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Abstract

Background: Language use and social interactions have demonstrated a close relationship with cognitive measures. It is
important to improve the understanding of language use and behavioral indicators from social context to study the early prediction
of cognitive decline among healthy populations of older adults.

Objective: This study aimed at predicting an important cognitive ability, working memory, of 98 healthy older adults participating
in a 4-day-long naturalistic observation study. We used linguistic measures, part-of-speech (POS) tags, and social context
information extracted from 7450 real-life audio recordings of their everyday conversations.

Methods: The methods in this study comprise (1) the generation of linguistic measures, representing idea density, vocabulary
richness, and grammatical complexity, as well as POS tags with natural language processing (NLP) from the transcripts of real-life
conversations and (2) the training of machine learning models to predict working memory using linguistic measures, POS tags,
and social context information. We measured working memory using (1) the Keep Track test, (2) the Consonant Updating test,
and (3) a composite score based on the Keep Track and Consonant Updating tests. We trained machine learning models using
random forest, extreme gradient boosting, and light gradient boosting machine algorithms, implementing repeated cross-validation
with different numbers of folds and repeats and recursive feature elimination to avoid overfitting.

Results: For all three prediction routines, models comprising linguistic measures, POS tags, and social context information
improved the baseline performance on the validation folds. The best model for the Keep Track prediction routine comprised
linguistic measures, POS tags, and social context variables. The best models for prediction of the Consonant Updating score and
the composite working memory score comprised POS tags only.

Conclusions: The results suggest that machine learning and NLP may support the prediction of working memory using, in
particular, linguistic measures and social context information extracted from the everyday conversations of healthy older adults.
Our findings may support the design of an early warning system to be used in longitudinal studies that collects cognitive ability
scores and records real-life conversations unobtrusively. This system may support the timely detection of early cognitive decline.
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In particular, the use of a privacy-sensitive passive monitoring technology would allow for the design of a program of interventions
to enable strategies and treatments to decrease or avoid early cognitive decline.

(JMIR Aging 2022;5(1):e28333) doi: 10.2196/28333
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Introduction

Cognitive Ability, Its Decline, and Older Adults’
Behaviors
Cognitive abilities play a crucial role in the daily functioning
of older adults [1]. Although decline in certain cognitive abilities
is expected in the course of normal aging, some individuals may
go on to experience decline to an extent that is pathological,
namely mild cognitive impairment (MCI) or dementia [2,3]. It
is argued that subtle changes in older adults’everyday behaviors
may occur in the preclinical stage [4]. As such, behavioral
indicators may provide an important avenue for detecting
cognitive decline in this population. Some studies have started
to quantify differences in the everyday activities (eg, medication
intake and telephone use) of older adults experiencing normal
aging versus those in pathological aging by observing
participants and using manual reporting [5,6].

These methods could aid in detecting behavioral changes;
however, they are also prone to human error, including recall
bias [7]. Thus, the approach of visiting a health care professional
for an examination may end up preventing older adults and their
caregivers from continuously monitoring and proactively
reacting to cognitive decline [8]. In fact, older adults visit health
care professionals to receive cognitive examinations, such as
cognitive assessment tests, blood tests, and structural imaging
[9]. However, this may happen when the cognitive decline has
become severe enough to disrupt daily functioning. In these
cases, it is often too late for them to receive effective treatments
and to make preventive plans with their families [10,11].

The Use of Technology to Predict Early Cognitive
Decline in Real Life
To detect cognitive decline at an early stage, some recent studies
have considered using technology to collect behavioral data
from real-life settings, focusing on cognitively healthy older
adults and those who have MCI [8,12].

For example, comparing the behaviors of healthy older adults
with those with MCI, Seelye et al [13] collected 1 week of
computer mouse movements. Their results showed that older
adults with MCI had fewer total mouse moves and longer pauses
between movements. In another study, Seelye et al [14]
examined driving behaviors observed from a driving sensor and
showed that older adults with MCI drove fewer miles and spent
less time on the highway per day than those without MCI. To
try understanding behavioral variability in normal aging, Austin
et al [15] focused on word use in the internet searches of healthy
older adults in a 6-month-long study with home-based
unobtrusive technology. Their results showed that older adults

with higher cognitive abilities used more unique words than
older adults with lower cognitive abilities. Therefore, they
argued that collecting the terms people use in internet searches
may aid in detection of early cognitive decline [15].

The use of technology to collect objective behavioral indicators
in real-life settings shows a few advantages with respect to
clinical settings. It allows for generating high-frequency data
over extended periods of time, offering more data than the
assessments performed during appointments with health care
professionals. High-frequency data could provide an objective
baseline to understand individuals’ own norms of behaviors
that could be used to detect early cognitive decline [16].
Moreover, collecting behavioral indicators in real-life settings
by means of technology empowers older adults and caregivers
to monitor and detect cognitive decline, freeing them from the
exclusive reliance on examinations by health care professionals.
It could also help patients and caregivers to predict early changes
in cognitive abilities. This could help reduce stress in caregivers,
allowing them to better manage time and perform advanced
planning [10]. Low-cost and unobtrusive technology methods
have the potential to be applied to large-scale community studies
for identifying at-risk populations [17]. However, to leverage
the advantages offered by technology in the early detection of
cognitive decline it is necessary to identify reliable behavioral
indicators of cognitive decline for different populations of older
adults (ie, healthy older adults and those with MCI or dementia)
that can be effectively and unobtrusively monitored over time.

