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Abstract

Risk models have historically displayed only moderate predictive performance in estimating

mortality risk in left ventricular assist device therapy. This study evaluated whether machine

learning can improve risk prediction for left ventricular assist devices. Primary durable left

ventricular assist devices reported in the Interagency Registry for Mechanically Assisted Cir-

culatory Support between March 1, 2006 and December 31, 2016 were included. The study

cohort was randomly divided 3:1 into training and testing sets. Logistic regression and

machine learning models (extreme gradient boosting) were created in the training set for 90-

day and 1-year mortality and their performance was evaluated after bootstrapping with 1000

replications in the testing set. Differences in model performance were also evaluated in

cases of concordance versus discordance in predicted risk between logistic regression and

extreme gradient boosting as defined by equal size patient tertiles. A total of 16,120 patients

were included. Calibration metrics were comparable between logistic regression and

extreme gradient boosting. C-index was improved with extreme gradient boosting (90-day:

0.707 [0.683–0.730] versus 0.740 [0.717–0.762] and 1-year: 0.691 [0.673–0.710] versus

0.714 [0.695–0.734]; each p<0.001). Net reclassification index analysis similarly demon-

strated an improvement of 48.8% and 36.9% for 90-day and 1-year mortality, respectively,

with extreme gradient boosting (each p<0.001). Concordance in predicted risk between

logistic regression and extreme gradient boosting resulted in substantially improved c-index

for both logistic regression and extreme gradient boosting (90-day logistic regression 0.536

versus 0.752, 1-year logistic regression 0.555 versus 0.726, 90-day extreme gradient boost-

ing 0.623 versus 0.772, 1-year extreme gradient boosting 0.613 versus 0.742, each

p<0.001). These results demonstrate that machine learning can improve risk model perfor-

mance for durable left ventricular assist devices, both independently and as an adjunct to

logistic regression.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0247866 March 10, 2021 1 / 12

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Kilic A, Dochtermann D, Padman R, Miller

JK, Dubrawski A (2021) Using machine learning to

improve risk prediction in durable left ventricular

assist devices. PLoS ONE 16(3): e0247866. https://

doi.org/10.1371/journal.pone.0247866

Editor: Vakhtang Tchantchaleishvili, Thomas

Jefferson University, UNITED STATES

Received: October 7, 2020

Accepted: February 15, 2021

Published: March 10, 2021

Copyright: © 2021 Kilic et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: There are restrictions

on accessing the data used in our study as we had

obtained the database from the NHLBI BioLINCC

mechanism as stated in our paper. Access to our

data set must be obtained via formal application

and approval from the NHLBI BioLINCC data

request process, as we cannot simply share the

dataset. There are no ethical restrictions, however

the legal restriction is that the data is owned by a

third-party organization. The NHLBI BioLINCC

program can be accessed at https://biolincc.nhlbi.

nih.gov/home/.

https://orcid.org/0000-0001-8112-8345
https://orcid.org/0000-0001-9513-5124
https://orcid.org/0000-0002-2372-0831
https://doi.org/10.1371/journal.pone.0247866
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0247866&domain=pdf&date_stamp=2021-03-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0247866&domain=pdf&date_stamp=2021-03-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0247866&domain=pdf&date_stamp=2021-03-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0247866&domain=pdf&date_stamp=2021-03-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0247866&domain=pdf&date_stamp=2021-03-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0247866&domain=pdf&date_stamp=2021-03-10
https://doi.org/10.1371/journal.pone.0247866
https://doi.org/10.1371/journal.pone.0247866
http://creativecommons.org/licenses/by/4.0/
https://biolincc.nhlbi.nih.gov/home/
https://biolincc.nhlbi.nih.gov/home/


Introduction

Recent studies have demonstrated an increasing number of durable left ventricular assist

devices (LVADs) being implanted in the United States with improving outcomes [1–3].

