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Infertility has got to be a broadly concerned social issue these days, in which the malefactor cannot be overlooked. Numerous
studies have shown that electromagnetic pulse (EMP) radiation may have seriously damaging effects on reproductive health,
through nonthermal effects and oxidative stress. Molecular hydrogen, a selective hydroxyl radical scavenger, explains the
protective effects against many diseases closely associated with oxidative damage, such as ionizing radiation (IR). We sought to
characterize the beneficial effects of molecular hydrogen on the male reproductive system in a rodent EMP exposure model.
The 8-week-old male Sprague-Dawley rats were exposed to EMP (peak intensity 1000 kV/m, pulse edge 20 ns, pulse width
200 ns, 1Hz, and 200 pulses), with or without hydrogen-rich water. The pathological structure of the testis, the rate of
apoptosis of the testis, the serum testosterone level, the sperm parameters, and the activity of the antioxidant enzymes of the
testis were measured. Then, transcriptomic and untargeted metabolomic analyses were applied to uncover the underlying
mechanism. Exposure to EMP increased testicular apoptosis rate and apoptosis protein level, decreased sperm viability and
motility, decreased serum testosterone levels, and diminished testicular antioxidant capacity. Molecular hydrogen-alleviated
damage decreased the testicular apoptosis rate and apoptosis protein level, increased sperm motility, increased serum
testosterone levels, and improved antioxidative capacity. Omics results showed that molecular hydrogen has a strong influence
on metabolic pathways, and EMP affects mainly oxidative phosphorylation, TNF signaling pathways, and cytokine-receptor
interactions. The mechanism of molecular hydrogen’s effect may be related to the reversal of some metabolite levels. These
observations warrant molecular hydrogen as an innovative approach for potential protection against EMP.

1. Introduction

Male reproductive problems have become quite common
worldwide [1]. It should be noted that infertility affects an
estimated 15% of couples worldwide and male reproductive
problems are considered to account for 50% of all cases [2].
Male reproductive problems have become a worldwide
concern.

With the development of electronic technology, electro-
magnetic radiation (EMR) has been widely used in various
fields including communication, industry, and especially
military areas. Thus, EMR has been recognized as one of
the fast-growing environmental pollution sources, whose
impact on human health has attracted much more public
attention than before [3]. Modern people have been exposed
to quite complex EMR environments since the day they were
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born, for example, the frequency of which ranges from
extremely low frequency, power frequency, radiofrequency,
to microwave, not to mention that the most common EMR
exposed scenes are a composition of several kinds of contin-
uous and/or various pulsed electromagnetic waves. Sper-
matogenesis is highly susceptible to exposure to the
external environment, including EMR [4]. Evidence from
epidemiological and experimental studies has generated a
consensus that overexposure to EMR could damage repro-
ductive health issues, including destruction of testicular tis-
sue microstructure, decreased sperm concentration,
reduced sperm motility, decreased serum testosterone levels,
sexual dysfunction, abnormal embryonic development, con-
genital deformity, perinatal death, and abnormal develop-
ment in utero [5–9].

The damage of biological tissue caused by EMR is mainly
through thermal effect and nonthermal effect, and the latter
is the focus of recent research. Studies have shown that elec-
tromagnetic radiation produces nonthermal effects primarily
by altering the redox system of biological tissues, such as
increasing reactive oxygen species (ROS) levels, decreasing
antioxidant enzyme activity, and increasing levels of lipid
oxidation products [10, 11]. Increasing in level of ROS
results in damage to DNA, destruction in the endothelium
of seminiferous tubule, and apoptosis in testicular germ cell
[12, 13].

Given the negative effects of EMR on the human body,
especially the reproductive system, it is extremely urgent to
find safe and effective EMR protectants. Present research
on EMR protectants is mainly focused on two aspects. One
is the nonenzymic antioxidants in organisms, such as
tocopherol and melatonin [14–16]. The other kind is a nat-
ural antioxidant or its extracts, such as Arborescens aloe
juice and the selenium rich Cordyceps fungi [9, 17]. How-
ever, the former often exerts extensive functions, and exces-
sive intake will cause body dysfunction. And the latter need
to be dissolved in solvents and often have certain toxicity.
Collectively, neither of the current EMR protectants is suit-
able enough and new candidates with low toxicity, high
effectiveness, and fine bioavailability are urgently needed to
be exploited.

Molecular hydrogen is the smallest molecule in its natu-
ral state. It is colorless, nontoxic, and permeable to biofilm.
Molecular hydrogen has long been used as “inert gas” in bio-
medicine due to its lack of metabolizable enzymes. In 2007,
Ohsawa et al. reported that molecular hydrogen can effec-
tively alleviate oxidative damage by selectively scavenging
hydroxyl radicals and nitro peroxide anions [18], which
opened a surge of hydrogen biological studies in the follow-
ing years. Until now, the antioxidant capacity of molecular
hydrogen has been verified in many fields. In our previous
work, we have systematically explicated the protective effects
of hydrogen against IR and unveiled parts of the mechanism
[19–22]. We found that its excellent performance on radio-
protection is relevant to its bioactivity of antioxidant, anti-
inflammatory, antiapoptosis, and energy metabolism regula-
tion [23–25]. Thus, as EMR and IR share some common
routines that cause orgasm damage, such as producing
excessive reactive oxygen/nitrogen species, we assume that

molecular hydrogen could also prevent EMR injury. Here,
we investigate whether molecular hydrogen could alleviate
the male reproductive system damage following exposure
to EMP exposure and the possible mechanisms.

