal long-term potentiation [71]. Our analyses revealed
that SPAG9 carried a de novo PTV in our cohort and it is
reportedly overexpressed in human astrocytoma which arises
from neural progenitor cells in the central nervous system
[72]. We also found that SPAG9 was implicated in chromatin
organization and co-expressed/interacted with eight known
candidate genes, further supporting a role for this gene in
NDDs. Among the novel candidate genes, MSL2 was a

particularly interesting gene that carried two de novo PTVs
in our Chinese cohort. Except for the multiple DNVs inMSL2,
it was the gene that frequently co-expressed/interacted with
known candidate genes and was involved in the functional
cluster of chromatin organization. Iossifov et al. reported a
de novo MSL2 PTV in a patient with autism [69], further
suggesting that MSL2 may be strongly linked to NDDs. We
expect to have a large cohort study or functional experiments
to validate this possibility in future studies.

Despite our best efforts to comprehensively integrate pub-
lic data with our cohort data to discover novel risk genes, our
study was still bound by some limitations. First, while we
discovered that novel candidate genes identified in our study
are functionally associated with known candidate genes at
multiple levels, these novel candidate genes lack strong evi-
dences that support their roles in NDDs. We expect that these
novel candidate genes could be validated in larger cohorts or
through functional genetic experiments. Second, the sample
size of our Chinese cohort is not large enough, and future
studies need to recruit more volunteers to improve the statis-
tical power and allow for comparisons with variant patterns of
other populations. Third, since NDDs are characterized by
high clinical and genetic heterogeneity, and multiple risk fac-
tors contribute to the etiology of these disorders, candidate
gene analyses can only partially elucidate the processes un-
derlying NDDs. Further studies are needed to integrate the
impact of distinct influences such as epigenetic, environmen-
tal, and genetic factors.
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In summary, our study demonstrates that integrating DNVs
from multiple NDD-related studies can help in the identifica-
tion of risk genes. We highlight that the pattern of DNVs in
Chinese cohorts is relevant to other populations. Furthermore,
we provide evidence at multiple levels that novel candidate
genes are functionally associated with known candidate
genes. Finally, our study describes new high-confidence risk
genes that should aid the study of the NDD etiology and we
expect that these genes will be worth analyzing in large co-
horts or being validated in genetic functional experiments.

Abbreviations ASD, Autism spectrum disorder; Dmis, Deleterious mis-
sense variant; DNV, De novo variant; FDR, False discovery rate; NDD,
Neurodevelopmental disorder; PPI, Protein-protein interaction; PTV,
Protein-truncating variant; RIV, Rare inherited variant; WES, Whole-ex-
ome sequencing; WGS, Whole-genome sequencing
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