Despite these trends, there remains no widely utilized risk stratification tool for LVAD ther-

apy. A prior analysis evaluating the predictive performance of the HeartMate II Risk Score, the

Model for End-Stage Liver Disease, and the Destination Therapy Risk Score in estimating

90-day mortality risk after durable LVAD implantation demonstrated area under receiver-

operating-characteristic curves (AUROC) or c-indices of only 0.59–0.64 in validation cohorts,

for example [4]. Machine learning (ML) has been shown to improve risk prediction in cardiac

surgery and its use in LVAD therapy remains largely unexplored [5, 6]. The aim of this study

was to evaluate whether ML can improve risk prediction in patients undergoing LVAD

implantation.

Materials and methods

Data source

The data source for this study was the Interagency Registry for Mechanically Assisted Circula-

tory Support (INTERMACS). INTERMACS is a North American registry of adults who have

been implanted with a mechanical circulatory support device for advanced heart failure that

has been approved by the Federal Drug Administration. The registry was obtained via the

National Heart, Lung, and Blood Institute Biologic Specimen and Data Repository Informa-

tion Coordinating Center (NHLBI BioLINCC). INTERMACS continues to collect and analyze

data through the Society of Thoracic Surgeons but at the time of the data being locked and pro-

vided to BioLINCC, there were 170 active centers in the United States and Canada reporting

to the registry. The current study was approved by the institutional review board at the Univer-

sity of Pittsburgh. The data were fully anonymized before accessing them and the requirement

for informed consent was waived.

Study population

Adults aged 19 years or older undergoing primary durable LVAD implantation in the INTER-

MACS database were included. The study period extended from March 1, 2006 to December

31, 2016, with follow-up data available through December 31, 2017. Patients undergoing con-

comitant valve procedures, coronary revascularization, or right ventricular assist device

(RVAD) insertion were also included. Pediatric patients were excluded from analysis as were

patients undergoing pump exchange.

Primary outcomes and variables

The primary outcomes for which risk models were developed included 90-day and 1-year

overall mortality. Data included demographics, comorbidities, laboratory parameters, clinic

visit measurements, interval events during hospitalization prior to LVAD insertion, and con-

comitant operative procedures. Post-LVAD data collected in INTERMACS includes adverse

events and survival. Clinic visits are scheduled at 1 week, 1 month, 3 months, 6 months, and

every 6 months thereafter following implantation.

Development of risk models

Only patients with adequate follow-up were included in the analyses. INTERMACS stops col-

lecting data once a patient is transplanted and therefore those patients bridged to transplanta-

tion were excluded if they were transplanted before 90-days or 1-year in those respective
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models. Patients who were alive but did not have follow-up to 90-days or 1-year were similarly

excluded due to inadequate follow-up. All causes of mortality were included in the mortality

analysis. The study cohort was randomly divided in a 3:1 fashion into training and testing sets.

For both modeling approaches, only pre-implant variables were considered. Those variables

with>10% missing data were excluded.

Logistic regression models

For the logistic regression (LR) models, univariable LR analysis was conducted to evaluate the

association between each individual variable and the outcome of either 90-day or 1-year mor-

tality in the training set. Continuous variables were modeled in a continuous fashion without

categorization. Those variables associated with the outcome in univariable analysis with an

exploratory p-value less than 0.05 as well as those variables with biologic plausibility were

entered into the multivariable LR model in a forwards and backwards stepwise fashion. The

year of implantation was included in the models to account for temporal changes.

Machine learning models

For the machine learning (ML) models, the algorithm that was utilized was extreme gradient

boosting, or XGBoost. This is an ensemble ML algorithm that iteratively builds stronger mod-

els using a collection of short decision trees. Similar to the LR models, only preoperative vari-

ables were considered for inclusion in the ML models. The year of implantation was included

in the ML models as well to account for temporal changes. The algorithm identifies optimal

split-points in continuous variables to maximize information gain. Non-binary categorical

data were one-hot-encoded ensuring no linear dependencies between columns. Tuning of

hyperparameters was performed in the training set as part of the model derivation process.

Optimal hyperparameters were selected based on those associated with optimal model perfor-

mance. Permutations of the following parameters were iteratively evaluated for the ML mod-

els: learning rate (0.01, 0.1, 0.5, or 1.0), maximum depth of each tree (1, 2, 3, 5, or 10), number

of trees (100, 200, 400, 800, or 1600), alpha (0, 1, 3, 5, or 7) and lambda (0, 1, 3, 5, or 7).

