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Introduction
In contrast to the steady pace of chronological age, the pace of 
biological age varies among individuals and may predict distinct 
aspects of aging at different life stages. For example, biological 
aging later in life reflects the link with disease, morbidity, and 
mortality, whereas in youth/midlife, it might predict healthspan 
or cognitive/physical decline (eg, individuals aging more rapidly 
are less cognitively/physically able).1,2 As chronological age does 
not sufficiently represent fundamental aging processes, methods 
to measure biological aging have been developed, which is 
important for assessing strategies to slow down biological aging 
and extend healthspan. A reliable measure of biological age 
could be a factor in predicting disease onset in presymptomatic 
carriers of causal mutations, and assist in the development of 
preventive rather than therapeutic strategies.1

Technical breakthroughs have led to the discovery of several 
molecular markers of aging, including epigenetic biomark-
ers.3-6 For instance, genome-wide RNA-interference-based 
screening in Caenorhabditis elegans revealed a conserved epige-
netic mechanism, which implicated 59 genes as modulators of 
age-related behavioural deterioration rate.7 Two neuronal 
genes were among the most prominent hits: epigenetic reader 
(BAZ-2) and histone 3 lysine 9 methyltransferase (SET-6), 
which could accelerate behavioural deterioration by repressing 
the expression of nuclear-encoded mitochondrial proteins. 
Importantly, the expression of human orthologues (BAZ2B 
and EHMT1) in the frontal cortex increases with age and cor-
relates with Alzheimer disease (AD) progression.

Among biomarkers of aging, such as telomere length (TL), 
metabolomic, transcriptomic and proteomic variations, the 
most promising are based on the DNA methylation (DNAm) 
of cytosines at CpG dinucleotides,8 representing one of the 
key epigenetic mechanisms altering gene expression or splic-
ing. The cumulative assessment of DNAm levels at age-related 
CpGs could be used as a DNAm clock,6,9-13 which may mirror 
biological aging (Figure 1). Although some clinical biomark-
ers outperform DNAm clocks in reflecting morbidity and 
mortality,14 the advantage of DNAm clocks is their ability to 
measure either multitissue or cell-/tissue-specific aging. 
DNAm clocks could help explain why some individuals stay 
healthy, whereas others develop age-related neurodegenerative 
diseases.

Several studies support the link between DNAm clocks and 
biological age. DNAm-age acceleration (difference between 
DNAm-age and chronological age) was associated with major 
neurodegenerative diseases, such as AD,15 Parkinson disease 
(PD),16 Huntington disease17 and amyotrophic lateral sclerosis 
(ALS).18,19 Similarly, HIV-infected individuals exhibit prema-
ture aging based on methylome-wide changes and Horvath 
DNAm clock.20,21 Furthermore, individuals with Werner or 
Down syndromes also display accelerated DNAm clocks.22,23 
In contrast, DNAm-age in centenarians is on average 9 years 
younger than their chronological age.24

However, it is mostly unclear what the underlying molecular 
mechanisms of DNAm clocks are. Do they reflect similar 
aspects of the aging process? What is their capacity to predict 
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risk of decline before disease onset and therapeutic effective-
ness aiming to extend healthspan? Here, we provide an 
overview of DNAm clocks, including their application in neu-
rodegenerative diseases, potential confounders and gaps in the 
current knowledge.

Comparison of Different DNAm Clocks
Most DNAm clocks are based on a limited number of CpGs, 
which are widely distributed throughout the genome and 
mainly selected from the 27K or 450K BeadChips that have 
currently been replaced by the more informative EPIC chip 
covering 850K CpGs (Table 1). Age-related CpGs are over-
represented in the proximity of Polycomb-binding regions and 
promoters, which are key regulators of gene expression.6,11,13 
The little overlap in CpGs between different DNAm clocks25-27 
might be the result of several factors (eg, cell-/tissue-specific 
differences) and explain why some clocks are capable of catch-
ing certain outcomes better than others. In addition, the applied 
arrays might not include the most informative age-related 
CpGs.6,14 Many DNAm clocks are obtained from linear regres-
sion algorithms trained against chronological age6; however, 
clocks too perfectly trained on chronological age would not 
contain information on interindividual variability in biological 
age.5,6 Finally, some DNAm clocks focus on the comparison 

between DNAm levels and physiological measures of biologi-
cal age (eg, cholesterol levels), which may be the consequence 
of confounding factors (eg, obesity) rather than representing 
aging itself.28