Linguistic Measures as Behavioral Indicators of
Cognitive Decline
Linguistic measures elicited from speech are one type of
behavioral indicator that have proved to be useful in predicting
cognitive abilities. To this end, studies have considered the use
of linguistic measures from transcribed speeches of healthy
subjects, or those with different degrees of cognitive impairment
in structured clinical assessments [18]. In fact, it has been shown
that language markers predict normal and pathological cognitive
functioning [19]. Typically, these studies are conducted in the
lab, with elicitation of speech through clinical interviews and
the recording of cognitive function scores via batteries of
validated tests. For example, Fraser et al [20] examined various
linguistic features, such as part-of-speech (POS) tags,
grammatical complexity, vocabulary richness, and
repetitiveness, and showed them to be useful in predicting
dementia cases. Furthermore, more and more studies have
focused on differences in language use between healthy older
adults and those with MCI [19,21], with the aim of facilitating
the detection of cognitive decline at an early stage [22].
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Although linguistic markers captured from lab-based speech
samples have shown promise in detecting cognitive decline, the
limitations of these speech samples must be considered. For
example, studying language in clinical settings through its
elicitation may result in the generation of utterances that are
not representative of daily language use. This may lead to a
biased understanding of the cognitive abilities of the aging
population [23]. Moreover, in clinical settings it is not possible
to study the participants’ social contexts. These contexts offer
opportunities for older adults to engage in cognitively
stimulating activities and they are protective of their cognitive
abilities [24-26].Therefore, we argue that research focusing on
the early decline of cognitive abilities would benefit from (1)
considering everyday life settings where cognitive abilities are
expressed and (2) collecting everyday language use and
information on the social contexts of healthy older adults by
means of unobtrusive monitoring technology.

As a first step in this direction, Polsinelli et al [27] recently
tested whether healthy older adults’ language in their everyday
lives provides information about cognitive processes. In their
study, Polsinelli et al assessed the cognitive abilities of healthy
older adults with a battery of tests, including the testing of
working memory. Working memory refers to the cognitive
ability of maintaining input information while simultaneously
performing complex tasks with this information, such as
reasoning, communication, and learning [28]. It is an important
aspect of fluid intelligence for the production of complex
language [29].

They sampled real-life ambient audio data from participants’
naturally occurring daily lives, transcribed the conversations
captured in the ambient audio sound bites, and applied natural
language processing (NLP); in their case, they used Linguistic
Inquiry and Word Count [30], a very widely used and
extensively validated closed vocabulary–based text analysis
approach. With respect to protecting the privacy of participants
and their bystanders, they followed a set of established
procedures that included providing participants an opportunity
to censor (ie, delete) selected recordings and alerting
conversation partners about the possibility of their conversations
being recorded, thereby ensuring passive consent [31,32]. Their
results show that higher working memory was associated “with
analytic, complex, and specific language” [27].

On the other hand, in examining age effects in language use
using verbatim transcripts derived from real-life ambient audio
recordings, Luo and colleagues [33,34] recently showed that
healthy older adults produced more complex language with
familiar conversational partners (eg, spouse, friends, and family)
than with strangers, and more complex language in substantive
conversations than in small talk. These findings support the
assumption that some social contexts offer opportunities for
cognitively stimulating activities. Thus, healthy older adults’
social contexts may provide useful information for predicting
their cognitive abilities over time.

Using Machine Learning and NLP to Predict Healthy
Older Adults’ Working Memory
Polsinelli et al’s [27] and Luo et al’s [33,34] studies suggest
that the language use and social contexts encoded in everyday

life ambient audio data may support the understanding of healthy
older adults’ cognitive abilities. This is seen as a first step
toward an improved understanding of cognitive decline by
means of information collected in everyday life. Therefore, in
this paper we explore the possibility of predicting cognitive
ability, namely working memory, by combining linguistic
measures, including POS tags, and social context information
computed from the verbatim transcripts of the sampled everyday
conversations of healthy older adults using machine learning
and NLP. In this study, the term “healthy older adults” is meant
as “cognitively healthy older adults.” The conversations were
transcribed from the real-life ambient audio data that were
recorded unobtrusively using a smartphone app [35]. We
consider the data from Polsinelli et al’s original study [27],
where working memory was measured using two separate tests,
namely Keep Track and Consonant Updating [27,36]. Therefore,
in this study, we predicted working memory using Keep Track,
Consonant Updating, and a combined score (ie, the mean score
from Keep Track and Consonant Updating) [27,36]. To the best
of our knowledge, this is the first study where machine learning
and NLP are used to predict selected cognitive abilities of
healthy older adults combining different sources of information,
such as linguistic measures and social context, extracted from
data collected in a naturalistic observation setting.

In future studies, the methods described in this paper could
support the design of passive monitoring systems to detect early
cognitive decline by recording, ultimately in a privacy-sensitive
way (ie, protecting the content and context of the actual “raw”
conversations), real-life ambient audio data and using
information extracted from the everyday conversations of older
adults. Systems with reliable performance may allow for
designing intervention programs aimed at coping with early
signs of cognitive decline in normal aging as well as at the
preclinical stage of Alzheimer disease. This technology and
intervention programs would, therefore, empower older adults
and caregivers to monitor and detect cognitive decline
autonomously. Low-cost and unobtrusive technologies have
the potential to be applied to large-scale community studies for
identifying at-risk populations [17]. This is in line with the
recommendations of the World Health Organization’s 2020
report on the global action of “Decade of Healthy Ageing
2020-2030,” which states that technologies can empower older
people to monitor and understand their own health, enabling
greater decision-making about their own lives by tracking their
trajectories of healthy aging [37].

Methods

Data Collection
Data used in this study originated within Moseley’s [36] and
Polsinelli’s [38] dissertations and were studied by Polsinelli et
al [27]. All participants from the original studies were
community-dwelling individuals recruited from the greater
Tucson, Arizona, community in the United States. Participants
were recruited via community events and via research databases
from prior and ongoing studies in the Department of Psychology
and the Department of Speech, Language, and Hearing Sciences
at the University of Arizona. Participants’ living situations
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included retirement communities; mobile home communities;
single-family homes, with and without a live-in partner; and
residences in family members’ homes, usually children.