Model performance

Bootstrapping was performed with 1000 replications. This translated to performing the ran-

dom 3:1 split for training and testing sets 1000 times to obtain average model metrics. Calibra-

tion of the models were compared using standardized measures [7]. This included visual

calibration plots, observed-to-expected ratios based on decile of risk, calibration-in-the-large

or y-intercept of the calibration plot (optimal value of 0), and slope of calibration curve (opti-

mal value of 1). The discriminatory power of the models was measured using the AUROC, or

c-index. Average c-indices across the 1000 bootstrap replications were then compared between

the LR and ML models for both 90-day and 1-year mortality. This average was derived from

the 1000 individual AUROCs obtained for each of the 1000 testing sets generated in the boot-

strapping process. The net reclassification index (NRI) was also assessed to evaluate the per-

centage improvement in identifying both positive and negative cases with the ML models as

compared to LR [8].

Concordance analysis

For the concordance analysis, patients were divided into equal size tertiles based on predicted

risk of 90-day or 1-year mortality using the LR models. This was used to categorize patients as

low, intermediate, or high risk for 90-day or 1-year mortality. The predicted risk of these
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outcomes at the individual patient level was then assessed with the ML models, and concor-

dance between LR and ML models was defined as agreement in predicted risk according to the

risk thresholds for the low, intermediate, or high risk groups. In other words, concordance

occurred when both LR and ML models categorized risk of 90-day or 1-year mortality as low,

intermediate, or high. When LR assigned a different level of risk category as compared to ML,

the models were defined as discordant. The above calibration and predictive metrics of the

models were compared between concordant and discordant cohorts. All statistical analyses in

this study were performed using STATA version 14 software (StataCorp, College Station,

Texas) and Python programming software.

Results

Baseline characteristics of the study cohort

A total of 16,120 patients underwent durable primary LVAD implantation during the study

period and met inclusion criteria for the study. Mean age was 57 years and the majority were

males (Table 1). Non-ischemic and ischemic cardiomyopathy were the most common etiolo-

gies of heart failure and were present in roughly the same proportion. Most patients were

INTERMACS profile 2 or 3, with 17.8% being INTERMACS profile 1. Comorbidities included

chronic kidney disease (16.4%), atrial arrhythmias (14.8%), severe diabetes mellitus (7.1%),

pulmonary disease (6.7%), peripheral arterial disease (3.6%), and prior stroke (2.7%). Internal

cardioverter defibrillators were in place in the majority at the time of LVAD implantation

(78.4%). Destination therapy versus bridge or likely bridge to transplant represented roughly

equal portions of the study cohort (Table 1). Most patients were supported on intravenous

inotropes in the 48 hours prior to LVAD surgery (81.7%), with 22.7% bridged with an intra-

aortic balloon pump. The most frequent concomitant procedures included tricuspid valve

repair (13.9%) and atrial septal defect or patent foramen ovale closure (7.3%).

Model performance

90-day mortality occurred in 13.3% (n = 2,144) and 1-year mortality in 23.1% (n = 3,718). For

both 90-day and 1-year mortality, the LR and ML models were well calibrated with metrics

close to optimal values (Table 2 and Fig 1A–1D). A comparison of average AUROC demon-

strated improvements with ML as compared to LR for 90-day mortality (0.707 versus 0.740,

p<0.001) as well as 1-year mortality (0.691 versus 0.714, p<0.001) (Table 3 and Fig 2A and

2B). NRI analysis also demonstrated significant improvements in predictive capability with

ML. Moreover, there was an improvement of 48.8% (p<0.001) in 90-day mortality prediction

and 36.9% (p<0.001) improvement in 1-year mortality prediction with ML in NRI analysis.

There was some degree of variation across the bootstrap replications in features that were

most important in the ML models. Risk factors that were commonly most important in the

90-day mortality ML model included number of significant interventions during the current

hospitalization prior to LVAD surgery, INTERMACS profile, concomitant right ventricular

assist device, absence of any concomitant procedures, and pre-LVAD dialysis. Features that

were commonly important in the 1-year ML mortality model included age, creatinine, albu-

min, weight, height, prior cardiac operation, and pre-implant dialysis.