Chronological DNAm clocks

An overview of all 9 reported chronological DNAm clocks is 
presented in the Table 1. The first DNAm clock was built by 
Bocklandt et  al,9 using saliva DNA. The study identified 88 
CpGs that correlated with the chronological age of 34 male 
identical twins (age, 21-55), of which 3 were replicated in a gen-
eral cohort (n = 60; age, 18-70).9 However, DNAm clocks com-
posed of only a few CpGs cannot be reliably used for multiple 
tissues.5 For instance, a high average error of age prediction 
(11 years) was reported for the ‘epigenetic-aging-signature’ of 
Koch and Wagner,29 containing 19 CpGs. Notably, the DNAm-
age estimator of Weidner et al13 consists of only 3 CpGs, the 
analysis of which by bisulphite pyrosequencing revealed age pre-
diction with an average error of 4.5 years; however, this estimator 
has a lower accuracy using the 450K BeadChip.39 Furthermore, 
it does not detect an association with mortality and revealed only 
a nominal correlation with TL or clinical and lifestyle measures 
(eg, alcohol consumption).

Figure 1.  Comparison of chronological vs biological DNAm clocks. Each DNAm clock is developed using a unique training model, including a variable 

number of CpGs, tissue source of DNA and corresponding age-related measures. While chronological DNAm clocks reflect age-related DNAm changes 

that are shared between individuals and are expected to reflect the intrinsic aging process, biological DNAm clocks reflect age-related DNAm changes 

that vary between individuals and are expected to capture associations with specific age-related phenotypes and external drivers that may influence 

age-related DNAm.
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More accurate age predictions were reported with the rise in 
available data sets and advancements in technological/bioin-
formatic strategies. For example, Florath et al30 analysed blood 
DNA in 3 steps using a discovery (n = 965), replication (n = 400) 
and longitudinal cohort (67 individuals followed more than 
8 years). It resulted in the selection of 17 CpGs to build a 
regression model for age prediction with an average error of 
only 2.6 years. However, the disadvantages of this DNAm clock 
are the use of a single tissue, the narrow age range of the cohort 
and the small number of selected CpGs (Table 1).

In contrast, Horvath11 multitissue clock consists of 353 
CpGs and not significantly confounded by cell-/tissue-specific 
changes.5,40 It has been validated in multiple data sets, including 
~8000 samples from 51 different cell and tissue types collected 
from both children and adults. Although the DNAm state of 
each CpG correlates only weakly with age, their combined 
effect results in an accurate biomarker of chronological age (an 
average error of 3-5 years). Additional measures of the Horvath 
clock include DNAm-age acceleration and intrinsic epigenetic 
age acceleration derived from adjusting DNAm-age for chron-
ological age and blood cell proportions.41

The DNAm-age estimator of Hannum et al12 consists of 71 
CpGs and is highly accurate in blood, but requires recalibration 
to achieve reasonable accuracy in other tissues. Both Hannum 
and Horvath clocks have a striking ability to predict all-cause 
mortality. They were built using a similar regression model for 
selecting age-related CpGs, and display moderate to strong 
correlations, even though they share only 6 CpGs.8 The 
Hannum clock and DNAm PhenoAge (discussed below) 
reflect age-related changes in cell and tissue-type composi-
tion.5 Notably, correcting for cell-/tissue-specific composition 
could eliminate biologically informative signals. For example, 
certain age-related diseases (eg, immunosenescence) are hall-
marked by changes in the cellular structure of blood.5,42 
Compared with intrinsic measures (consistent across cell/tissue 
types), extrinsic measures are more suitable for assessing age-
related decline in specific tissues.5,41 DNAm-age acceleration 
measures are more informative, as they refer to discrepancies 
from the norm,5 and are associated with longevity and mortal-
ity giving the best representation of biological age.24,41,43