All participants were cognitively healthy older adults, with no
reported history of neurologic or psychiatric disorders. Polsinelli
et al’s [27] sample consisted of 102 participants (mean age 75.8
years, SD 5.8; mean years of education 16.5, SD 2.3; 54.9%
[n=56] female; 62.7% [n=64] married). During the study,
participants underwent cognitive testing in the lab and wore the
Electronically Activated Recorder (EAR) app [31,35] that was
installed on provided smartphones for 4.5 days of their daily
lives. The EAR enables frequent, passive, and unobtrusive
sampling of participants’ language use in their natural
environments via ambient recording [35,39,40]. The EAR was
set to record 30-second audio files every 12 minutes (ie, five
times per hour), except for a 6-hour overnight period. At the
end of the study, after returning the EAR, all participants
completed a standard EAR evaluation measure [27,39].
Polsinelli et al [27] collected 31,683 valid (ie, adherent and
codable) and waking (ie, nonsleeping) sound files.

Recording raw ambient sounds raises important questions around
privacy. Polsinelli et al’s study implemented several safeguards
to protect the privacy of participants and conversation partners.
First, the audio sampling limited the net recording to a small
fraction of the day (<5%), keeping the vast majority of
conversations private in the first place. Second, the short
recordings (ie, 30 seconds) ensured that minimal personal
information was captured beyond what was necessary for
reliable coding. Third, participants could review their recordings
and censor (ie, delete) any they wished to remain private. Fourth,
a “warning triangle” was placed visibly on the recording device
to alert conversation partners of the possibility of being
recorded, in order to ensure passive consent. Finally, the study
was covered by a National Institutes of Health Certificate of
Confidentiality, which protects the data against forced
third-party disclosure. In implementing these procedures, the
study followed the established guidelines for passive ambient
audio sampling [31,32].

Data Generation: Measuring Working Memory
In this study, we considered working memory as measured by
the Keep Track and Consonant Updating tests [36,38]. These
are select subtests from Miyake et al [41] that served as the
guiding model of working memory and executive functioning
more broadly. During the Keep Track test [27,41,42],
participants view a list of 15 serially presented words, that is,
presented one at a time (eg, banana, golf, uncle, and so on).
They are instructed to hold in mind the last word that is
presented in predefined categories (eg, fruits, sports, and
relatives). Initially, participants keep track of one category, but
over duration of the test, they increase to keeping track of four
categories, with three trials for each number of categories (eg,
three trials of one category, three trials of two categories, and
so on) [27]. Participants write down the last word they
remembered from each predefined category, before moving on
to the next trial.

In the Consonant Updating test [27,36,41], participants are
required to say aloud the last four letters in a string of

consonants appearing on the screen [27]. Each trial in the
Consonant Updating test consists of five, seven, nine, or 11
letters in random order, for a total of 108 participant responses.
In Polsinelli et al’s study [27], 4 participants only completed
the Keep Track test; in this work, we include only the 98
participants who completed both tests.

Data Generation: Transcribing and Coding Audio
Files
In Polsinelli et al’s study [27], a team of research assistants
were trained to listen to each 30-second audio file, identify the
participant’s voice, and transcribe verbatim the spoken
utterances only of the participants (ie, they did not transcribe
speech from nonparticipants). Out of 31,683 audio files, 7450
contained snippets of conversations. Concurrently, research
assistants coded for multiple behavioral and contextual variables.
Codes were binary, indicating either presence (“1”) or absence
(“0”) of a variable within the entire 30-second audio file. While
audio files were coded for multiple variables, only the 19
variables relevant to this investigation are described here. These
19 variables, called “social context variables” in what follows,
fall into the following overarching categories: environment (ie,
in public or on the phone), presence or absence of social partners
(ie, alone, with one person, or with multiple people),
conversation partner (ie, self, pet, significant other, close friend
or family member, acquaintance, or stranger), conversation type
(ie, small talk, substantive conversation, or gossip), and activity
(ie, socializing or entertaining, watching TV, eating or drinking,
doing housework, or in transit).

For more detailed information on how EAR sound files are
coded for daily behavior, we refer to Kaplan et al’s work [43].

NLP of Transcripts: Linguistic Measures and
Part-of-Speech Tags
In this study, we included three domains of linguistic measures
that have been commonly examined in the cognitive aging
literature. The first domain is idea density, also known as
proposition density, representing the number of ideas that are
expressed [44]. Studies show that idea density declines over
age in both normal and pathological aging [44]. We computed
idea density with the CPIDR (Computerized Propositional Idea
Density Rater) software (version 5) [45]. The second domain
is vocabulary richness, indicating usage of unique words. In
this study, it was represented by the measure of entropy with
the Chao-Shen estimator [46]. We computed vocabulary richness
using the “entropy” package from R (The R Foundation) [47].
The third domain is grammatical complexity, indicating how
complex the grammatical structures are [34,44]. We computed
the scores with the syntactic complexity analyzer [48,49] in R.
We focused on the measures of clauses and dependent clauses
(ie, number of clauses, number of dependent clauses, mean
length clause, and dependent clause ratio).

In this study, the measures computed from the aforementioned
domains of linguistic measures are referred to as “linguistic
measures.” In addition to the linguistic measures, we also
considered POS tags of written transcripts. POS tagging is the
procedure that assigns a POS tag to each word in a corpus of
textual data [50,51]. The POS tag encodes information on the
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role of the word and its context. In this study, we used the spaCy
library in Python (Python Software Foundation) [52] to retrieve
the POS tags for each word in all of the 7450 transcripts. The
data set comprises 15 distinct POS tags.

