
1Leung M, et al. BMJ Open 2020;10:e036850. doi:10.1136/bmjopen-2020-036850

Open access�

Linear growth and mid-childhood 
cognitive outcomes in three birth 
cohorts of term-born children: an 
approach to integrating three growth 
models to explore critical windows

Michael Leung  ‍ ‍ ,1,2 Aditi Krishna,2,3 Seungmi Yang  ‍ ‍ ,4 Diego G Bassani,2,5,6 
Daniel E Roth2,5,6

To cite: Leung M, Krishna A, 
Yang S, et al.  Linear growth 
and mid-childhood cognitive 
outcomes in three birth cohorts 
of term-born children: an 
approach to integrating three 
growth models to explore 
critical windows. BMJ Open 
2020;10:e036850. doi:10.1136/
bmjopen-2020-036850

►► Prepublication history and 
additional material for this 
paper are available online. To 
view these files, please visit 
the journal online (http://​dx.​doi.​
org/​10.​1136/​bmjopen-​2020-​
036850).

Received 07 January 2020
Revised 20 May 2020
Accepted 18 July 2020

For numbered affiliations see 
end of article.

Correspondence to
Michael Leung;  
​michael_​leung@​g.​harvard.​edu

Original research

© Author(s) (or their 
employer(s)) 2020. Re-use 
permitted under CC BY. 
Published by BMJ.

ABSTRACT
Objective  To illustrate that a mediation framework can 
help integrate inferences from three growth models to 
enable a comprehensive view of the associations between 
growth during specific developmental windows and mid-
childhood IQ.
Design  We analysed direct and indirect associations 
between mid-childhood IQ and length/height growth in five 
early-life age intervals bounded by conception, birth, early, 
mid and late infancy, and mid-childhood using estimates 
from three growth models (lifecourse, conditional change 
and change score) applied to three historical birth cohorts.
Participants and setting  12 088 term-born children 
from the Collaborative Perinatal Project (CPP) in the USA 
(n=2170), the Promotion of Breastfeeding Intervention Trial 
(PROBIT) in Belarus (n=8275) and the Cebu Longitudinal 
Health and Nutrition Survey (CLHNS) in the Philippines 
(n=1643).
Primary outcome measure  Mid-childhood IQ.
Results  Our analyses revealed cross-cohort and cross-
interval variations in the direct and indirect effects of foetal 
and early childhood physical growth on mid-childhood 
IQ. For example, in CPP, there was a direct association of 
prenatal growth with IQ that was not evident in the other 
cohorts, whereas in PROBIT and CLHNS, we observed that 
foetal and early growth-IQ associations were mediated 
through size in later periods.
Conclusion  Lifecourse, conditional change and change 
score growth models yield complementary inferences 
when appropriately interpreted. Future longitudinal studies 
of associations of early-life growth with later outcomes 
would benefit from adopting a causal mediation framework 
to integrate inferences from multiple complementary 
growth models.

INTRODUCTION
Three Lancet series on child development1–3 
have identified constrained physical growth 
in early-life, from conception to age 2 years, 
as one of the key risk factors for impaired 
cognitive achievement among children from 
low-income and middle-income countries. 

However, many population-based studies 
of the association between growth and 
cognition have relied on single or repeated 
cross-sectional measures of body length/
height rather than longitudinal assessment 
of growth trajectories, providing limited 
insights into particularly sensitive growth 
phases that may be strongly associated with 
childhood cognitive scores.

Estimates of the association between 
growth and later outcomes in longitudinal 
studies commonly use one of three statistical 
approaches, which we refer to here as the 
lifecourse model, conditional change model 
or the change score model4–7 (table 1). The 
relative advantages of each approach have 
been previously described,4 8 yet it is now 
recognised that the three models are alge-
braically interrelated and yield contrasts 
that are complementary rather than contra-
dictory.7 9

Causal mediation analysis helps provide a 
coherent framework for understanding the 
complementarity of these models.9 In the 

Strengths and limitations of this study

►► The use of three large prospective birth cohorts of 
term-born children with serial anthropometry data 
enabled the exploration of critical windows using a 
comparative, multimodel approach.