Zbiec-Piekarska et al32 analysed 41 CpGs by pyrosequencing 
of blood DNA (n = 420), of which 5 were included in an age 
predictor with an average error of 4.5 years. In a similar study, 
Huang et al31 analysed 38 different CpGs by pyrosequencing of 
blood DNA (n = 89), of which 5 were included in an age predic-
tor with an average error of 7.9 years. In Zbiec-Piekarska clock, 
the mean absolute deviation varied from 5.0 for the oldest sub-
group (age, 60-75) to 2.7 in the youngest subgroup (age, 2-19).32 
The decreased accuracy of this clock in older people could reflect 
either technical issue(s) or the influence of external factors (eg, 
lifestyle). Several studies reported that DNAm changes slow 
down with age,6,12,13,44 which suggests the importance of includ-
ing chronological age as a covariate. Furthermore, sex-specific 
differences were reported for Zbiec-Piekarska, Horvath and 

Hannum clocks, suggesting slightly faster aging in men than 
women, which could reflect either biological and lifestyle differ-
ences or technical issues affecting accuracy of the age predictors 
between the subgroups. Indeed, the mean absolute deviation of 
the Zbiec-Piekarska clock was marginally higher for men (3.7) 
than women (3.0).32

A recent large study by Zhang et  al33 reported several 
DNAm predictors of chronological age based on the analysis 
of blood and saliva DNA. A near-perfect predictor of chrono-
logical age was developed using a training cohort covering a 
wide age range, which was further corrected for cellular com-
position. In nonblood tissues, it is comparable with the 
Horvath clock.11 However, the association between DNAm-
age acceleration and mortality attenuates as prediction accu-
racy increases, which is likely the result of losing CpGs linked 
with biological age (during training overemphasizing the esti-
mation of chronological age).

In summary, Horvath11 and Zhang33 clocks outperform 
other DNAm clocks based on either applicability to various 
cells/tissues or accurate prediction of chronological age, 
respectively. DNAm aging rate can be quite different between 
tissues,8 but clocks derived from a single tissue could be recali-
brated to achieve a more accurate age prediction in another 
tissue.40 In general, tissue-specific clocks may better reflect 
age-related diseases,45 while multitissue clocks are more suited 
to capturing innate aging processes. Nevertheless, several stud-
ies reported associations between the acceleration of the 
Horvath multitissue clock and age-related disease risk or mor-
tality, strongly supporting the potential of this clock as a dis-
ease biomarker.

Biological DNAm clocks

A summary of 6 biological DNAm clocks is presented in the 
Table 1. A mitotic-like biological DNAm clock (epiTOC) was 
reported by Yang et al.34 The 385 CpGs of epiTOC are mapped 
to the promoters of Polycomb target genes, which are unmeth-
ylated in fetal tissues, and their DNAm status correlates with 
the increasing rate of cell division during aging. This clock 
accelerates in premalignant and cancerous lesions, but has limi-
tations in predicting cancer risk for a diverse range of tissues 
and capturing DNAm changes occurring postmitotically.34,45 
Similarly, Youn et al36 developed a mitotic-like clock (MiAge) 
based on the hypothesis that somatic replication errors increase 
with a growing number of divisions. The MiAge clock com-
prised of 268 not tissue-specific CpGs, which display increased 
DNAm during mitotic activity. Although MiAge was built 
using large cohorts from 8 types of cancer or adjacent tissues, it 
could be applied as a general aging biomarker.36

A biological clock reported by Zhang et al35 is based on the 
blood DNAm signature of 10 CpGs correlating with risk of 
mortality. The computed mortality risk score has a potential 
application in therapeutic stratification, because it is associated 
with mortality from cancer, cardiovascular disease and all-cause 
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mortality. It is important to assess the value of this score for 
other age-related outcomes (eg, cognitive performance).6,34,35