Machine Learning

Feature Generation and Data Aggregation
To perform machine learning modeling and predict individual
working memory scores, we aggregated the data set of 7450
transcripts at the participant level, arriving at 98 data points.
We proceeded with the aggregation of the features as follows.
Sociodemographic features (ie, age, sex, marital status, and
education) were not aggregated, as they are constant for each
participant. Linguistic measures were aggregated by computing
the mean and SD of the distribution of the language measures
of all transcripts for each participant. In addition, we
concatenated the POS tags extracted from all transcripts of each
participant. Finally, social context features (eg, “alone”) were
aggregated by computing the percentage of transcripts in which
the social context was detected (eg, “alone = 1”) for each
participant. We collected all features resulting from data
aggregation in Multimedia Appendix 1.

Target Variables
In this study, we aimed at gathering a foundational
understanding of the problem of predicting working memory
with information extracted from real-life audio data. Therefore,
we considered three distinct machine learning regression
problems. First, we predicted the standard scores of the Keep
Track test for each participant. Second, we predicted the
standard scores of the Consonant Updating test for each
participant. Finally, we standardized the mean score of the Keep
Track and Consonant Updating tests for each participant. This
latter score measured working memory for each participant.
The use of standard scores (ie, z scores) for cognitive ability
tests is in line with previous studies in the literature [15,27].
However, we remark that we computed standard scores inside
the repeated cross-validation routine on each training fold (see

Experimental Setting section) to avoid “data leakage,” as
recommended by Hastie et al [53].

Machine Learning Models
We considered random forest (RF), extreme gradient boosting
(XGBoost), and light gradient boosting machine (LightGBM)
algorithms [54-57] for this study, using their Python
implementations. We chose them due to the possibility to
consider different hyperparameter combinations and to explain
results using feature importance scores. The RF feature
importance score computes the mean (across all trees in the
forest) Gini impurity decrease for the feature at hand: the higher
the decrease, the higher the feature importance. The XGBoost
and LightGBM feature importance scores compute the number
of times (in percentages) each feature is used to split the data
across all trees of the ensemble. Moreover, different authors
considered RF and XGBoost algorithms for the detection of
reminiscence from transcripts of conversations of older adults
[58,59]. Similarly, Yordanova et al [60] used RF algorithms to
detect social behavior from transcripts of daily conversations.

Experimental Setting

Overview

We provide information on the experimental setting by
describing the (1) machine learning runs (R, when reported with
run number), (2) repeated cross-validation routine, (3) recursive
feature elimination (RFE) algorithm, (4) hyperparameters in
the cross-validation, and (5) the evaluation metrics of the
machine learning models.

Machine Learning Runs

We considered eight different runs of machine learning
modeling, each corresponding to a different combination of
features. We present them in Table 1, together with the total
number of features per run. R0 was considered the baseline for
all machine learning runs, as it contained only sociodemographic
variables (ie, age, education, marital status, and sex; Multimedia
Appendix 1). We also note that sociodemographic variables
were considered in all runs of this study as control variables.

Table 1. All runs considered in this study.

Features, nFeature combinationRun

4SociodemographicR0

18Sociodemographic + linguistic measuresR1

23Sociodemographic + social contextR2

19Sociodemographic + POSa tagsR3

37Sociodemographic + linguistic measures + social contextR4

38Sociodemographic + social context + POS tagsR5

33Sociodemographic + linguistic measures + POS tagsR6

52Sociodemographic + linguistic measures + social context + POS tagsR7

aPOS: part of speech.

As our study dealt with a limited number of data points (ie,
n=98), machine learning modeling needed to avoid the use of
too many noisy variables and incur overfitting. This would

lower reproducibility of results and their applicability to unseen
data [61]. Moreover, in the presence of a small number of data
points, resampling techniques, such as cross-validation, may
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show high variance. Therefore, we needed to introduce a routine
to select the best-performing machine learning model by doing
the following: (1) using resampling techniques such as
cross-validation, (2) reducing the variance of cross-validation,
and (3) performing feature selection on all runs to prevent
overfitting.

Repeated Cross-validation

Standard k-fold cross-validation divides a data set into k
nonoverlapping subsets. Each model is trained on k–1 folds and
evaluated on the k-th fold, for a total of k models. Model
performance (eg, the mean squared error; see Evaluation Metrics
section) is the mean of the performance on all k folds used for
the evaluation. With a fixed training data set, k-fold
cross-validation depends on the randomness of partitioning the
training data set into k-folds [62]. This variance is also called
internal variance [63,64]. In particular, in the context of small
data sets, Braga-Neto and Dougherty [64] stated that
cross-validation error estimation shows high variance, with the
effect of making “individual estimates unreliable for small
samples.”

Repeated k-fold cross-validation is a procedure introduced to
reduce the internal variance of k-fold cross-validation routines.
The procedure called “repeated k-fold cross-validation with
n-repeats” simply repeats k-fold cross-validation N times, with
different splits, and averages the model performances across all

folds from all runs. It provides a performance evaluation of the
model that is more robust than the one computed from a single
run of k-fold cross-validation. It has been suggested due to its
performance, but at the price of a steep computational cost [65].
We refer to the work by Krstajic et al [66], in particular
Algorithm 1, for more details on repeated cross-validation.

Our strategy is to apply repeated cross-validation with 2, 5, and
10 folds, and a number of repeats equal to 50, 20, and 10,
respectively. For each k, the number of repeats, N, is chosen to
have a total of 2 × 50 = 5 × 20 = 10 × 10 = 100 validation folds
for the evaluation of model performance. These fold values
have been considered by Molinaro et al [61] in their comparison
of resampling methods. A small number of folds increases the
bias of the cross-validation estimator, but it is computationally
efficient [67]. A higher number of folds decreases the bias but
increases the variance, as the validation sets become smaller.

Recursive Feature Elimination

To avoid overfitting, we performed feature selection by
implementing the RFE algorithm [68] embedded in the repeated
cross-validation routine. We used it for all runs to select the
machine learning model with the best performance on the 100
validation folds, choosing different numbers of features to select.
We summarize the algorithm performing repeated
cross-validation with RFE in Figure 1.