Concordance analysis

For 90-day mortality, most patients (66.6%; n = 2,683) in the testing cohort had concordant

estimated risk between LR and ML. Calibration metrics for the LR 90-day mortality model

were improved when ML provided concordant prediction, particularly with regards to slope of
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Table 1. Baseline characteristics of patients undergoing left ventricular assist device implantation in the study

cohort.

Study Cohort (n = 16,120)

Age (years) 57.0 ± 13.1

Female 3,512 (21.8%)

Caucasian Race 10,786 (66.9%)

Body Mass Index (kg/m2) 28.9 ± 7.3

Blood Type

O 7,855 (49.4%)

A 5,607 (35.3%)

B 1,939 (12.2%)

AB 501 (3.2%)

Severe Diabetes Mellitus 1,136 (7.1%)

Pulmonary Disease 1,078 (6.7%)

Chronic Kidney Disease 2,637 (16.4%)

Peripheral Arterial Disease 572 (3.6%)

Prior Stroke 440 (2.7%)

Current Smoker 614 (3.8%)

Provider-Assessed Frailty 796 (4.9%)

Atrial Arrhythmia 2,384 (14.8%)

Liver Dysfunction 482 (3.0%)

History of Alcohol Abuse 886 (5.5%)

History of Drug Use 844 (5.2%)

History of Malignancy 624 (3.9%)

Pulmonary Hypertension 2,566 (15.9%)

Severe Depression 318 (2.0%)

Prior CABG 3,590 (22.3%)

Prior Valve Surgery 1,283 (8.0%)

Internal Cardioverter Defibrillator 12,635 (78.4%)

Device Strategy

Bridge to Recovery 122 (0.8%)

BTT (already listed) 3,532 (21.9%)

BTT (listing likely) 2,733 (17.0%)

BTT (listing moderately likely) 1,573 (9.8%)

BTT (listing unlikely) 526 (3.3%)

Destination Therapy 7,543 (46.8%)

Other 91 (0.6%)

Events in the 48 Hours Prior to

LVAD Implant

Dialysis 322 (2.0%)

Mechanical Ventilation 1,262 (7.8%)

Intra-Aortic Balloon Pump 3,665 (22.7%)

ECMO 531 (3.3%)

Intravenous Inotropes 13,168 (81.7%)

Etiology of Heart Failure

Non-ischemic Cardiomyopathy 7,632 (47.8%)

Ischemic Cardiomyopathy 7,460 (46.7%)

Post-Partum Cardiomyopathy 265 (1.7%)

Valvular Heart Disease 197 (1.2%)

(Continued)
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the calibration curve (Table 4). There were minimal differences in calibration metrics for the

ML 90-day mortality model in cases of discordance versus concordance with LR. Similar

trends were observed with the 1-year mortality models (Table 4).

Table 1. (Continued)

Study Cohort (n = 16,120)

Hypertrophic Cardiomyopathy 111 (0.7%)

Restrictive Cardiomyopathy 208 (1.3%)

Congenital Heart Disease 94 (0.6%)

INTERMACS Profile

1 2,872 (17.8%)

2 5,734 (35.6%)

3 4,940 (30.7%)

4 2,024 (12,6%)

5 334 (2,1%)

6 139 (0.9%)

7 77 (0.5%)

Serum Creatinine (mg/dL) 1.25 ± 0.5

Serum Sodium (mmol/L) 134.6 ± 8.3

INR 1.22 ± 0.64

Serum Albumin (g/dL) 3.08 ± 1.14

NYHA Class IV 12,429 (77.1%)

Concomitant Procedures

ASD/PFO Closure 1,179 (7.3%)

Aortic Valve Repair 248 (1.5%)

Aortic Valve Replacement 369 (2.3%)

Mitral Valve Repair 516 (3.2%)

Mitral Valve Replacement 66 (0.4%)

Tricuspid Valve Repair 2,246 (13.9%)

Tricuspid Valve Replacement 145 (0.9%)

Coronary Artery Bypass Grafting 271 (1.7%)

Abbreviations: ASD, atrial septal defect; BTT, bridge to transplantation; CABG, coronary artery bypass grafting;

ECMO, extracorporeal membrane oxygenation; INR, international normalized ratio; INTERMACS, Interagency

Registry for Mechanically Assisted Circulatory Support; LVAD, left ventricular assist device; NYHA, New York Heart

Association; PFO, patent foramen ovale.

https://doi.org/10.1371/journal.pone.0247866.t001

Table 2. Calibration metrics of the logistic regression and machine learning models for 90-day and 1-year mortal-

ity in the testing cohorts.