The most recent blood-based biological clocks include the 
DNAm PhenoAge of Levine et al,14 DNAm GrimAge of Lu 
et al37 and DNAmTL of Lu et al.38 The DNAm PhenoAge esti-
mates multifactorial phenotypic age comprised of 10 measures, 
including chronological age, lymphocyte percentage, albumin 
and glucose levels.14 It can capture diverse age-related outcomes 
(eg, mortality and physical function). Acceleration of DNAm 
PhenoAge is moderately heritable and positively associated with 
genes upregulated with chronological age, such as factors of 
proinflammatory signalling pathways and antiviral response 
pathways, while it showed a negative association with genes 
downregulated with chronological age, including factors involved 
in transcriptional/translational machinery and DNA damage 
repair.14 Another multifactorial clock is DNAm GrimAge, which 
takes into account chronological age, sex, smoking and several 
DNAm estimators of plasma proteins. It can predict morbidity, 
mortality, age-related changes in blood cell composition and 
some diseases (eg, cancer).37 DNAm GrimAge acceleration is 
also associated with cognitive decline and neuroanatomical phe-
notypes.46 However, the DNAmTL clock, which correlates with 
both TL and age, outperforms DNAm GrimAge in its estima-
tion of lifespan and has the potential to provide a mechanistic 
link between age-related diseases and environmental exposures or 
cell replication.38 The DNAmTL clock has significant value, 
because with age and an increasing number of cell replications, 
telomeres shorten, but measuring TL is challenging.

Notably, the DNAm PhenoAge outperforms chronological 
DNAm clocks in predicting survival, healthspan and physical 
function.14 By selecting CpGs that predict a multisystem 
measure of physiological deterioration with age, it captures the 
functional state of various tissues and organs more accurately 
than chronological age.5 The biological age measure of Zhang 
et al35 outperforms the Horvath and Hannum DNAm clocks 
in predicting all-cause mortality, as well as mortality risk by 
cancer and cardiovascular disease. However, the DNAm 
PhenoAge and Zhang clocks may be biased in tissues other 
than blood.14 Both tissue-specific and multitissue DNAm 
clocks could be useful in addressing a diverse set of questions 
(eg, multitissue clocks better reflect systemic aging).

DNAm clocks in cell culture

Both TL and multiple DNAm clocks have been reported to be 
reset to zero on reprogramming of embryonic stem cells and 
induced pluripotent stem cells.11,13,47,48 For Weidner clock,13 
CpGs hypermethylated with age were hypomethylated in the 
reprogrammed cells (and vice versa). However, age-related 
DNAm changes were unaffected by replicative senescence in in 
vitro culture.13 Indeed, while DNAm changes associated with 
replicative senescence are acquired continuously with cell cul-
ture expansion, the ticking rate of the DNAm clock remains 
rejuvenated in pluripotent stem cells and only accelerates 

slowly on differentiation.49 Notably, the Horvath clock gives 
similar age predictions for both low and highly proliferative 
tissues, leading to the assumption that DNAm-age may be 
reflective of the epigenetic maintenance system. The reduced 
precision of DNAm clocks in cell cultures was solved by a 
recently developed DNAm clock that accurately measures the 
epigenetic age of fibroblasts, keratinocytes, as well as endothe-
lial, blood, and skin cells.50 It offers the possibility of studying 
the underlying mechanisms of DNAm clocks and tests the 
anti-aging properties of new compounds in human cells.

Comparison of Genes in Different DNAm Clocks
Knowledge about aging mechanisms would enable the selec-
tion of the most suitable DNAm clocks for a specific task (eg, 
in a disease-context) and its biological interpretation for future 
clinical practices.51 For instance, it would be important to 
establish the age-related expression pattern of genes corre-
sponding to clock-building CpGs (Supplementary Table 1). 
The CpGs of the 14 DNAm clocks are mapped to 1633 differ-
ent genes, however the gene-set underlying DNAm GrimAge 
is unavailable. Based on the NHGRI-EBI Catalog of genome-
wide association studies,52 106 of these loci are genetically 
associated with one of the major neurodegenerative diseases 
(ALS, AD, PD, or frontotemporal dementia), including genes 
responsible for Mendelian forms of PD (PARK2 and ATP13A2) 
or AD (PSEN1), each of which was included in 2 clocks.