Figure 1. Repeated cross-validation with the recursive feature elimination (RFE) algorithm.

Hyperparameters in the Repeated Cross-validation

Table 2 summarizes all the hyperparameters tuned in the
algorithm in Figure 1.

In particular, we preprocessed POS tags with term
frequency–inverse document frequency (TF-IDF) normalization
to use them as features in the machine learning modeling
routines. We performed no hyperparameter tuning, by

considering only 1-grams. The number of hyperparameter
combinations depends on the machine learning run. For
example, the best RF model for the R0 run emerged from fitting
4500 models. On the other hand, to select the best RF model
for the R7 run, we fitted 220,000 models, following the
algorithm in Figure 1. We then fit the model corresponding to
the combination of hyperparameters from Figure 1 to the whole
data set, following Algorithm 1 in Krstajic et al [66].
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Table 2. Summary of all hyperparameters tuned in the repeated cross-validation with the RFE algorithm.

HyperparametersAlgorithm or model

RFEa algorithm • Number of features to select
• Number of features to reduce at each step

Machine learning model (RFb) • Number of trees
• Maximum tree depth

Machine learning model (XGBoostc and LightGBMd) • Number of trees
• Maximum tree depth
• Learning rate

aRFE: recursive feature elimination.
bRF: random forest.
cXGBoost: extreme gradient boosting.
dLightGBM: light gradient boosting machine.

Evaluation Metrics

The performance of each model in the repeated cross-validation
with the RFE algorithm in Figure 1 was evaluated by computing
the mean and SD of the distribution of the mean squared errors
(MSEs) on each of the 100 validation folds. The MSE was
computed as follows (q denotes the number of data points in
the validation fold):

We used the MSE as the scoring method for the cross-validation.
As we implemented the standardization of scores inside the
repeated cross-validation routine, it follows that the MSE on
the validation folds was computed using unstandardized scores.

Ethics Consideration
Participants whose data were studied by Polsinelli et al [27]
gave permission for their data to be used in future research
studies (Institutional Review Board No. 1300000709).

Results

Predicting Keep Track
In Table 3, we present the best models resulting from the
repeated cross-validation with the RFE algorithm in Figure 1
for the Keep Track target variable. All results are obtained for
10 folds and 10 repeats. By definition of Polsinelli et al’s
experimental setting [27], the total number of recalled words
during the test was 30. In this study, the mean of the Keep Track
scores in the data set was 19 (SD 3.6); the minimum and
maximum Keep Track scores were 10 and 27.

Table 3. Performance of the best models for the prediction of the Keep Track target variable. All results were obtained for 10 folds and 10 repeats.

Features, nMSEa, mean (SD)ModelRun

413.26 (5.33)LightGBMbR0

1012.80 (5.43)LightGBMR1

512.46 (4.85)LightGBMR2

1012.95 (4.98)LightGBMR3

1011.81 (4.92)LightGBMR4c

2012.12 (4.43)LightGBMR5

1512.65 (4.92)LightGBMR6

2512.02 (4.66)LightGBMR7

aMSE: mean squared error.
bLightGBM: light gradient boosting machine.
cThe best run was R4.

All runs improved performance with respect to the baseline (ie,
R0). The best run was R4, which delivered an improvement of
11% in mean MSE on the validation folds with respect to R0.
The resulting LightGBM model was an ensemble of 70 trees,
with a maximum depth equal to 1. Moreover, the RFE algorithm
selected 10 features for this model out of 37 (27%), as per Table

1, deleting 50% of features at each step. As seen at the end of
the Results section, the model improved the mean MSE by 13%
on the validation folds with respect to the constant model that
predicted the Keep Track scores on the validation fold using
the mean on the training fold, for each of the 100 splits.
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Table 4 shows all of the 8 features out of 10 (80%) in the best
LightGBM model for R4 with nonzero importance and their
type. All three feature types (ie, sociodemographic, linguistic
measure, and social context) were represented in the model.
More than half of the features were of the social context type.
The mean feature importance was 0.13. The most important
features were the percentage of transcripts for which each

participant was alone (ie, “alone_prc”), the age of the participant
(ie, “age at EAR testing”), the mean of the distribution of the
idea density of the transcripts per participant (ie,
“mean_Density”), and the SD of the distribution of
Chao-Shen–corrected entropies of transcript per participant (ie,
“std_ChaoShen”).

Table 4. Features, their importance, and type for the best light gradient boosting machine model of R4 for prediction of Keep Track scores.

Type of featureImportance of featureFeatureaRank

Social context0.34alone_prc1

Sociodemographic0.16age at EARb testing2

Linguistic measure0.13mean_Density3

Linguistic measure0.13std_ChaoShen4

Social context0.10TV_prc5

Social context0.07in_transit_prc6

Social context0.04partner_sign_other_prc7

social context0.03small_talk_prc8

aDescriptions of features are listed in Multimedia Appendix 1.
bEAR: Electronically Activated Recorder.

Predicting Consonant Updating
In Table 5, we present the best models resulting from the
repeated cross-validation with the RFE algorithm in Figure 1
for the Consonant Updating prediction task. As opposed to the
best RF models in Table 3, in the case of Consonant Updating,
the best models in different runs were obtained in the presence
of different k values of cross-validation folds.

The mean Consonant Updating score in the data set was 24 (SD
10.6), and the minimum and maximum Consonant Updating
scores were 0 and 45, respectively.

All runs, with the exception of R1, R2, and R4, improved
performance with respect to the baseline (ie, R0). The best run
was R3, where the LightGBM model delivered an improvement
of 14% in mean MSE on the validation folds with respect to
R0. The LightGBM model was an ensemble of 30 shallow trees
with a depth equal to 1. The RFE algorithm selected only 5 out
of the 19 (26%) available features for R3 (Table 1), deleting
10% of the features at each step.