2. Materials and Methods

2.1. Ethical Statement. The experimental study was reviewed
and approved by the Naval Medical University Institutional
Animal Care and Use Committee (Shanghai, China, ethical
code: CHREC2019-2). All living conditions and protocols
were approved by the Naval Medical University Institutional
Animal Care and Use Committee following the Guide for
the Care and Use of Laboratory Animals published by the
US NIH (publication No. 96-01).

2.2. Animals. Wild-type male Sprague-Dawley (SD) rats (8
weeks old, weighing 200–220 g) were received from the
Shanghai Laboratory Animal Center of the Chinese Acad-
emy of Science and kept at 23° C to 25° C with a 12h
light/dark cycle. Before the experiment, rats were housed
for one week to adapt to the new environment.

Seventy-five rats were randomly divided into three
groups (25 rats per group): the sham group, the EMP group,
and the EMP+H2 group. Rats in each group were sacrificed
at 5 time points: 3 h, day 1, day 3, day 7, and day 10 after
EMP exposure, 5 rats per time point.

For transcriptomic and metabolomic analyses, 32 rats
were randomly assigned to four groups: the sham group,
the H2 group, the EMP group, and the EMP+H2 group.
Each group encompassed 8 rats. These rats were sacrificed
1 day after EMP exposure.

2.3. EMP Exposure System. The EMP exposure system used
in this study was designed and built at the Department of
Biophysics, East China Normal University, Shanghai, China.
The system is shown in Figure 1(b), which is composed of a
voltage control system (control platform, booster trans-
former, and pulse capacitor), an air pressure control system
(high-purity nitrogen gas, air valve, and barometer), a radia-
tion chamber, and a pulse detection system (voltage divider,
coaxial cable, and oscilloscope). Before radiation exposure,
the high purity nitrogen gas in the pulse capacitor is con-
trolled by the air pressure control valve and air pressure
meter, and the voltage between the two plates of capacitance
is increased by a booster transformer. When the voltage
reaches a certain value, the nitrogen gas is broken down,
and an electrical pulse is generated between the metal lead
plates connected to the capacitance, which propagates along
with the radiation chamber to the end [26]. The EMP is
attenuated by resistance to prevent reflection formation.
Based on our preliminary experimental results, 1000 kV/m,
the maximum voltage of this exposure system, was adopted
to investigate the acute exposure injury induced by EMP.
And an oscilloscope connected to the sampling resistor of
the irradiation chamber was used to detect the waveform
(pulse edge 20 ns, pulse width 200ns, 1Hz, and 200 pulses).

In this study, the molecular hydrogen administration
method was based on free drinking of saturated hydrogen-
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rich water (Figure 1(a)). Before the formal experiment, to
train rats to drink water, rats were fed intermittent drinking
water for 1 week, and water was only administered at 8-10,
12-14, and 16-18 o’clock every day. Three days before
EMP radiation, the water fed to the rats of the EMP+H2
group was replaced with freshly prepared hydrogen-rich
water, which was maintained until the animal sacrifice day.
The concentration of hydrogen in hydrogen-rich water is
shown in Figure S1.

2.4. Determination of Biometric Parameters. Rats were
weighed before anesthetizing with isoflurane at the afore-
mentioned time points. After anesthesia, two testicles from
both sides of each animal were dissected, weighed, and fixed
or frozen with liquid nitrogen as soon. Subsequently, the tes-
ticular index was calculated using the following formula
[27]:

Testis index =
testis weight gð Þ
body weight gð Þ × 1000‰ ð1Þ

2.5. Measurement of Seminiferous Tubule Diameter and
Johnsen Score. The right testis of each rat was dissected, fixed
with 4% paraformaldehyde for at least 24 hours, and then
dehydrated with a graded ethanol series. The sample was
then embedded in paraffin and cut into 4-μm-thick slices
for further staining analysis. Hematoxylin and eosin (HE)
staining was then used to evaluate the histopathological
alteration of the microstructure. According to the method
of Miao et al. [9], 40 seminal tubules were randomly selected

from each rat, and the diameters of the seminiferous tubules
were measured across the minor and major axes. The John-
sen score [28] was used to analyze the histopathological
characteristics of the testis, and 80 seminal tubules were ran-
domly selected from each rat.

2.6. TUNEL Staining. Spermatogenic cell apoptosis was
detected using terminal deoxynucleotidyl transferase-
mediated fluorescent labeling of the nick end (TUNEL),
according to the manufacturer’s protocol (Servicebio,
Wuhan, China). Dehydrated slices were treated with prote-
ase K for 20min and washed with phosphate buffered saline
(PBS) twice. The slices were treated with membrane break-
ing solution at room temperature for 20min and washed
twice with PBS. Then, equilibration solution was added to
cover the samples and incubated at room temperature for
30min, followed by TUNEL reaction mixture and incuba-
tion at 7°C for 2 h. After washing with PBS for 4 times, the
slides were immersed in a dyeing cylinder containing 1μg/
mL 4,6-diamidino-2-phenylindole (DAPI) solution and
dyed for 8min. Digital images were taken from each stained
tissue section (Pannoramic DESK, P-MIDI, P250, Hungary).
The percentage of TUNEL-positive cells was calculated
using the ImageJ analytical software.

2.7. Western Blot Assay. The protein was extracted by using
M-PER mammalian protein extraction reagent (Thermo
Fisher Scientific) according to the manufacturer’s instruc-
tions. After blocking for 1 hour at room temperature, the
PVDF membranes were probed overnight at 4°C with
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Figure 1: EMP exposure and molecular hydrogen administration. (a) Schematic diagram of the molecular hydrogen administration. The
EMP+H2 group and the H2 group received hydrogen-rich water at 8-10, 12-14, and 16-18 o’clock, while the sham group and the EMP
group received ordinary drinking water. (b) Schematic diagram of EMP exposure process. The pulse width selected in this experiment is
fixed at 200 ns, and the rising edge is 20 ns. Each rat was exposed to 200 pulses with an electromagnetic field intensity of 1000 kV/m.
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primary antibodies such as Bax, cleaved caspase-3 (Cell Sig-
naling Technology, 1 : 1000), and Actin (Proteintech,
1 : 1000) and then the secondary antibody (Cell Signaling
Technology, 1 : 5000).