►► Our analysis was restricted to term-born children 
to enable the application of the WHO Child Growth 
Standards, so our results are only generalisable to 
children born at term.

►► There was likely differential error with respect to 
anthropometric measures across cohorts and age 
groups that may have affected the decomposition 
of the total effect of growth on subsequent cognitive 
achievement.
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lifecourse model where all of length/height measured 
at different ages are modelled simultaneously, the coef-
ficient for a given age represented by tj can be inter-
preted as the direct effect of growth in the preceding 
interval, or the interval between tj−1 and tj. Coefficients 
from the conditional change models are estimates 
of the total effect of growth in each interval, which 
combines the direct effect of growth in each interval and 
the indirect effect of the resultant attained size in subse-
quent intervals. Because the measure of growth in each 
interval is conditioned on attained size at the end of the 
preceding interval, each coefficient of growth is inde-
pendent of the other growth coefficients in the model.4 5 
The change score model is similar to the conditional 
change model, but the outcome is regressed on the 
interval-specific starting size and the absolute differences 
between size at the start and end of each subsequent 
interval; consequently, growth in one interval may be 
correlated with growth in other intervals. In the change 
score model, each coefficient represents the cumula-
tive direct effect of growth in the current interval and 
in all subsequent intervals included in the model; for 
example, the coefficient for the initial size term (eg, 

birth length) reflects the cumulative direct effects of 
foetal and postnatal growth across all intervals.

It is important to acknowledge that although we refer 
to these estimates as effects, where we borrow language 
from causal mediation, they should be interpreted as 
associations. It is unlikely that the relationship between 
linear growth and brain development is causal as we are 
not aware of any convincing biological mechanism for 
this effect. Instead, it is more likely that linear growth 
and brain development share the same underlying deter-
minants, such as maternal and infant undernutrition, 
which is common in these settings.1–3 Through this lens, 
length/height can be viewed as a proxy (although imper-
fect) for exposure to undernutrition, where an associa-
tion between early-life linear growth and cognitive scores 
would be indicative of a nutritional intervention that 
prevents both slow growth and faltering in brain devel-
opment (ie, it would represent the effect of intervening 
nutritionally, as opposed to the effect of physical growth 
itself).10

Here, we demonstrate the integration of estimates 
from all three growth models in a mediation analysis 
framework to provide a comprehensive view of the 

Table 1  Summary of three commonly used growth models

Growth 
model Formulation Interpretation of model coefficients

Lifecourse
 ﻿‍� ‍E

[
Y |LAZj, Ck

]
= α0 + αTj LAZj + αTk Ck ‍

 � Outcome Y is regressed on LAZ measured at age j (LAZj), and k potential 
confounders (Ck).

►► ‍α0‍is the expected value of Y when ‍LAZj ‍ 
and ‍Ck ‍ are all equal to 0.

►► ‍αj ‍is the direct effect of growth in the 
interval preceding age j.

►► ‍αk ‍are nuisance parameters associated with 
the conditional density of Y given ‍LAZj ‍.

Conditional 
change  ﻿‍� ‍E

[
Y |LAZ0, cLAZj, Ck

]
= β0 + β1LAZ0 + βTj c∆LAZj + βTk Ck ‍

 � Outcome Y is regressed on LAZ at birth (LAZ0), conditional measures of 
growth between the start and end of each interval (c∆LAZj) and k potential 
confounders (Ck). Conditional growth is the difference between the observed 
and expected LAZ at the end of the interval, where the expected value 
is based on size at the beginning of the interval, and can be derived by 
calculating ﻿‍ε‍ij, the residual for child i at age j, after regressing size at the end 
of the interval on size at the beginning of the interval.

►► ‍β0‍is the expected value of Y when, 

‍c∆LAZj ‍ and ‍Ck ‍ are all equal to 0.
►► ‍β1‍is the interval-specific total effect of 
prenatal growth (ie, sum of the direct effect 
of prenatal growth and the indirect effect 
via later size).

►► ‍βj‍is the interval-specific total effect of 
growth in the interval preceding age j (ie, 
sum of the direct effect of interval-specific 
growth and the indirect effect via later size).