90-Day Mortality Logistic Regression Machine Learning

Observed-to-Expected Ratio 0.950 0.966

Calibration-in-the-Large -0.067 -0.043

Slope of Calibration Curve 0.846 1.288

1-Year Mortality Logistic Regression Machine Learning

Observed-to-Expected Ratio 1.065 1.074

Calibration-in-the-Large 0.091 0.101

Slope of Calibration Curve 0.930 1.248

https://doi.org/10.1371/journal.pone.0247866.t002
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Substantial differences in AUROC were demonstrated in cases of concordance versus dis-

cordance across all models (Table 5). Moreover, 90-day mortality AUROC increased from

0.536 to 0.752 for the LR model in cases of discordance versus concordance with ML, respec-

tively (p<0.001). The LR 1-year mortality AUROC similarly increased from 0.555 to 0.726

with concordance with ML (p<0.001). The ML 90-day mortality AUROC improved from

0.623 to 0.772 when concordant with LR predicted risk (p<0.001). Similarly, 1-year ML

Fig 1. Calibration plots for (A) logistic regression model for 90-day mortality, (B) machine learning model for 90-day mortality, (C) logistic regression model for 1-year

mortality, and (D) machine learning model for 1-year mortality.

https://doi.org/10.1371/journal.pone.0247866.g001

Table 3. Area under receiver-operating-characteristic curve of the logistic regression and machine learning mod-

els for 90-day and 1-year mortality in the testing cohorts.

90-Day Mortality Logistic Regression Machine Learning P-value

AUROC 0.707 (0.683–0.730) 0.740 (0.717–0.762) <0.001

1-Year Mortality Logistic Regression Machine Learning

AUROC 0.691 (0.673–0.710) 0.714 (0.695–0.734) <0.001

https://doi.org/10.1371/journal.pone.0247866.t003
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mortality AUROC improved from 0.613 to 0.742 in cases of concordance (p<0.001). When

comparing the AUROC of the concordant cases to overall AUROC for the entire cohort, the

improvements in performance were again noted to be significant across the comparisons

(each p<0.001 for both LR and ML for both 90-day and 1-year mortality).

The observed rates of 90-day mortality in the validation cohort fell within the range of pre-

dicted risk in cases of concordance between LR and ML, from 3.4% in low risk to 9.7% in

intermediate risk to 27.5% 90-day mortality in high risk (Table 6). In the other 6 permutations

Fig 2. Comparison of area under receiver operating characteristic curves for (A) 90-day mortality and (B) 1-year mortality between the logistic regression and machine

learning models.

https://doi.org/10.1371/journal.pone.0247866.g002

Table 4. Comparison of calibration metrics in the testing cohorts in cases of concordant versus discordant risk

prediction between logistic regression and machine learning approaches.

LOGISTIC REGRESSION

90-Day Mortality Discordant (33.4%; n = 1,347) Concordant(66.6%; n = 2,683)

Observed-to-Expected Ratio 0.918 0.962

Calibration-in-the-Large -0.099 -0.053

Slope of Calibration Curve 0.165 0.925

1-Year Mortality Discordant (28.2%; n = 1,137) Concordant (71.8%; n = 2,893)

Observed-to-Expected Ratio 1.042 1.072

Calibration-in-the-Large 0.054 0.106

Slope of Calibration Curve 0.386 0.990

MACHINE LEARNING

90-Day Mortality Discordant (33.4%; n = 1,347) Concordant (66.6%; n = 2,683)

Observed-to-Expected Ratio 0.844 1.017

Calibration-in-the-Large -0.194 0.021

Slope of Calibration Curve 0.990 1.304

1-Year Mortality Discordant (28.2%; n = 1,137) Concordant (71.8%; n = 2,893)

Observed-to-Expected Ratio 1.014 1.094

Calibration-in-the-Large 0.019 0.132

Slope of Calibration Curve 1.060 1.262

https://doi.org/10.1371/journal.pone.0247866.t004
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of discordant risk prediction, the observed rates of 90-day mortality were within the range of

predicted risk by ML but not within the range of predicted risk by the LR model (Table 6).