2.8. Serum Testosterone Analysis. About 5mL of blood sam-
ples were taken through heart puncture and placed in bio-
chemical tubes for the analysis of serum testosterone levels,
while the rats were under deep anesthesia. After coagulation,
blood was centrifuged at 4° C and 1500 g for 15min. Serum
was placed in Eppendorf tubes and kept at -80°C until anal-
ysis. The serum testosterone level of each rat was measured
by ELISA according to the manufacturer’s instruction (Jian-
cheng, Nanjing, China).

2.9. Computer-Aided Sperm Analyze (CASA). The left cauda
epididymis was taken, and sperm cells were extracted by a
fine needle puncture. Sperm cells were then added to the
prebalanced and preheated sperm capacitation fluid for 15
minutes. The capacitated sperm was diluted 100 times, and
then the sperm parameter was analyzed using a computer-
aided sperm analyzer (Nanning, Songjingtian
Biotechnology).

2.10. Antioxidant Enzymes and Lipid Peroxide Analysis.
Total protein concentration was determined using a protein
quantification kit (Jiancheng, Nanjing, China). The protein
concentration, total antioxidant capacity (T-AOC), superox-
ide dismutase (SOD), malondialdehyde (MDA), glutathione
peroxidase (GSH-Px), glutathione (GSH), and catalase
(CAT) activities or concentrations were measured according
to the manufacturer’s instruction (Jiancheng, Nanjing,
China).

2.11. Transcriptome Sequencing. Total RNA was extracted
and purified using an RNeasy mini kit (Qiagen, Germany).
cDNA libraries were constructed using the TruSeq®
Stranded Total RNA Sample Preparation Kit (Illumina,
USA) following the manufacturer’s instructions. Purified
libraries were sequenced on an Illumina HiSeq 2000 system
(Illumina, USA). Raw sequencing reads were preprocessed
by filtering out rRNA reads, sequencing adapters, short frag-
ment reads, and other low-quality reads. Tophat v2.0.9 [29]
was used to map the cleaned reads to the mouse mm10 ref-
erence genome with two mismatches. After genome map-
ping, we ran Cufflinks v2.1.1 [30] with a reference
annotation to generate FPKM values for known gene
models. Fold changes were also estimated according to the
FPKM in each sample. Differentially expressed genes
(DEG) were selected using the following filter criteria: P
value <0.05 and fold change <2.

2.12. Untargeted Metabolomic Analyses. The samples were
analyzed using ultrahigh-performance liquid chromatogra-
phy (1290 Infinity LC, Agilent Technologies) coupled to a
quadrupole time-of-flight system (AB Sciex TripleTOF
6600). Metabolites were identified by comparing their mass
spectra with an in-house database established using available
authentic standards. Univariate analysis was performed for
all metabolites detected between the two comparison groups

(Figure S4). Subsequently, multivariate analysis was
performed including principal component analysis (PCA),
partial least-squares discriminant analysis (PLS-DA), and
orthogonal partial least-squares discriminant analysis
(OPLS-DA, Figure S5-9). The variable importance in the
projection (VIP) value of each variable in the OPLS-DA
model was calculated. Differential metabolites (DM) were
selected using the following filter criteria: P value <0.05
and VIP value >1.

2.13. Statistical Analysis. All data were presented as mean
± SD, and statistical analysis was performed using SPSS
22.0 software (SPSS Inc., Chicago, USA). GraphPad Prism
8 Software (GraphPad Software Inc., California, USA) was
used to make the graphs. Additionally, statistical signifi-
cances between the two groups were determined by the Stu-
dent’s-t-test. Differences were considered statistically
significant when the P value was less than 0.05.

3. Results

3.1. Sperm Parameter. Compared with the sham group, the
sperm viability and motility were decreased in the EMP
group, and the results were statistically significant at 3hours
and day 1 (P < 0:05, Figures 2(a) and 2(b)). Meanwhile,
molecular hydrogen treatment significantly alleviated the
decrease in sperm motility caused by exposure to EMP at 3
hours and day 1 (P < 0:05, Figure 2(a)). However, molecular
hydrogen treatment did not show a detectable effect on
sperm viability. And the sperm concentration and deformity
rate seemed not to be implicated much in EMP exposure
(Figures 2(c) and 2(d)).

3.2. Serum Testosterone Levels. Serum testosterone levels
were significantly lower in the EMP group at day 1, day 3,
and day 7 compared with the sham group (P < 0:05,
Figure 2(e)). According to the line chart, the serum testoster-
one level reached its lowest level at day 3 and gradually
recovered. Molecular hydrogen moderated the injury ten-
dency caused by EMP exposure over the observation time
course with a significant difference at day 7 (P < 0:05).

3.3. Histopathological Changes. At different times after expo-
sure to EMP, there was no significant change in testicular
index and average testicular diameter between the sham
group, the EMP group, and the EMP+H2 group
(Figures 3(b) and 3(c)). However, compared with the sham
group, the histological structure of the seminiferous tubules
in the EMP group was changed. Spermatogenic cells are
arranged disorderly, and even in some spermatogenic
tubules, the spermatogenic cells are separated from the base-
ment membrane, or vacuoles are common (Figure 3(a)).
Compared with the sham group, testicular microstructure
injuries were detected in the EMP group, which were uni-
formly alleviated by molecular hydrogen treatment, espe-
cially at 3 hours and day 1 (P < 0:05, Figure 3(d)).