►► ‍βk‍are nuisance parameters associated with 
the conditional density of Y given ‍LAZ0 ‍ 

and ‍c∆LAZj ‍.
Change 
score  ﻿‍� ‍E

[
Y |LAZ0, LAZj, Ck

]
= θ0 + θ1LAZ0 + θTj ∆LAZj + θTk Ck ‍

 � Outcome Y is regressed on LAZ at birth (LAZ0), the change score (absolute 
change in size between the start and end of each interval (∆LAZj)), and k 
potential confounders (Ck).

►► ‍θ0‍is the expected value of Y when ‍LAZ0 ‍ 

‍∆LAZj ‍, and ‍Ck ‍ are all equal to 0.
►► ‍θ1‍is the cumulative direct effect of growth 
in the prenatal and all subsequent intervals 
included in the model.

►► ‍θj ‍is the cumulative direct effect of growth 
in the interval preceding age j and all 
subsequent intervals included in the model.

►► ‍θk ‍are nuisance parameters associated 
with the conditional density of Y given and 

‍∆LAZj ‍.

LAZ, length-for-age z-scores.
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associations between growth in early life and cogni-
tive achievement at ages 5–9 years among term-born 
children.

METHODS
Data sources
This study uses data from three historical birth cohorts 
that include anthropometric data from birth to mid-
childhood (ages 5–9 years) and cognitive assessments 
at ages 5–9 years, namely; the Collaborative Perinatal 
Project (CPP) in the USA (1959–1964),11 the Promotion 
of Breastfeeding Intervention Trial (PROBIT) in Belarus 
(1996–1997)12 and the Cebu Longitudinal Health and 
Nutrition Survey (CLHNS) in the Philippines (1983–
1984).13 All data were made available by the Healthy 
Birth, Growth and Development Knowledge Integration 
(HBGDki) initiative funded by the Bill and Melinda Gates 
Foundation.14

Linear growth exposures
Foetal and infant growth variables were derived as 
required for the lifecourse, conditional change and 
change score models, as described in table 1 and in detail 
elsewhere.4 7 Briefly, we derived length-for-age z-scores 
(LAZ) using the WHO Child Growth Standards (WHO-
GS).15 All models use LAZ at birth (LAZ0) as a relative 
measure of foetal growth from conception to birth. Post-
natal growth during the first year was partitioned into 
early, mid and late infancy periods, with different cut-offs 
depending on the timing of measurement in each cohort. 
In CPP and CLHNS, these periods corresponded to 0–4 
months (LAZ1), 4–8 months (LAZ2) and 8–12 months 
(LAZ3), while in PROBIT, the analogous periods spanned 
0–3 months (LAZ1), 3–9 months (LAZ2) and 9–12 months 
(LAZ3). Finally, in all three cohorts, we used LAZ at ages 
6.5 years (PROBIT study), 7 years (in the CPP cohort) 
and 8.5 years (in the CLHNS cohort) to represent the 
period of postnatal growth from 1 year to mid-childhood 
(LAZ4).

Cognitive achievement in mid-childhood
Mid-childhood cognitive achievement was assessed using 
within-cohort IQ z-scores (IQz). The mean IQ of the 
sample was subtracted from each individual IQ score and 
the result was divided by the SD of the IQ distribution 
of the cohort to produce internally standardised scores. 
IQ was assessed in mid-childhood using the Wechsler 
Intelligence Scale for Children in CPP,16 the Wechsler 
Abbreviated Scale of Intelligence in PROBIT12 and the 
Philippines Non-Verbal Intelligence Test in CLHNS.13 
Global measures of IQ were used—full-scale IQs from CPP 
and PROBIT, and non-verbal IQ score from CLHNS—
and all were age-standardised prior to generating the IQz.