Similarly, observed rates of 1-year mortality in the validation set fell within the range of pre-

dicted risk in cases of concordance between LR and ML, ranging from 9.5% in low risk to

20.9% in intermediate risk to 43.8% in high risk cases (Table 7). Unlike 90-day mortality, there

was a mix of discordant permutations where observed rates of 1-year mortality fell within

range of the LR prediction and others that fell within the range of ML prediction (Table 7).

Discussion

This study demonstrates the potential utility of employing ML approaches to risk prediction in

LVAD therapy. While both LR and ML models were well-calibrated, ML was associated with a

statistically significant improvement in discriminatory performance for both 90-day and

1-year mortality. These trends are similar to what has been observed in analyses of general

adult cardiac surgical procedures where ML has been associated with improved predictive

capability in risk modeling [5, 9, 10]. The implications of the current study are important as

risk modeling plays a critical role in determining LVAD surgical candidacy, selection of type

of advanced heart failure therapy, patient counseling and prognostication, and quality

improvement.

Risk models using larger datasets such as INTERMACS can have limited predictive perfor-

mance for multiple reasons. Foremost, as with most national data repositories, the variables

that are collected are ideally easily extractable and routinely collected in the clinical course of

the patient. If these criteria are not met, those variables tend to be excluded from registry data

collection or can have high degrees of missing data which limit the ability to use that variable

in risk modeling. There are likely predictive trends and data related to both the patient and

Table 5. Comparison of area under receiver-operating-characteristic curves in the testing cohorts in cases of concordant versus discordant risk prediction between

logistic regression and machine learning.

LOGISTIC REGRESSION

90-Day Mortality Discordant (33.4%; n = 1,347) Concordant (66.6%; n = 2,683) P-value

AUROC 0.536 (0.485–0.587) 0.752 (0.727–0.778) <0.001

1-Year Mortality Discordant (28.2%; n = 1,137) Concordant (71.8%; n = 2,893)

AUROC 0.555 (0.514–0.596) 0.726 (0.705–0.747) <0.001

MACHINE LEARNING

90-Day Mortality Discordant (33.4%; n = 1,347) Concordant (66.6%; n = 2,683) P-value

AUROC 0.623 (0.576–0.670) 0.772 (0.748–0.797) <0.001

1-Year Mortality Discordant (28.2%; n = 1,137) Concordant (71.8%; n = 2,893)

AUROC 0.613 (0.574–0.652) 0.742 (0.722–0.762) <0.001

https://doi.org/10.1371/journal.pone.0247866.t005

Table 6. Observed rates of 90-day mortality in the validation set based on permutations of predicted risk by the LR and ML models, with gray shaded boxes repre-

senting areas of concordance.

LR Model! Low (<7.6%) Intermediate (7.6–14.0%) High (>14.0%)

ML Model #

Low (<7.6%) 3.4% (n = 844) 4.2% (n = 189) 0% (n = 10)

Intermediate (7.6–14.0%) 8.1% (n = 459) 9.7% (n = 832) 10.2% (n = 325)

High (>14.0%) 14.3% (n = 42) 15.4% (n = 324) 27.5% (n = 1,007)

https://doi.org/10.1371/journal.pone.0247866.t006
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their disease course that are informative of outcomes including mortality, however, for these

reasons are not captured.

Another factor that limits predictive capability is the outcome itself. All-cause mortality by

definition can stem from a variety of clinical pathways and etiologies, each with different sets

of predictive risk factors. An increasing body of work has demonstrated that distinct sequences

of adverse events occur during LVAD support, many of which have distinct predictors of

occurrence and varying likelihoods of subsequent death [11, 12]. Interestingly, the AUROC of

both the LR and ML models was greater for 90-day mortality than it was for 1-year mortality.