3.4. Testicular Apoptosis. The TUNEL staining of testicular
tissues is depicted in Figure 4(a). The green fluorescence in
the TUNEL stains represents apoptotic cells, which were
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mainly distributed in the outer layer of the seminiferous
tubules. This indicates that primary spermatocytes are more
vulnerable to EMP. The percentages of apoptotic cells in the
testis of the EMP group were significantly higher than those
in the sham group and reached the highest level at day 1

(P < 0:05, Figure 4(b)). The percentages of apoptotic cells
in the testis of the EMP+H2 group were significantly lower
than those in the EMP group (P < 0:05). These data suggest
that molecular hydrogen could attenuate EMP exposure-
induced apoptosis in testicular cells.
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Figure 2: Effects of molecular hydrogen treatment on sperm quality and serum testosterone levels of rats exposed to EMP. (a) Sperm
motility. (b) Sperm viability. (c) Sperm concentration. (d) Sperm deformity rate. (e) Serum testosterone levels. ∗: the difference between
the EMP group and the sham group was statistically significant (P < 0:05). #: the difference between the EMP+H2 group and the EMP
group was statistically significant (P < 0:05).
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The western blot assay of testicular tissue protein
showed that molecular hydrogen could reduce the increase
of apoptotic proteins induced by EMP exposure. Expression
levels of Bax and cleaved caspase-3 apoptotic proteins
increased in the EMP group compared to the sham group
(P < 0:05, Figures 5(a)–5(c)). Meanwhile, molecular hydro-
gen could reduce the increase in the apoptotic proteins Bax
and cleaved caspase-3 induced by EMP (P < 0:05,
Figures 5(d) and 5(e)).

3.5. Antioxidant Enzyme, MDA, and GSH. T-AOC activity
decreased in the EMP group compared to the sham group,
especially at day1. Molecular hydrogen treatment could alle-
viate the decrease in T-AOC activity at different time points
after exposure, although the results were not statistically sig-
nificant (Figure 6(a)).

The testis in the EMP group showed decreased SOD
activity, especially at 3 hours, day 1, and day 3, compared
to the sham group (P < 0:05). And molecular hydrogen
treatment could alleviate the decrease of SOD activity at
day 3 (P < 0:05, Figure 6(b)). Compared with the sham
group, the MDA levels in the EMP group were increased at
3hour and day 1 (P < 0:05). MDA levels in the EMP+H2
group at day 3 were significantly lower than those in the
EMP group (P < 0:05, Figure 6(c)). There was no significant
difference in CAT activity among the sham group, the EMP
group, and the EMP+H2 group (Figure 6(d)).

Compared with the sham group, the GSH levels in the
EMP group decreased at day 1 and day 3 (P < 0:05). And
molecular hydrogen treatment did not affect the changes of
GSH levels (Figure 6(e)). However, compared with the

EMP group, GSH-Px activity in the EMP+H2 group
increased significantly at day 3 (P < 0:05, Figure 6(f)).

3.6. Identification of DEGs. Heatmap and volcano plots were
used to show the changes in gene expression profiles in the
H2 group versus the sham group, the EMP group versus
the sham group, and the EMP+H2 group versus the EMP
group (Figure S2, S3). The results showed that 106
upregulated and 113 downregulated DEGs were identified
in the H2 group compared with the sham group. A total of
77 DEGs downregulated and upregulated, and 128 DEGs
were identified in the EMP group compared to the sham
group. A total of 97 upregulated and 102 downregulated
DEGs were identified in the EMP+H2 group compared
with the EMP group.

3.7. Gene Ontology (GO) Analyses of DEGs. The top 30 GO
terms with statistical significance for DEGs identified in
the H2 group versus the sham group, the EMP group versus
the sham group, and the EMP+H2 group versus the EMP
group are shown in Figure 7.

3.8. Kyoto Encyclopedia of Genes and Genomes (KEGG)
Pathway Analyses of DEGs. The molecular pathways of the
identified DEGs were annotated by KEGG analysis. The
results for the top 20 closely related pathways to the patho-
genesis of the disease are shown in Figure 8.

3.9. Identification of DMs. Heatmap was used to show the
changes in metabolite profiles in the H2 group versus the
sham group, the EMP group versus the sham group, and
the EMP+H2 group versus the EMP group.
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Figure 3: Effects of molecular hydrogen treatment on the testicular index, seminiferous tubule diameter, and Johnsen score in EMP-exposed
rats. (a) Image of HE stains of testis. The red star represents the vacuole in the seminiferous tubule. The upward red arrow points to
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score of seminiferous tubules of rats. ∗: the difference between the EMP group and the sham group was statistically significant (P < 0:05
). #: the difference between the EMP+H2 group and the EMP group was statistically significant (P < 0:05).
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Figure 4: Effects of molecular hydrogen treatment on testicular cell apoptosis in rats exposed to EMP. (a) Representative images of
spermatogenic cell apoptosis in testicles of rats following TUNEL staining. (b) Histogram of spermatogenic cell apoptosis rate. ∗: the
difference between the EMP group and the sham group was statistically significant (P < 0:05). #: the difference between the EMP+H2
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Compared to the sham group, 16 metabolites were
decreased, including DL-2-phosphoglycerate, vanillin, ura-
cil, 5-amino-4-carbamoylimidazole, cytidine, N-acetylglu-
cosamine-1-phosphate, arachidonic acid (free of
peroxide), L-glutamate, L-threonine, 3-hydroxy-3-methyl-
glutaric acid, 16-hydroxypalmitic acid, thymidine, panto-
thenate, citrate, isopentenyl adenosine, and methoxyacetic
acid, and only benzylamine was increased in the H2 group.