Overall, only 173 genes overlapped in at least 2 DNAm 
clocks; however, some of them were incorporated in up to 6 
clocks (KLF14), pointing to their significance in aging mecha-
nisms. Chronological DNAm clocks appear to have more 
gene-overlap than biological clocks (Figure 2). This is likely 
because CpGs used in the biological clocks were selected to 
correlate with multisystem phenotypic measures, whereas 
CpGs in chronological DNAm clocks were selected to opti-
mize the prediction of chronological age. As expected, the 
Zhang clock showed the most gene-overlap with other chron-
ological clocks, because it is a near-perfect predictor of chrono-
logical age.33 In the assessment of the 9 chronological vs 5 
biological clocks, the strongest gene-overlap was observed 
between Levine (DNAm PhenoAge) and Weidner clocks, 
which have been associated with several similar traits, includ-
ing lifestyle factors, TL and some clinical measures.39 In addi-
tion, there is some gene-overlap between Levine clock and 
both Hannum and Horvath clocks, likely accounting for the 
fact that each of them has shown associations with similar phe-
notypes (eg, all-cause mortality and chronological age).

Among the 28 top-overlapping genes (incorporated in at 
least 3 DNAm clocks), 21 genes display a consistent direction of 
age-related DNAm (Supplementary Table 2). For example, 
EDARADD is hypomethylated in 5 different DNAm clocks, 
suggesting it is upregulated with age, while the hypermethyla-
tion of KLF14 suggests it is downregulated with age. The great-
est discrepancy was presented by the DNAmTL clock by Lu, 
which displayed the opposite DNAm direction in 4 of 8 genes 
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shared with other clocks. The DNAmTL clock is rather unique, 
because it is a DNAm-based estimator of TL, and telomere 
attrition with its associated epigenetic changes is a distinct cel-
lular process of aging.38,54 Hence, the list of 21 genes prioritized 
for functional studies and eventually for age-related therapies 
could be extended (Supplementary Table 2). In general, hyper-
methylation of age-associated genes results in a reduction of 
their expression; however, the link between DNAm and gene 
expression is not always straightforward, because elevated 
DNAm over the gene body can be accompanied by high gene 
expression.55

Functional annotation and gene-disease associations (using 
DAVID 6.8)56 revealed that 12 of the 28 top-overlapping 
genes are linked to neurodegenerative diseases (Supplementary 

Table 2). The most striking example is KLF14, integrated in 6 
DNAm clocks. Age-related hypermethylation of KLF14 has 
been associated with abnormalities in DNA repair and cell 
cycle control in familial early-onset AD, and may be an epige-
netic mechanism for the hypermethylation of TRIM95 (incor-
porated in 2 DNAm clocks) contributing to pro-apoptotic 
signalling in AD.55 Another example is the association between 
GRIA2 levels and AD brain pathology.57 Moreover, ASPA was 
associated with age of onset in Canavan disease,58,59 and the 
expression levels of PDE4 isoforms were linked to AD.60 Also, 
an association with VGF levels was reported in AD61 and 
ALS.62,63 Finally, reduced SCAP levels were linked to cognitive 
decline in an AD model.64 The observation that half of the 
top-overlapping genes are associated with neurodegenerative 

Figure 2.  Gene-overlap among the 14 DNAm clocks. Matrix of pairwise intersections illustrating the relationship between different DNAm clocks based 

on the percentage of overlapping genes (biological DNAm clocks are indicated in red and chronological clocks in black). Each pairwise intersection, 

which matches 2 of the variables displayed on the horizontal and vertical axes, was calculated as the percentage of overlap between the genes of the 

different DNAm clocks and ranges from 0% to 100%. Colour depth indicates the strength of the relationship. Plot generated using the pairwise module of 

the Intervene Shiny App.53
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disorders reinforces the possibility that DNAm clocks could be 
used as disease biomarkers in clinical trials of neurodegenera-
tive diseases.