Table 5. Performance of the best models for the prediction of the Consonant Updating target variable.

Features, nMSEa, mean (SD)ModelkRun

4113.50 (45.55)LightGBMb10R0

18114.85 (25.64)LightGBM5R1

5114.00 (26.04)LightGBM5R2

597.26 (21.38)LightGBM5R3c

10114.30 (45.50)LightGBM10R4

5100.73 (22.93)LightGBM5R5

5100.07 (22.74)LightGBM5R6

5101.38 (41.32)XGBoostd10R7

aMSE: mean squared error.
bLightGBM: light gradient boosting machine.
cThe best run was R3.
dXGBoost: extreme gradient boosting.

As seen at the end of the Results section, the best model
improved the mean MSE by 15% on the validation folds with

respect to the constant model that predicted the Consonant
Updating scores on the validation fold using the mean of the
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scores on the training fold, for each of the 100 splits. Table 6
shows the nonzero feature importance for R3 of the LightGBM
model (ie, the best model). All features were POS tags, namely

“NUM” (ie, numeral), “INTJ” (ie, interjection), “NOUN,” (ie,
noun), and “ADP” (ie, adposition).

Table 6. Features, their importance, and type for the best light gradient boosting machine model of R3 for prediction of Consonant Updating scores.

Type of featureImportance of featureFeatureRank

Part of speech0.37NUM1

Part of speech0.23INTJ2

Part of speech0.23NOUN3

Part of speech0.17ADP4

Predicting Working Memory
In Table 7, we present the best models resulting from the
repeated cross-validation with the RFE algorithm in Figure 1
for the prediction task of Working Memory. As in the case of
Consonant Updating, the best models in different runs were
obtained in the presence of different k values of cross-validation
folds.

Similar to the prediction of the Consonant Updating scores, all
runs, with the exception of R2 and R4, improved performance
with respect to the baseline (ie, R0). The best run was R3, where
the best XGBoost model delivered an improvement of 20% in
mean MSE on the validation folds with respect to R0. The
XGBoost model was an ensemble of 30 trees with a depth equal
to 1. The RFE algorithm selected only 10 out of the 19 (53%)

available features for R3 (Table 1), deleting 50% of the features
at each step. The R5 and R6 best models showed almost equal
performance and the same number of features.

As seen at the end of the Results section, the best model
improved the mean MSE by 20% on the validation folds with
respect to the constant model that predicted the Working
Memory scores on the validation fold using the mean scores on
the training fold, for each of the 100 splits. In Table 8, we show
the 6 features with nonzero feature importance; they are the
same as those for the best model predicting Consonant Updating,
with the addition of the “PRON” (ie, pronoun) and “PROPN”
(ie, proper noun) POS tags. In Table 9, the best models from
Tables 3, 5, and 7 are benchmarked with the constant model
predicting the mean value of the target variable for all three
predictions.

Table 7. Performance of the best models for the prediction of the Working Memory target variable.

Features, nMSEa, mean (SD)ModelkRun

437.75 (7.94)LightGBMb5R0

1037.70 (14.07)LightGBM10R1

537.75 (7.93)LightGBM5R2

1030.23 (6.63)XGBoostd5R3c

537.75 (7.93)LightGBM5R4

531.49 (13.03)XGBoost10R5

531.25 (12.24)LightGBM10R6

532.22 (6.77)XGBoost5R7

aMSE: mean squared error.
bLightGBM: light gradient boosting machine.
cThe best run was R3.
dXGBoost: extreme gradient boosting.
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Table 8. Features, their importance, and type for the best extreme gradient boosting model of R3 for the prediction of Working Memory scores.

Type of featureImportance of featureFeatureRank

Part of speech0.30NUM1

Part of speech0.20INTJ2

Part of speech0.20NOUN3

Part of speech0.13PRON4

Part of speech0.10ADP5

Part of speech0.07PROPN6

Table 9. Benchmarking the best models from Tables 3, 5, and 7 with the constant model predicting the mean value of the target variable for all three
predictions.

MSE of best model, mean (SD)MSEa of constant model, mean (SD)Prediction

11.81 (4.92)13.57 (5.37)Keep Track

97.26 (21.38)114.77 (45.71)Consonant Updating

30.23 (6.63)37.81 (14.05)Working Memory

aMSE: mean squared error.

Discussion

Summary of the Prediction Tasks
We applied machine learning methodologies to Polsinelli et al’s
study [27] to predict cognitive ability, namely working memory,
by means of the scores on the Keep Track and Consonant
Updating tasks and a composite of both (ie, Working Memory).
The best model for the Keep Track prediction exercise
comprised sociodemographic, linguistic measure, and social
context variables. Those for Consonant Updating and Working
Memory comprised POS tags only. Our methodologies delivered
an improvement of performance with respect to two baseline
models (ie, the models using only sociodemographic variables
and the models predicting the mean value of the target variable)
for all three prediction tasks. All of the best models were
gradient boosting ensembles: LightGBM for Keep Track and
Consonant Updating, and XGBoost for Working Memory. All
ensembles comprised “tree stumps” (ie, trees with only one
split), and they made use of a limited number of features.

Feature Analysis for All Prediction Tasks
Considering the prediction of Keep Track scores, the high
importance of social context variables in the model was in line
with previous studies on the effects of social context on
cognitive aging. Specifically, Luo [34] reported that older adults
produce more complex language with their significant others
than with strangers. Familiarity with significant others may
have enabled more diverse conversation topics than talking with
strangers. More diverse conversation topics may have offered
more opportunities to engage in cognitively stimulating
conversations and, thus, protect against cognitive decline. By
contrast, a higher occurrence of nonsocial contexts, such as
watching TV and being alone, indicated deprived opportunities
for engaging in cognitively stimulating activities. Fancourt and
Steptoe’s [69] study showed that watching TV for more than
3.5 hours per day is related to cognitive decline in older adults.
Moreover, social isolation has been shown to be associated with

memory decline in old age [70]. The best model for predicting
Keep Track scores indicated that the corresponding social
context variables are important, in an ensemble of regression
trees, in machine learning problems aimed at predicting working
memory.