Compared with the sham group, 12 metabolites
decreased, including uric acid, adrenic acid, 2E-eicosenoic
acid, myristic acid, palmitic acid, L-serine, uracil, isopente-

nyl adenosine, L-leucine, betaine aldehyde, L-pyroglutamic
acid, and methoxyacetic acid, and 3 metabolites increased,
including 3-indole propionic acid, (S)-2-hydroxyglutarate,
and 2-ethyl-2-hydroxybutyric acid, in the EMP group.

Compared with the sham group, 16 metabolites were
increased, including 3-hydroxy-3-methyl-glutaric acid, L-
serine, m-chlorohippuric acid, D-ribose, L-pyroglutamic
acid, betaine aldehyde, 2′-O-methylcytidine, N6-methylade-
nosine, xanthine, isopentenyl adenosine, betaine, pantothe-
nate, choline, tyramine, and thymine, and 2 metabolites
was decreased, including 3-indole propionic acid and
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Figure 5: Effects of molecular hydrogen treatment on the expression levels of apoptosis proteins in the testicles of rats exposed to EMP. (a–
c) Expression levels of Bax and C-caspase-3 in testis. Two samples were randomly selected from each group for western blot analysis. (d and
e) Expression levels of Bax and C-caspase-3 in the testis at day 1. Three samples were randomly selected from each group for western blot
analysis. ∗: the difference between the EMP group and the sham group was statistically significant (P < 0:05). #: the difference between the
EMP+H2 group and the EMP group was statistically significant (P < 0:05).

9Oxidative Medicine and Cellular Longevity



Day 10
0.00

0.05

0.10

0.15

T-
A

O
C 

(m
m

ol
/g

pr
ot

)

Sham
EMP
EMP + H2

3 hour Day 1 Day 3 Day 7

⁎

(a)

0

200

400

600

800

SO
D

 (U
/m

gp
ro

t)

Day 10

Sham
EMP
EMP + H2

3 hour Day 1 Day 3 Day 7

⁎ ⁎ ⁎
#

(b)

0.0

0.5

1.0

1.5

2.0

M
D

A
 (n

m
ol

/m
gp

ro
t)

Day 10

Sham
EMP
EMP + H2

3 hour Day 1 Day 3 Day 7

⁎

⁎ #

(c)

0

1

2

3

4

5

G
SH

 (𝜇
m

ol
/g

pr
ot

)

Day 10

Sham
EMP
EMP + H2

3 hour Day 1 Day 3 Day 7

⁎ ⁎

(d)

0

5

10

15

20

G
SH

-P
x 

(U
/m

gp
ro

t)

Day 10

Sham
EMP
EMP + H2

3 hour Day 1 Day 3 Day 7

#

(e)

0

1

2

3

4

CA
T 

(U
/m

gp
ro

t)

Day 10

Sham
EMP
EMP + H2

3 hour Day 1 Day 3 Day 7

(f)

Figure 6: Effects of molecular hydrogen treatment on antioxidant enzymes, MDA, and GSH in the testis of rats exposed to EMP. (a) T-AOC
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statistically significant (P < 0:05).
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Figure 7: Continued.
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allopurinol riboside in the EMP+H2 group. Interestingly, of
the 3 increased DMs after EMP exposure, 3-indole propionic
acid was decreased in the EMP+H2 group. Of the 12 DMs
that decreased after exposure to EMP, L-serine, betaine alde-
hyde, and isopentenyl adenosine increased in the EMP+H2
group (Figure 9).

3.10. KEGG Pathway Analyses of DMs. The molecular path-
ways of the identified DMs were annotated by KEGG analy-
sis. The results for the top 20 closely related pathways to the
pathogenesis of the disease are shown in Figure 10.

4. Discussion

While benefitting from the rapid development of communi-
cation technology, people also face the problem of the long-

term and complex EMR exposure. A significant decline in
sperm quality from 1940 to date has been documented in
association to increased environmental pollution and
changes in the lifestyle, of which EMR pollution is an impor-
tant factor. It should also be taken into account that Wi-Fi-
equipped mobile phones and personal computers are often
located close to the reproductive organs [31]. Being repro-
ductive functions highly sensitive to microenvironment per-
turbations, efforts to protect human reproductive potential
are necessary and urgent.

In the present study, a rodent model was used to inves-
tigate whether molecular hydrogen could alleviate the dam-
age to the male reproductive system caused by EMP
exposure. Our data strongly support this hypothesis and
suggest that molecular hydrogen treatment reduced EMP
exposure-induced damage to the testis in rats. The results
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Figure 7: GO analyses of significant DEGs. The horizontal coordinates are the top 30 enriched GO terms under the three categories of GO
(from left to right, biological processes, molecular functions, and cellular components), and the vertical coordinate is the number of DEGs
annotated to the term. (a) The H2 group vs. the sham group. (b) The EMP group vs. the sham group. (c) The EMP+H2 group vs. the EMP
group.
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of CASA showed that molecular hydrogen could alleviate
the decrease in sperm motility induced by EMP exposure
but had no effect on sperm viability. ELISA results showed
that molecular hydrogen could reduce serum testosterone
decline caused by exposure to EMP and accelerate its
recovery.