Child, parental and household characteristics
Covariates included child, parental and household char-
acteristics measured at birth. Due to differences in data 

availability, there is slight variation in the specific sets of 
covariates used in the models across the three cohorts. 
Child sex, maternal and paternal age (years), maternal 
height (cm) and maternal and paternal education (years 
of completed schooling in CPP and CLHNS; credential-
based in PROBIT) were common covariates across the 
cohorts. Estimates using the CPP dataset also included 
the following covariates: gestational age categorised as 
early term (37 to <39 weeks), full term (39 to <41 weeks) 
and post-term (≥41 weeks); and parity (nulliparous, prim-
iparous and multiparous). The analysis of the PROBIT 
cohort includes gestational age (categorised as above); 
number of older siblings (none, one, two or more); 
paternal height (cm); maternal weight (kg); maternal 
body mass index (kg/m2); maternal occupation (non-
manual, manual, unemployed) and paternal occupation 
(non-manual, manual, unemployed, unknown). Esti-
mates using the CLHNS dataset includes adjustment for 
parity (categorised as above), and within-cohort quin-
tiles of socioeconomic status derived from an asset-based 
index.13

Statistical analyses
We examined associations between interval-specific linear 
growth in early life and mid-childhood IQz for each 
cohort using all three growth models, adjusted for base-
line values of the child, parental and household covariates 
listed above. Visual inspections revealed that the rela-
tionship between LAZ and IQz was approximately linear 
throughout the full range of LAZ (ie, without an apparent 
inflection point), as has been previously reported17; there-
fore, all analyses included LAZ as a continuous variable.

Lifecourse, conditional change and change score 
models were used to estimate the interval-specific direct 
effects, interval-specific total effects and cumulative direct 
effects, respectively, with corresponding 95% CIs. We also 
assessed statistical heterogeneity of the lifecourse and 
conditional change coefficients across the three cohorts, 
and across the five growth intervals using the I2 statistic.18

For consistent mediation models (ie, models in which 
the total effect and the direct effect have the same sign), 
we used a difference-in-coefficients approach to media-
tion analysis19 20 to estimate the proportion of the total 
growth-cognition association for a given interval that 
was mediated by size in later intervals. The proportion 
was estimated by dividing the indirect effect (difference 
between the total effect and the direct effect) by the total 
effect for each period within each cohort.

Children were excluded from all analyses if they: (1) 
lacked complete anthropometry data for a scheduled 
assessment, (2) did not have cognitive achievement 
assessed in mid-childhood, (3) were born preterm (to 
enable comparisons of growth modelled using the 
WHO-GS which should not be directly applied to chil-
dren born preterm in epidemiological research21), (4) 
had extreme LAZ based on the WHO-GS (LAZ>6 or 
LAZ<−6) or (5) had incomplete data on any of the base-
line covariates.
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Analyses were performed using STATA V.13 (Stata 
Corporation). Analyses of these datasets from the 
HBGDki repository was approved by the Hospital for Sick 
Children (Toronto, Canada).

Patient and public involvement
Patients or the public were not involved in the design of 
the study.

RESULTS
A total of 12 088 children met the inclusion criteria and 
were included in the analyses: 2170 from CPP, 8275 from 
PROBIT and 1643 from CLHNS (online supplementary 
figure 1). Availability of data related to child, parental 
and household characteristics differed across the cohorts 
(table  2). Mean LAZ trajectories from birth to mid-
childhood, which have been previously described,22–25 
differed across the three cohorts; in particular, children 
in CLHNS experienced substantial postnatal growth 
faltering compared with CPP and PROBIT (figure  1; 
online supplementary table 1).

Estimates of the associations between linear growth in 
discrete intervals and mid-childhood IQz were derived from 
the three multivariable-adjusted growth models (table 3). 
In all three cohorts, the cumulative direct effects of foetal 
and postnatal growth across all intervals were consistently 
positive but of modest magnitude, not exceeding 0.2 IQz 
per unit increase in LAZ. In each interval, total effects 
were consistently positive but small. However, the patterns 
of direct effects differed across the three cohorts: there 
was a positive direct effect of foetal growth (conception to 
birth) on IQz in CPP but not in PROBIT or CLHNS. In the 
three infancy intervals, starting with the interval between 
birth and early infancy, the direct effects were inconsis-
tent in both CPP and PROBIT, and null in all intervals 
for CLHNS. From late infancy to mid-childhood, there 
was no direct effect of growth on IQz in CPP but positive 
direct effects in PROBIT and CLHNS. Differences across 
cohorts and intervals in the magnitude of the effects were 
supported by heterogeneity statistics derived from meta-
analyses (online supplementary table 2).