This suggests that pre-implant risk factors are likely less predictive of survival as time pro-

gresses from the date of LVAD surgery. Other longitudinal factors such as compliance, devel-

opment and severity of adverse events such as gastrointestinal bleeding and infection, device

malfunction or thrombosis, declining right heart function, and blood pressure management

are likely to have increasing weight in defining the clinical course of LVAD patients with pro-

gression of time on support.

Prior work

Prior work has evaluated the performance of various risk modeling strategies in predicting sur-

vival after LVAD implantation. Cowger and colleagues evaluated multiple risk indices includ-

ing the HeartMate II risk score, the model for end-stage liver disease, and the destination

therapy risk score in a cohort of durable LVAD recipients [4]. Although the risk scores had

reasonable AUROC for 90-day mortality in the derivation cohorts (0.60–0.77), the AUROC

dropped substantially in the validation sets (0.59–0.64). A study utilizing Bayesian approaches

to predict survival after LVAD surgery in the INTERMACS dataset displayed AUROCs of 0.71

and 0.70 for 90-day and 1-year mortality, respectively [13]. Our ML model compares favorably

with this prior work, particularly for 90-day mortality prediction where the AUROC was 0.74.

Concordance

In the current study we also demonstrate that evaluating concordance in predicted risk

between various modeling approaches can yield important insights. Moreover, there were pro-

found differences in AUROC in subsets where LR and ML had discordant risk prediction ver-

sus concordant risk prediction. Furthermore, the observed rates of mortality in the validation

cohorts were within the range of predicted risk when there was agreement between LR and

ML in estimated tertiles of risk. This was similar to what was demonstrated in a study utilizing

both LR and XGBoost to predict acute kidney injury after percutaneous coronary intervention

[14]. Further exploration into mechanisms of differing risk prediction between LR and ML in

discordant patients may yield insights into why these models perform much more poorly in

discordant patients.

These findings may have important implications in how risk models are incorporated in

LVAD therapy. For example, surgical risk is typically conveyed as an absolute percent risk to

Table 7. Observed rates of 1-year mortality in the validation set based on permutations of predicted risk by the LR and ML models, with gray shaded boxes repre-

senting areas of concordance.

LR Model! Low (<15.6%) Intermediate (15.6–25.1%) High (>25.1%)

ML Model #

Low (<15.6%) 9.5% (n = 961) 12.7% (n = 221) 5.6% (n = 18)

Intermediate (15.6–25.1%) 18.5% (n = 368) 20.9% (n = 870) 27.4% (n = 263)

High (>25.1%) 13.3% (n = 15) 26.7% (n = 251) 43.8% (n = 1,062)

https://doi.org/10.1371/journal.pone.0247866.t007
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patients. However, our concordance analysis suggests that the confidence in our estimates of

risk are substantially different in concordant versus discordant patients. Therefore, it may be

prudent to convey a range of risk or our confidence in estimated risk to patients, rather than a

simple percentage. Similarly, for programmatic evaluation, one could argue that if such risk

models are utilized to derive expected outcomes for calculating observed-to-expected ratios,

that patients with discordant risk prediction between LR and ML could be excluded or

weighted less heavily in such calculations.

Study limitations

This is a retrospective study and therefore has inherent limitations related to the study design.

The INTERMACS database is a multicenter registry and is subject to errors in data entry.

There may be additional variables that can improve the predictive performance of risk models

for LVADs that are not included in INTERMACS and therefore could be not evaluated. This

includes temporal changes that may have occurred during the study period, including changes

in patient management, surgical technique, and specific device types. There are a cadre of

other ML algorithms besides XGBoost that were not assessed in this analysis but may have dif-

fering impacts on mortality prediction. Comparison to existing risk models such as the Heart-

Mate II risk score were not possible due to some components of these pre-existing models

being missing from the version of the INTERMACS dataset used for this study.

Conclusions

This analysis utilized the INTERMACS database to develop and compare risk models for

90-day and 1-year mortality following primary durable LVAD implantation using LR and ML

approaches. The ML models derived using the XGBoost algorithm were well-calibrated and

had improved discriminatory capability as compared to LR. In addition, there were profound

differences in model performance in patients with concordant versus discordant LR and ML

estimated risk. These findings suggest that ML may have an important role in risk prediction

in LVAD therapy, both independently as well as an adjunct to traditional modeling approaches

such as LR.
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