Sperm in the epididymis are vulnerable to oxidative
stress due to lack of cytoplasmic protection and the high
content of polyunsaturated fatty acids in the components
of the plasma membrane of sperm. Long-term exposure to
high-intensity EMR can reduce sperm concentration and
motility in Cauda epididymis, thus affecting male reproduc-
tive ability. ROS are considered an important cause of EMR-
induced sperm injury. Studies have found that long-term
exposure to EMR increased lipid peroxidation and rupture
of the middle plasma membrane in sperm [6]. The mito-
chondria coiled at the tail of the sperm are an important
source of energy for the sperm to swim forward. A large
number of studies have revealed the harmful effects of
EMR from mobile phones, laptops, and other electronic
devices on sperm quality and provided evidence that exten-
sive electron leakage in the mitochondrial electron transport
chain is the main cause of EMR damage [31]. Consistently,
our study found that sperm viability and motility decreased
significantly at 3hours and day 1, suggesting that exposure to

EMP caused acute sperm injury. Molecular hydrogen treat-
ment could significantly alleviate the decrease in sperm
motility caused by exposure to EMP, which could be related
to the regulation of antioxidant enzyme activity, direct
reduction of ROS production, and further protection of
mitochondrial function.

Oxidative stress is one of the most recognized causes of
male infertility. And increasing evidence leads people to
assume that EMR can interfere with the cellular oxidative/
antioxidant balance, both in vitro and in vivo. There is
increasing evidence suggesting that EMR exposure during
spermatogenesis induces a redox imbalance due to both an
increase of ROS production and a decrease in ROS scaveng-
ing activity [31]. A plethora of studies demonstrated that
prolonged EMR exposure caused an increase in ROS pro-
duction and an imbalance in total antioxidant capacity in
terms of reduction of GSH-Px, CAT, and SOD which leads
to increased lipid peroxidation in rat sperm and testis [32].
The resulting imbalance in the redox status altered the
sperm cycle progression and activated the apoptotic pro-
gram through the reduction of bcl-2 expression and the raise
of Bax, cytochrome c, and caspase-3 protein and gene
expression [31]. These findings are consistent with our
results of detecting testicular apoptosis by TUNEL staining
and western blot.
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Figure 8: KEGG pathway analyses of DEGs identified by comparing before and after exposure to EMP or H2 treatment. The vertical
coordinate indicates the name of the pathway, and the horizontal coordinate indicates the rich factor corresponding to the pathway. (a)
The H2 group vs. the sham group. (b) The EMP group vs. the sham group. (c) The EMP+H2 group vs. the EMP group.
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Molecular hydrogen can penetrate the membrane struc-
ture of cell membrane and organelle and rapidly diffuse into
tissues and cells without affecting the signal transduction
process. When molecular hydrogen enters the subcellular
structure, it can reduce the excessive ROS and reactive nitro-
gen produced under pathological conditions and plays a
protective role on the subcellular structure [33]. Further-
more, our study indicated that molecular hydrogen could
also alleviate the decreased SOD activity, increase the
GSH-Px activity, and finally increase the T-AOC in organ-
isms, exerting its protective effect on EMP exposure. SOD
is an antioxidant metal enzyme present in organisms. It
can catalyze superoxide anion radical disproportionation to
produce oxygen and hydrogen peroxide, which plays a vital
role in the balance of oxidation and antioxidation in vivo.
GSH-Px is another important peroxidase enzyme that exists

widely in vivo. GSH-Px promotes the reaction of hydrogen
peroxide with reduced glutathione (GSH) to produce water
and oxidize glutathione. Our results indicated that EMP
exposure affected the balance of antioxidant enzyme systems
in the testis of rats, resulting in decreased T-AOC and SOD
activities. EMP exposure led to inefficient and delayed clear-
ance of excess free radicals in the testis, which significantly
increased MDA levels. The experimental results showed that
molecular hydrogen treatment could increase antioxidant
enzyme activity and reduce MDA levels. This may be the
mechanism by which molecular hydrogen plays a role in
alleviating the damage of exposure to EMP to the male
reproductive system.

It has been experimentally demonstrated that molecular
hydrogen could selectively scavenge hydroxyl radicals and
nitro peroxide anions [18]. However, the specific mechanism
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Figure 9: Metabolites associated with the protective effect of molecular hydrogen treatment on the testis of EMP-exposed rats. (a) L-Serine.
(b) Betaine aldehyde. (c) Isopentenyladenosine. (d) 3-indolepropionic acid. ∗: the difference between the EMP group and the sham group
was statistically significant (P < 0:05). #: the difference between the EMP+H2 group and the EMP group was statistically significant
(P < 0:05).
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Figure 10: Metabolomic analysis of the protective effect of molecular hydrogen treatment on the testis of rats exposed to EMP. (a) Heatmap
of DMs between the H2 group and the sham group. (b) KEGG pathway analysis of DMs between the H2 group and the sham group. (c)
Heatmap of DMs between the EMP group and the sham group. (d) KEGG pathway analysis of DMs between the EMP group and the
sham group. (e) Heatmap of DMs between the EMP+H2 and the EMP group. (f) KEGG pathway analysis of DMs between the EMP
+H2 and the EMP group.
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by which molecular hydrogen functions in living organisms
has not been elucidated until now. To further explore the
mechanism of molecular hydrogen in protecting rat testis
from EMP exposure, transcriptomic and untargeted metabo-
lomics were used to search for potential genes, metabolites,
or pathways.