Studies of DNAm Clocks in Neurodegenerative 
Diseases
Neurodegenerative diseases share common aberrant epig-
enomic patterns, which target genes involved in many cellular 
pathways.65 Multiple studies have used specific DNAm 
changes as disease biomarkers. For instance, increased DNAm 
in C9orf72 (in response to repeat expansion) leads to a down-
regulation of C9orf72 expression and correlates with disease 
onset and duration.66-68 Studies of neurodegenerative diseases 
revealed a link between clinical outcomes and DNAm-age 
acceleration, mainly using the Horvath multitissue clock.11

In ALS, studies of discordant identical twins reported that 
the ALS-affected twin had greater DNAm-age acceleration 
than the asymptomatic twin.69-71 Furthermore, in C9orf72 
ALS patients (n = 46), every 5-year increase in blood-based 
DNAm-age acceleration was associated with a 3.2-year earlier 
age at onset.18 A study of genetically unexplained ALS patients 
(n = 249) also revealed a strong reverse correlation of DNAm-
age acceleration with disease onset and survival.19 A 5-year 
increase in DNAm-age acceleration was linked to a 6.4-year 
earlier onset using blood collected at ALS diagnosis and 8.5-
year earlier onset using CNS tissues, indicating further accel-
eration of DNAm-age by the end-stage of disease.

In AD, DNAm-age acceleration was associated with Aβ 
amyloid load and cognitive decline.15 Notably, 32 genes cor-
responding to clock-building CpGs are involved in the amy-
loid biological network (Supplementary Table 1). For instance,  
BACE1 and PSEN1, which encode Aβ generating β- and γ-
secretase, respectively, are incorporated in DNAm 
PhenoAge.14 A study of the age acceleration measures of both 
Horvath and Hannum clocks revealed an association with 
several AD risk factors (eg, body mass index and cigarette 
smoking status).72 In addition, the Horvath measure corre-
lated with cholesterol levels, while Hannum measure corre-
lated with educational level. A recent investigation of the 
Horvath clock in a unique family with monozygotic triplets, 
2 of whom developed AD in their mid-70s, revealed that the 
triplets’ DNAm-age was 6 to 10 years younger than their 
chronological age. In contrast, the triplet’s offspring with 
early-onset AD (at age 50) had a DNAm-age 9 years older 
than chronological age, indicating accelerated aging.73

Acceleration of the Horvath clock was also linked to PD, 
and an association was observed between PD and DNAm-
based measures of blood cell types (patients showed more 
granulocytes but fewer helper T and B cells than controls).16 
Furthermore, investigation of a PD family with the p.A53E 
mutation in α-synuclein showed that an earlier onset was 
accompanied by increased DNAm-age acceleration.74 Of note, 
the association between DNAm-age measures and disease 

traits may depend on the selected DNAm clock. In a study of 
multiple sclerosis, accelerated phenotypic aging was observed 
using DNAm PhenoAge, whereas the measures of the Horvath 
or Hannum clock did not differ from chronological age,51 
which likely reflects the different aging mechanisms behind 
each DNAm clock. It illustrates the importance of choosing 
the proper age-estimator in disease-specific contexts for accu-
rate interpretation of the results.

Overall, DNAm clocks could provide a better understand-
ing of age-related mechanisms underlying neurodegeneration 
and help with designing an ‘extreme phenotype’ study/trial (eg, 
early vs late onset; and fast vs slow progression). Furthermore, 
DNAm modifiers may serve as potential therapeutic targets, 
which is supported by the observation that several loci included 
in DNAm clocks are genetically and/or functionally associated 
with neurodegenerative diseases (Supplementary Tables 1 and 
2). Finally, it may be valuable to use several DNAm clocks 
together to combine their strengths for a specific study, which 
would require a better understanding of the aging mechanisms 
behind each clock and confounding factors influencing clock 
accuracy.