Estimates of the proportions of the effects that were medi-
ated by size in later intervals are also presented in table 3. 
In CPP, the proportion of the total effect of growth in each 
interval that was mediated by being longer/taller in later 
intervals was modest, but highest in the prenatal (39%) and 
birth-to-early infancy periods (38%). In PROBIT, almost 
all of the total foetal growth effect (96%) was mediated by 
larger size in the postnatal period. In CLHNS, the propor-
tion of the total effect of growth in each interval that was 
mediated through longer/taller size in later intervals was 
high compared with the other two cohorts (59%–90%).

DISCUSSION
Most observational epidemiological studies of the 
effects of growth on later-life outcomes have only used 

one statistical approach—commonly, researchers have 
selected the lifecourse, conditional change or change 
score growth model.23 26–33 Post-hoc integration of the 
evidence from such studies is complicated, as the coeffi-
cients of the lifecourse, conditional change and change 
score model represent interval-specific direct effects, 
interval-specific total effects and cumulative direct effects, 
respectively; that is, each model yields a contrast that is 
not directly comparable to the contrasts derived from the 
other two models.

Here, we demonstrated the combined use of multiple 
models to generate coherent inferences on the associa-
tions between interval-specific physical growth and later 
cognitive outcomes. In a previous study of a cohort of chil-
dren from Ethiopia, India, Peru and Vietnam, Georgiadis 
et al 9 used a similar approach to conclude not only that 
growth from conception to 8 years (considered in three 
intervals: conception to 1 year, 1–5 years and 5–8 years) 
was associated with higher cognitive achievement in mid-
childhood, but also that the majority of the estimated 
association between early growth and mid-childhood 
cognition was mediated by being taller in subsequent 
periods. In the present study, we demonstrated an exten-
sion of this approach to discrete growth intervals within 
infancy (birth to 1 year), and in three heterogenous 
historical birth cohorts. Similar to the findings of Geor-
giadis et al,9 we showed that the total effects were consis-
tently positive in all three cohorts, thereby reaffirming 
the association between early physical growth and later 
cognitive achievement.1 2 34–36 In two of the three cohorts 
(PROBIT and CLHNS), growth in later periods of early 
childhood was more strongly associated with IQ than 
growth in infancy or in utero. In both cohorts, we found 
no direct effect of growth from conception to birth; 
rather, associations of birth with cognition were mostly 
mediated by later size, especially in the interval from 
1 year to mid-childhood. However, in CPP, foetal growth 
was more strongly associated with IQ than postnatal 
growth; we speculate that because postnatal growth was 
relatively unconstrained (vs prenatal growth) in the US 
cohort compared with the cohorts in the Philippines and 
Belarus, foetal growth appeared to be a relatively more 
important contributor to later cognitive outcomes in the 
US context.

A key motivation of this study was to demonstrate how 
epidemiologists can integrate inferences from three 
commonly used growth models. In future applications, 
we would advocate for the simultaneous use of two of 
the models (lifecourse and conditional change models), 
as estimates of the direct and total effect for a given age 
interval allow inferences about the proportion of the 
effects that are mediated by size in later periods. Inves-
tigators who elect to use the change score model alone 
should be careful to correctly interpret its coefficients 
as estimates of the cumulative direct effect of growth 
for a given period and all successive periods included 
in the model. This is a non-intuitive interpretation, and 
it is important to recognise that the model coefficients 

https://dx.doi.org/10.1136/bmjopen-2020-036850
https://dx.doi.org/10.1136/bmjopen-2020-036850
https://dx.doi.org/10.1136/bmjopen-2020-036850
https://dx.doi.org/10.1136/bmjopen-2020-036850
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Table 2  Child, parental and household characteristics of the three birth cohorts

Characteristics
CPP
(n=2170)

PROBIT
(n=8275)

CLHNS
(n=1643)

Child

Female, % 49 49 47

Term status (weeks)