Currently, some research reports [34, 35] have con-
ducted beneficial investigations, but we are the first to utilize
transcriptomic and untargeted metabolomics to analyze the
mechanism of EMP exposure and molecular hydrogen on
rat testis. The present study indirectly reflected the differ-
ence in gene expression by comparing the difference in gene
transcript abundance between the H2 group and the sham
group and found 106 upregulated and 113 downregulated
DEGs, strongly suggesting that molecular hydrogen can
cause significant changes in the gene expression profile of
rat testis. Through GO analyses of DEGs, it was realized that
molecular hydrogen mainly affects biological processes such
as triglyceride metabolism, as well as some essential molecu-
lar functions such as triglyceride lipase activity and carbox-
ylate hydrolase activity. KEGG pathway analyses of DEGs
revealed that molecular hydrogen mainly affects amino acid
biosynthesis, metabolic pathways, retinol metabolism, adi-
pocytes lipolysis, taste conduction, and glycerolipid metabo-
lism. Furthermore, KEGG pathway analyses of DMs
revealed that molecular hydrogen mainly influences central
carbon metabolism in cancer, central carbon metabolism
in cancer, pyrimidine metabolism, amino acid biosynthesis,
carbon metabolism, and ABC transporters. On the one
hand, our findings deepened the understanding that molec-
ular hydrogen could scavenge the hydroxyl radical and affect
intracellular metabolism [36]. However, it is still urgently
needed to further clarify the biological mechanism underly-
ing molecular hydrogen.

In the present study, 77 up regulated and 128 downreg-
ulated DEGs were identified by comparing the EMP group
and the sham group. GO analyses of DEGs revealed that
EMP mainly affects biological processes such as positive reg-
ulation of urine volume, mitochondrial electron transport
(NADH to ubiquinone), and cellular response to IL-1, as
well as molecular functions such as cytokine activity and
receptor-ligand activity. KEGG pathway analyses of DEGs
revealed that EMP mainly affects ribosomes, oxidative phos-
phorylation, TNF signaling pathway, and cytokine-cytokine
receptor interaction. KEGG pathway analyses of DMs
revealed that EMP mainly affects metabolic pathways such
as fatty acid biosynthesis, amino tRNA biosynthesis, and
(Gly, serine, and threonine) metabolism and signaling path-
ways such as the mTOR signaling pathway and sphingolipid
signaling pathway.

Compared with the EMP group, the EMP+H2 group
had 97 upregulated and 102 downregulated DEGs. GO ana-
lyzes revealed that DEGs in the EMP+H2 group versus the
EMP group were mainly enriched in molecular functions
such as structural components of the ribosome and carbohy-
drate binding, cellular components such as the ribosome, the
ribonucleoprotein complex, and the cytoplasmic ribosome.
KEGG pathway analyses showed that DEGs in the EMP
+H2 group versus the EMP group were mainly enriched in

olfactory conduction, cell adhesion molecules, Apelin signal-
ing pathway, cellular senescence, and phagosome. KEGG
pathway analyses of DMs revealed that EMP mainly affects
(Gly, serine, and threonine) the metabolism, the sphingoli-
pid signaling pathway, and the ABC transporters. Interest-
ingly, 3-indole propionic acid was increased in the EMP
group (vs. the sham group) and decreased in the EMP+H2
group (vs. the EMP group). Meanwhile, L-serine, betaine
aldehyde, and isopentenyl adenosine have been decreased
in the EMP group (vs. the sham group) and increased in
the EMP+H2 group (vs. the EMP group). From the above
results, we believe that the protective mechanism of molecu-
lar hydrogen is related to its effect on intracellular ribosome,
cell adhesion molecules, cellular senescence, and phago-
some. The protective mechanism of molecular hydrogen is
also related to its reversal of metabolite changes caused by
EMP exposure.

Molecular hydrogen, as a kind of diatomic molecule with
weak reducibility, has anti-inflammatory and antioxidant
effects in many animal and clinical experiments [26,
37–39]. At present, molecular hydrogen has been found to
have certain therapeutic effects on more than 200 diseases,
and similar results have been achieved in preliminary clini-
cal trials. Interestingly, anaerobic bacteria in the human
intestinal tract continuously produce hydrogen during
anaerobic fermentation every day. The reported amount of
hydrogen generated per day is between 150mL and 12L
[40]. Kajiya et al. [41] found that antibacterial drugs elimi-
nated hydrogen-producing bacteria in the mouse intestinal
tract and aggravated drug-induced hepatitis. These results
indicated that the hydrogen produced by anaerobic bacteria
plays an essential role in the physiological maintenance of
organisms.

In many studies, it has been found that EMP exerts a
detrimental effect on reproductive system including testis,
leading to decreased sperm quality [42, 43]. Also, many
researchers have been trying to explore methods to prevent
these damages, for example, some of whom have observed
that melatonin or some other natural extracts can protect
against these injuries [9, 15–17]. Recently, it has been
reported that molecular hydrogen combined with Korean
red ginseng extract can improve spermatogenesis and sperm
motility in male mice [44]. In the current study, however, it
is first time for molecular hydrogen to be reported to play a
protective role against acute sperm damage caused by EMP
exposure, which is in accordance with our previous work
that molecular hydrogen can alleviate the ionizing radiation
injuries by selectively scavenging reactive oxygen species [20,
22, 45, 46]. Moreover, our findings are also consistent with
those of others that molecular hydrogen can also mitigate
oxidative damages induced by other factors such as hydro-
gen peroxide, greatly expanding its potential application
scope [47].

As a potential EMR protection agent, molecular hydro-
gen has many advantages, such as convenient use, small
toxic and side effects, and good curative effect. However,
the research on molecular hydrogen is still in the preclinical
stage, and the clinical research using molecular hydrogen is
still rare, requiring large-scale clinical research. We are
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currently conducting a clinical intervention research on the
treatment of male infertility with molecular hydrogen in
our Reproductive Medicine Center, in the hope of providing
us with more clinical support. Until now, the specific
mechanism by which molecular hydrogen functions in living
organisms has not been elucidated. Although experimental
evidence such as molecular hydrogen could selectively
inhibit hydroxyl free radicals and peroxynitrite anion has
been obtained, the specific metabolic pathways of hydrogen
in vivo are still unclear.