We note that “mean_Density” was the only linguistic measure
with high feature importance, together with the SD of the
distribution of the Chao-Shen–corrected entropies of transcript
per participant (ie, “std_ChaoShen”). This finding is in line with
previous literature, where idea density has been commonly used
to predict cognitive decline in older adults [18,22].

Considering sociodemographic variables, only the age of the
participants (ie, “age at EAR testing”) was retrieved by the RFE
algorithm for the best model in the Keep Track prediction. It
showed a feature importance (ie, 0.16) that was higher than the
mean of the distribution. We note that age was a significant
variable in the models by Austin et al [15]. Interestingly, neither
the sex, the marital status, nor the number of years of education
of each of the participants appeared as features in the best
models for all three prediction tasks. This is a point of difference
with respect to Austin et al’s results [15].

Finally, POS tags—via the generation of bag-of-words features
using TF-IDF normalization—featured prominently in the
prediction of Consonant Updating and Working Memory. This
finding may suggest that how older adults structure their
sentences (eg, encoded in the use of prepositions, which
expresses relations between different concepts [27]) in their
daily conversations reveals the integrity of aspects of their
working memory. This is different than the prediction of Keep
Track scores, where features, such as the counts of different
social contexts coded from the transcripts, were also predictive.
In particular, in both of the best models for Consonant Updating
and Working Memory, the most important POS tag was “NUM”
(ie, “numerals”). The POS tags “INTJ,” “NOUN,” “PRON,”
“ADP,” and “PROPN” (ie, “interjection,” “noun,” “pronoun,”
“adposition,” and “proper noun,” respectively) also appeared
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in the models. We argue that their presence may indicate that
recorded conversations showed a certain degree of variability,
as recently detected in studies with the EAR device [25]. We
also note that, in particular, interjections (eg, “oh,” “uh,” “yeah,”
and “uhm”) are commonly used in the spoken language to shift
the attention to the speaker or as a back-channel response in
conversations.

The original Polsinelli et al study [27] also found that selected
POS tags correlated with working memory, using a partial
Spearman correlation analysis. Some of these POS tags were
also important predictors in this study, including numbers, which
featured prominently in two of our three models, and
prepositions. In particular, in the case of numerals, the authors
found statistically significant Spearman partial correlation
(r=0.32, range 0.13-0.48) between working memory measures
and the use of numbers in everyday conversations [27]. The
replication is encouraging and warrants further investigation.
As highlighted in the original Polsinelli et al study, prepositions
are a component of more complex language, and it is possible
that this complexity is associated with working memory.
However, at this time, without clear theoretical reasons for the
predictive power of specific POS tags, we are cautious about
overspeculating and overinterpreting these data. It will be
important for future work to replicate these findings in an
unrelated sample to assist in better understanding these POS
markers of working memory. It may be especially interesting
to examine the broader context in which certain POS are used;
for example, numbers may be used in the context of someone
paying bills or doing taxes, which are behaviors likely associated
with aspects of cognition, including working memory.

Results from this study provide preliminary evidence to support
the prediction of an important cognitive ability, working
memory, by (1) collecting behavior from everyday conversations
of healthy older adults in a naturalistic setting using the EAR
app, (2) generating different families of behavioral features,
and (3) using machine learning methodologies, with automated
feature selection routines and combining families of behavioral
features. In particular, the machine learning methodologies went
beyond the correlations between working memory and POS
tags from Polsinelli et al’s study [27] and showed how different
sets of features generated from the transcripts of conversations
predict cognition. The approach in this study can be used in
everyday settings to collect linguistic measures and social
context information using unobtrusive technology.

Using this methodology, it may be possible to design an early
warning system for cognitive decline in older adults that uses
samples of conversations in daily life. In fact, one of the largest
challenges in the current cognitive aging field is early detection
for early intervention. This methodology may be one potential
tool for addressing this problem through early and continuous
monitoring over months or even years.

Continuous monitoring could result in near-immediate
notification—to the individual, to the individual’s family, or to
a health care provider—when there is a suggestion of decline.
In this way, an individual would be identified much earlier on
in the process of potential decline and could seek a full
professional evaluation in a much timelier manner, thereby

increasing access to care and intervention. It is also possible
that these “alerts” from continuous monitoring could reduce
help-seeking delays caused by fear or anxiety of diagnosis [10].
The results could supplement a comprehensive clinical
assessment, offering reliable and ecologically valid objective
information to support formal diagnosis [12]. The continuous
collection of high-frequency data could also serve as useful
baseline information for clinicians to understand the rate of
cognitive decline or to determine effectiveness of treatments
[16].

However, we highlight that older adults and their caregivers
may express concern about threats that are potentially posed by
sensing technologies and opaque machine learning
methodologies in digital health, such as threats on autonomy,
privacy, and freedom [71] and their effects on the
trustworthiness of these systems [71,72]. Yet, research has
shown that it is possible to gain understanding from the users
when they are provided with sufficient knowledge about
technologies and the possibility of knowledgeable participations
[73]. In particular, the EAR method has established protocols
to inform participants about study procedures and to enable
participants to review their own recordings, providing ethical
safeguard measures and a low level of obtrusiveness [31]. The
EAR method has been used to collect data from older adults,
and they rated the method with a low level of obtrusiveness
[39]. Taken together, we argue that the EAR method, in
combination with machine learning techniques, could be
developed as a promising tool for monitoring and detecting
cognitive change in older age.