 � Early term (37 to <39), % 8.9 19 –

 � Full term (39 to <41), % 36 80 –

 � Post-term (‍≥‍41), % 55 1.2 –

Parental and household characteristics at birth

Socioeconomic status quintile

 � Low, % – – 19

 � Lower middle, % – – 18

 � Middle, % – – 35

 � Upper middle, % – – 8.5

 � Upper, % – – 20

Maternal age (years), mean (SD) 26.8 (5.0) 24.5 (4.9) 26.5 (5.9)

Maternal race

 � White, % 79 – –

 � Black, % 20 – –

 � Other, % 0.4 – –

Maternal height (cm), mean (SD) 162.9 (6.5) 164.4 (5.7) 150.6 (4.9)

Maternal weight (kg), mean (SD) – 66.4 (12.6) –

Maternal BMI (kg/m2), mean (SD) – 24.5 (4.4) –

Maternal education (years), mean (SD) 13.2 (1.7) – 7.0 (3.3)

Maternal education

 � University, % – 14 –

 � Partial university, % – 52 –

 � Secondary, % – 31 –

 � <Secondary, % – 2.9 –

Maternal occupation

 � Non-manual, % – 45 –

 � Manual, % – 34 –

 � Unemployed, % – 20 –

Parity

 � Nulliparous, % 49 – 19

 � Primiparous, % 25 – 23

 � Multiparous, % 26 – 59

Number of older siblings

 � None, % – 55 –

 � One, % – 37 –

 � Two or more, % – 8.8 –

Paternal age (year), mean (SD) 29.6 (5.9) 27.5 (5.1) 29.1 (6.7)

Paternal height (cm), mean (SD) – 175.9 (6.6) –

Paternal education (years), mean (SD) 14.0 (2.2) – 7.2 (3.4)

Paternal education

 � University, % – 14 –

Continued
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cannot be interpreted as estimates of the discrete effects 
of growth in the interval from which they were derived. 
As demonstrated here, the change score model coeffi-
cients for birth size represented the theoretical maximum 
direct effect of a one-unit increase in LAZ on IQz in all 
three cohorts; concordant with expectations, the coef-
ficients then decrease in magnitude as the period of 
growth approaches the time of outcome assessment. 
Investigators may be tempted to attribute the strongest 
effects of growth to the earliest ages; however, coefficients 
from the other two models revealed that the direct and 
total effects are largest from mid-infancy to late infancy in 
CPP, and late infancy to mid-childhood in both PROBIT 
and CLHNS.

If a research study aims to estimate the association 
of physical growth in only one age interval with a later 
outcome, rather than consider multiple intervals to iden-
tify a developmental window in which growth is most 
strongly associated, then there is no need to use multiple 
models, as all three models will yield the same contrast. 
In our analyses, this was evident when evaluating the last 
growth interval in each cohort (ie, the interval closest in 
time to the assessment of cognitive scores) as the direct, 
total and cumulative effects are identical in all three 
models.

A strength of our study was the use of three large 
prospective birth cohorts of term-born children with 
serial anthropometry data (including multiple measure-
ments in infancy). It enabled the exploration of critical 
windows using a comparative, multimodel approach and 
demonstrated the context-dependency of conclusions. 
However, there are several limitations that should also be 
acknowledged. First, we assumed no information bias, yet 
the presence of differential errors with respect to anthro-
pometric measures both across cohorts and age groups 
was likely and may have affected our within-cohort and 
between-cohort comparisons of the decomposition of the 
effect of growth on subsequent cognitive achievement. 
Second, even though our eligibility criteria of being born 
at term was necessary to enable the application of the 
WHO-GS, the resulting effect estimates are only generalis-
able to term-born children. Finally, we could not partition 
growth from 1 year to mid-childhood into smaller inter-
vals due to anthropometric assessment schedules used 
in each study. Most notably, we could not isolate growth 
during the second postnatal year of life, which may have 
yielded further insights.3

Although we refer to the effects of growth in this 
paper, it is important to highlight that we are using 
LAZ as a proxy for underlying nutritional status. 
For any of the growth-cognition associations we 
describe above to represent the effect of intervening 
on nutritional status, we assume that the following 
conditions for causal mediation analysis hold: (1) 