5. Conclusion

Our study found that molecular hydrogen can reduce the
damage of EMP exposure to the reproductive system of male
rats, and its protective mechanism related to intracellular
ribosome, cell adhesion molecules, cellular senescence,
phagosome, and intracellular metabolism. Molecular
hydrogen might be used as a new strategy to prevent electro-
magnetic radiation-induced damage on the male reproduc-
tive system.
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Figure S1: decline curve of hydrogen concentration in
freshly prepared hydrogen-rich water after exposure to
air. The dotted line represents the saturation concentration
of hydrogen. And when the temperature is 26°C, the salt
concentration is 0‰, and the saturation concentration of
hydrogen at standard atmospheric pressure is 776.79
(μmol/L). Figure S2: volcano plot of the differential gene
expression profile. Each point in the differential expression
volcano plot represents a gene, the abscissa represents the
logarithm of the difference in the expression level of a
gene between two samples, and the ordinate represents

the negative logarithm of the P value. The green dots
represent downregulated DEGs, the red dots represent
upregulated DEGs, and the black dots represent non-
DEGs. (A) The H2 group vs. the sham group. (B) The
EMP group vs. the sham group. (C) The EMP+ H2 vs.
the EMP group. Figure S3: heatmap of the differential
expression profile of genes. Each column represents one
sample, and each row represents one gene. Red indicates
upregulation and blue indicates downregulation. The
upper side shows the tree diagram of the sample cluster-
ing. The closer the branches of two samples are to each
other, the closer the expression pattern of all differential
genes in these two samples. The left side shows the tree
diagram of gene clustering. The closer the two gene
branches are to each other, the closer their expressions
are. (A) The H2 group vs. the sham group. (B) The
EMP group vs. the sham group. (C) The EMP+ H2 vs.
the EMP group. Figure S4 Volcano plot of the differential
expression profile of metabolites. The horizontal coordi-
nate is the log2 value of the differential expression multi-
plier, and the vertical coordinate is the log10 value of
the significant P value. Metabolites meeting FC>1.5 and
P value <0.05 are shown in red, and metabolites that meet
FC<0.67 and P value <0.05 are shown in blue. Nonsignif-
icantly different metabolites are shown in black. (A) The
H2 group vs. the sham group (positive and negative ion
mode). (B) The EMP group vs. the sham group (positive
and negative ion mode). (C) The EMP vs. the EMP+ H2
group (positive and negative ion mode). Figure S5: PCA
score graph of metabolites. In the figure, t[1] represents
principal component 1, t[2] represents principal compo-
nent 2, and the ellipse represents the 95% confidence
interval. The dots of the same color indicate the individual
biological replicates within the group. The distribution sta-
tus of the points reflects the degree of variation between
and within the groups. (A) The H2 group vs. the sham
group (positive and negative ion mode). (B) The EMP
group vs. the sham group (positive and negative ion
mode). (C) The EMP+ H2 vs. the EMP group (positive
and negative ion mode). Figure S6: PLS-DA score graph
of metabolites. In the figure, t[1] represents principal com-
ponent 1, t[2] represents principal component 2, and the
ellipse represents the 95% confidence interval. The dots
of the same color indicate the individual biological repli-
cates within the group. The distribution status of the
points reflects the degree of variation between and within
groups. (A) The H2 group vs. the sham group (positive
and negative ion mode). (B) The EMP group vs. the sham
group (positive and negative ion mode). (C) The EMP+
H2 vs. the EMP group (positive and negative ion mode).
Figure S7: PLS-DA permutation test of metabolites. The
horizontal coordinate indicates the replacement retention,
i.e., the proportion that is consistent with the order of
the original model Y variables, and the vertical coordinate
indicates the R2 and Q2 values. The green dots indicate R2,
the blue dots indicate Q2, and the two dashed lines indi-
cate the regression lines of R2 and Q2, respectively. The
R2 and Q2 in the upper right corner indicate that the
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replacement retention is equal to 1, i.e., the R2 and Q2

values of the original model. (A) The H2 group vs. the
sham group (positive and negative ion mode). (B) The
EMP group vs. the sham group (positive and negative
ion mode). (C) The EMP+ H2 vs. the EMP group (positive
and negative ion mode). Figure S8: OPLS-DA score graph
of metabolites. In the figure, t[1] represents principal com-
ponent 1, t[2] represents principal component 2, and the
ellipse represents the 95% confidence interval. The dots
of the same color indicate the individual biological repli-
cates within the group. The distribution status of the
points reflects the degree of variation between and within
groups. (A) The H2 group vs. the sham group (positive
and negative ion mode). (B) The EMP group vs. the sham
group (positive and negative ion mode). (C) The EMP+
H2 vs. the EMP group (positive and negative ion mode).
Figure S9: OPLS-DA permutation test of metabolites.
The horizontal coordinate indicates the replacement reten-
tion, i.e., the proportion that is consistent with the order
of the original model Y variables, and the vertical coordi-
nate indicates the R2 and Q2 values. The green dots indi-
cate R2, the blue dots indicate Q2, and the two dashed
lines indicate the regression lines of R2 and Q2, respec-
tively. The R2 and Q2 in the upper right corner indicate
that the replacement retention is equal to 1, i.e., the R2

and Q2 values of the original model. (A) The H2 group
vs. the sham group (positive and negative ion mode). (B)
The EMP group vs. the sham group (positive and negative
ion mode). (C) The EMP+ H2 vs. the EMP group (positive
and negative ion mode). (Supplementary Materials)
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