Comparison With Previous Work
Previous research has investigated the relationship between
natural speech, language, and cognitive functions in the context
of preclinical Alzheimer disease, or other forms of dementia,
by means of speech, NLP, and machine learning. The literature
abounds in examples of different speech and language measures
that intercept different phonetic, syntactic, and semantic aspects
of natural speech to predict for different levels of MCI with
machine learning classifiers. However, these studies are typically
conducted in clinical settings [19,73,74]. While assessment in
a clinical setting has clear benefits (eg, increased control and
standardization), it is limited in its ability to capture the full
ecology of a person’s rich social life, including behaviors,
language, and interactions in different social contexts and with
different social partners.

On the other hand, naturalistic observation studies and the use
of passive, mobile monitoring technology may assist in capturing
“reliable contextual observations, made in more ecologically
valid environments than purely the consulting room” [75] and
generate high volumes of data. Polsinelli et al [27] have
examined the “association between spontaneous, conversational
language use in daily life and higher-order cognitive functioning
in older adults without known cognitive impairment.” In
particular, they found that working memory “was associated
with analytic (e.g., more articles and prepositions), complex
(e.g., more longer words), and specific (e.g., more numbers)
language” [27]. Therefore, one may argue that changes in
language (ie, increasing use of more general words such as
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“thing” instead of a specific object name) could be potential
behavioral markers of cognitive decline. Should an individual
or his family members observe such changes in language or
other changes in cognition (ie, memory decline), this may be
the impetus for discussion with a doctor who may decide to
refer them for a formal neuropsychological evaluation to
determine the presence of cognitive impairment.

In the vein of naturalistic observation, but not interpersonal
interactions, others have sought to use at-home technology
device usage to monitor cognitive performance in older adults.
Austin et al [15] investigated the relationship between internet
searches and cognitive ability in older adults in a cross-sectional
study. They continuously monitored the terms that 42
cognitively healthy older adults entered in internet search
engines over a 6-month period by means of “an unobtrusive
home-based assessment platform” [15]. The authors reported a
total of 2915 searches and a median of 22 searches per
participant over the 6-month period [15]. Their study showed
the applicability of continuous unobtrusive home-based
monitoring technology to possibly detect cognitive decline in
older adults. In fact, their results showed that higher cognitive
ability scores were associated with more unique search terms
entered per search and that higher cognitive abilities were
associated with the use of more obscure words, as measured
with word obscurity, during searches [15]. To compare the
behaviors of older adults with and without MCI, Lyons et al [8]
examined computer mouse movements and showed that older
adults with MCI had fewer total mouse moves and longer pauses
between movements. Moreover, Seelye et al [14] examined
driving behaviors observed from a driving sensor and showed
that older adults with MCI drove fewer miles and spent less
time on the highway per day than those without MCI. Finally,
Piau et al [17] conducted a literature review of digital biomarker
technologies for MCI or early-stage Alzheimer disease detection
in home-based settings. Their review showed that technology
using embedded passive sensors may support research on early
decline of cognitive abilities among large populations.

The use of naturalistic settings allows for the planning of
longitudinal studies to detect early symptoms of cognitive
decline using machine learning and unobtrusive technology.
However, we note that coding is a resource-intensive process,
in terms of both the time and cost of human labor, that
necessitates trained resources to generate high-quality codes. It
becomes infeasible in the presence of high volumes of data. An
alternative explored by Yordanova et al [60] is to automate the
coding of social behaviors from the transcripts of everyday
conversations using machine learning and NLP. However, a
fully automated analysis of recorded conversations of older
adults would also necessitate of a system to automatically detect
speech and generate transcriptions that may also incur errors.

Limitations
This study has several limitations. The data set of transcripts
had a limited number of records, as the naturalistic observation
study [27] comprised 4 days of data collection and only 98
participants. We argue that the limited sample size affected the
variability of contexts that were encoded in the transcripts and,
ultimately, the performance of the machine learning models.

This said, we implemented a single cross-validation protocol
for model selection and assessment due to the high number of
runs, algorithms, and prediction exercises under consideration.
However, this procedure may incur bias in reporting
performance results [66]. Therefore, in future studies, we will
consider using procedures, such as repeated stratified nested
cross-validation [66], together with RFE to improve reporting
of model performance.

Moreover, our work was based on a single naturalistic
observation study. Therefore, future studies are planned to
investigate the generalizability of its results.

Additionally, we did not aim at detecting changes in cognitive
ability, as Polsinelli et al [27] performed cognitive ability tests
once, for all participants. In this study, we focused on computing
different families of features and combining them in multiple
runs of machine learning modeling. Therefore, we considered
three algorithms only (ie, RF, XGBoost, and LightGBM) to
predict working memory. In future studies, we plan to use more
advanced models (eg, neural networks) and to collect higher
volumes of data. Finally, as in Polsinelli et al [27], we computed
the cognitive ability of working memory using Keep Track and
Consonant Updating scores, as well as their composite, called
Working Memory. Therefore, in future studies we will consider
predicting scores of other tests [76] and focus on other aspects
of executive functioning [41].

Conclusions
Results from this study support the use of linguistic measure
and social context information from the transcripts of everyday
conversations to predict cognitive ability, namely working
memory, in healthy older adults. Several studies have assessed
the relationship between cognitive abilities and linguistic
measures. However this research is somewhat limited by data
collection in clinical interview settings. Alternatively, the
approach in this study allows us to use everyday settings to
collect and process linguistic measures and social context
information using unobtrusive technology. This provides
preliminary evidence for the design and deployment of early
warning systems that use everyday samples of conversations to
predict cognitive decline in older adults. The detection of early
cognitive decline may allow for the design of intervention
programs to assist older adults, their families, and the health
care system in coping with cognitive decline.
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