Characteristics
CPP
(n=2170)

PROBIT
(n=8275)

CLHNS
(n=1643)

 � Partial university, % – 48 –

 � Secondary, % – 37 –

 � <Secondary, % – 2.0 –

Paternal occupation

 � Non-manual, % – 30 –

 � Manual, % – 56 –

 � Unemployed, % – 14 –

 � Unknown, % – 0.5 –

BMI, body mass index; CLHNS, Cebu Longitudinal Health and Nutrition Survey; CPP, Collaborative Perinatal Project; PROBIT, Promotion of 
Breastfeeding Intervention Trial.

Table 2  Continued

Figure 1  Mean length-for-age z-scores (LAZ) from birth 
to mid-childhood in the Collaborative Perinatal Project 
(CPP) in the USA (n=2170), the Promotion of Breastfeeding 
Intervention Trial (PROBIT) in Belarus (n=8275) and the Cebu 
Longitudinal Health and Nutrition Survey (CLHNS) in the 
Philippines (n=1643). For each cohort, estimates and 95% 
CIs (vertical error bars) are shown at the end of age intervals 
of interest: birth, early infancy (3 or 4 months), mid-infancy 
(8 or 9 months), late infancy (12 months) and mid-childhood. 
Estimates for each cohort are connected by straight lines 
to represent population trajectories, assuming linearity in all 
intervals for visual simplicity. Prenatal LAZ trajectories are 
theoretical, assuming that foetal growth starts at a mean LAZ 
of 0 in all populations and gestational age distributions are 
identical across cohorts.
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no unmeasured time-invariant confounders, (2) no 
unmeasured time-varying confounders and (3) no 
effect measure modification by any of the mediating 
variables in the causal structure. For the first assump-
tion, confounding (residual or unmeasured) can 
never be ruled out. Although we controlled for an 
extensive, although different across the three cohorts, 
panel of baseline covariates (ie, child, parental and 
household attributes), we may not have controlled 
for all relevant confounders. For example, we did 
not control for maternal smoking,37–40 which was 
highly prevalent in the USA in the 1950s–1960s.41 
However, maternal smoking is only associated with 
mid-childhood cognitive achievement through its 
association with socioeconomic status, as shown by 
previous research in the same cohorts examined in 
the present study,42 43 and in other settings.44 45 One 
possible explanation of this finding is that maternal 
smoking affects early-life brain development,39 40 but 
the effects diminish through childhood, such that by 
mid-childhood (ie, timing of outcome assessment) 
smoking is just a behavioural trait embedded in a 

broader constellation of social factors that influence 
child brain development, such as early stimulation 
and learning opportunities.3 Thus, our control for 
parental education, employment and socioeconomic 
status quintile in our models would be sufficient to 
block this backdoor path (borrowing language from 
causal graphs46) through maternal smoking (and 
any factors associated with mid-childhood cognitive 
achievement that are largely shaped by a mother’s 
social conditions). For the second and third condi-
tions, none of the models as they are commonly formu-
lated can address either time-varying confounding or 
potential exposure-mediator interactions, but poten-
tial violations of these conditions could be considered 
through sensitivity analyses (eg, one could try assess 
the magnitude of confounding and/or effect measure 
modification that would be needed to explain away 
the effect estimates).

We recognise that this approach has its limitations, 
and that there are many alternative methods to model 
growth6; for example, a distributed lag model may 
provide insights into sensitive windows by modelling 

Table 3  Multivariable adjusted estimates and 95% CIs of the associations between early childhood growth and mid-
childhood cohort-specific IQ z-score in three birth cohorts

Growth interval
Lifecourse model
(direct effect)

Conditional change 
model
(total effect)

Change score 
model
(cumulative direct 
effect)

Proportion 
mediated*

CPP† (n=2170)

 � Conception to birth 0.05 (0.01 to 0.08) 0.08 (0.05 to 0.11) 0.16 (0.12 to 0.20) 0.39

 � Birth to early infancy 0.04 (−0.01 to 0.08) 0.06 (0.02 to 0.10) 0.11 (0.06 to 0.16) 0.38

 � Early infancy to mid-infancy −0.03 (−0.08 to 0.02) 0.03 (−0.02 to 0.07) 0.08 (0.02 to 0.13) –

 � Mid-infancy to late infancy 0.07 (0.02 to 0.12) 0.09 (0.04 to 0.14) 0.11 (0.06 to 0.16) 0.24

 � Late infancy to mid-childhood 0.04 (−0.01 to 0.09) 0.04 (−0.01 to 0.09) 0.04 (−0.01 to 0.09) 0.0‡

PROBIT§ (n=8275)

 � Conception to birth 0.001 (−0.10 to 0.10) 0.03 (−0.06 to 0.12) 0.15 (0.07 to 0.23) 0.96

 � Birth to early infancy 0.05 (−0.02 to 0.13) 0.06 (−0.01 to 0.12) 0.15 (0.08 to 0.22) 0.02

 � Early infancy to mid-infancy −0.04 (−0.10 to 0.01) 0.003 (−0.04 to 0.04) 0.09 (0.04 to 0.15) –

 � Mid-infancy to late infancy 0.02 (−0.04 to 0.07) 0.07 (0.01 to 0.13) 0.14 (0.07 to 0.21) 0.73

 � Late infancy to mid-childhood 0.12 (0.07 to 0.18) 0.12 (0.07 to 0.18) 0.12 (0.07 to 0.18) 0.0‡

CLHNS¶ (n=1643)

 � Conception to birth 0.01 (−0.05 to 0.06) 0.06 (0.02 to 0.11) 0.20 (0.14 to 0.26) 0.89

 � Birth to early infancy 0.04 (−0.02 to 0.10) 0.10 (0.05 to 0.15) 0.19 (0.13 to 0.25) 0.59

 � Early infancy to mid-infancy 0.02 (−0.06 to 0.10) 0.08 (0.02 to 0.14) 0.15 (0.08 to 0.22) 0.77

 � Mid-infancy to late infancy 0.01 (−0.07 to 0.08) 0.08 (0.00 to 0.15) 0.13 (0.04 to 0.22) 0.90

 � Late infancy to mid-childhood 0.12 (0.06 to 0.18) 0.12 (0.06 to 0.18) 0.12 (0.06 to 0.18) 0.0‡

*For consistent mediation models, proportion mediated was calculated by dividing the indirect effect by the total effect for a given growth 
interval (ie, proportion of the total effect mediated by subsequent size).
†Adjusted for child sex, maternal height, maternal and paternal education, gestational age category, maternal and paternal ages, and parity.
‡Indirect effect is 0 as growth in the last interval is not mediated by later size.
§Adjusted for child sex, maternal height, maternal and paternal education, gestational age category, paternal height, maternal weight, 
maternal body mass index, number of older siblings and maternal and paternal occupation.
¶Adjusted for child sex, maternal height, maternal and paternal education, maternal and paternal ages, parity, and socioeconomic status.
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direct effects as a smooth function of age.47 However, 
the goal of this paper was to show that estimates 
reported from the lifecourse, conditional change and 
change score models, which are among the three most 
commonly used growth models by epidemiologists, 
nutritional scientists and developmental origins of 
health and disease researchers,6 can be synchronised 
post-hoc using a mediation framework to aid in the 
interpretation of studies investigating critical growth 
windows. With this approach, we showed that linear 
growth is weakly but consistently associated with subse-
quent cognitive achievement across diverse settings 
but did not find evidence to support the identification 
of a universal ‘sensitive’ window, as the magnitude 
of the growth-cognition association during specific 
developmental windows varied by setting. Cognitive 
achievement in mid-childhood was most strongly 
associated with foetal and early growth in the USA in 
1959–1971, and with growth in later age intervals in 
Belarus in 1996–2004 and the Philippines in 1983–
1993. Although we used growth in length/height and 
IQ for our illustrative example, this approach can be 
extended to investigating critical windows of growth 
using other anthropometric measures, such as weight 
or head circumference (which may be more relevant 
for cognitive achievement48 49) and other later-life 
health outcomes.
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