Confounders of DNAm Clock Accuracy
Genetic confounders and stability of DNAm 
changes

The methylome-wide profiles of identical vs fraternal siblings 
illustrated that DNAm levels are under strong genetic con-
trol.69,73 Hence, genetic differences could lead to the incorrect 
interpretation of age predictions and health outcomes. For 
instance, genetic variability partially accounts for the variance 
in DNAm PhenoAge,14 and ethnic differences could affect the 
aging rate of the Horvath clock.75 A longitudinal twin study 
found that Levine and Horvath clocks are moderately heritable 
and influenced by genetic background.76 Of note, 40 of the 353 
CpGs in the Horvath clock could be lost due to rare variants 
(<1%) listed in the Infinium MethylationEPIC v1.0 B5 
Manifest (http://webdata.illumina.com.s3-website-us-east-1.
amazonaws.com/downloads/productfiles/methylationEPIC/
infinium-methylationepic-v-1-0-b5-manifest-file-csv.zip). 
Furthermore, the rate at which DNAm changes with age could 
vary between individuals,77-79 and was associated with genetic 
loci affecting CpGs.80 In general, CpGs are the most mutable 
sites in the human genome, because methyl-C can spontane-
ously deaminate to T (35% of all coding mutations occur at 
CpG-sites).81 Hence, the impact of genetic factors on DNAm 
clocks should be taken into consideration.

It is important to separate DNAm changes intrinsic to 
aging from those that reflect environmental and lifestyle expo-
sures. The influence of environmental and stochastic factors 
increases with age, causing larger interindividual DNAm vari-
ation in older individuals.77 This was supported by Horvath, 
Hannum and Levine clocks.82 Notably, the association between 

http://webdata.illumina.com.s3-website-us-east-1.amazonaws.com/downloads/productfiles/methylationEPIC/infinium-methylationepic-v-1-0-b5-manifest-file-csv.zip
http://webdata.illumina.com.s3-website-us-east-1.amazonaws.com/downloads/productfiles/methylationEPIC/infinium-methylationepic-v-1-0-b5-manifest-file-csv.zip
http://webdata.illumina.com.s3-website-us-east-1.amazonaws.com/downloads/productfiles/methylationEPIC/infinium-methylationepic-v-1-0-b5-manifest-file-csv.zip
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a higher body mass index and DNAm-age acceleration was 
reported in middle-aged but not in older individuals, suggest-
ing that the link with some metabolic traits may vary through-
out life.83,84

Analysis platform and preprocessing methods

DNAm-age clocks have been created using data from different 
platforms (eg, pyrosequencing or 27K, 450K and EPIC 
BeadChip arrays) (Table 1). Caution is needed when interpret-
ing results using new or mixed arrays. For example, an underes-
timation of DNAm-age by Horvath clock was reported if the 
336 CpGs (shared between 3 arrays) are used.85 Moreover, dif-
ferent tools for data preprocessing and analysis have been 
developed for each platform. A test of Horvath and Hannum 
clock on the EPIC array indicated that changes in the array 
and preprocessing methods can cause an increased median 
error in DNAm-age.86 Also, while certain normalization meth-
ods have been reported to be better than others (eg, peak-based 
correction and quantile-normalization for the 450K array),87-89 
normalization methods should be carefully selected based on 
the type of study.86

Confounders related to cohort age range

The underrepresentation of certain age groups during the devel-
opment of DNAm clocks may affect their predictive accuracy at 
different life stages, and suggests that chronological age should 
be included as a covariate when testing for associations with 
DNAm-age acceleration.44 Indeed, the rate of change in 
DNAm-age slows with age for Horvath and Hannum clocks90 
and is fastest during development.5 Both clocks display a loga-
rithmic pattern during the teenage years, and for this reason, 
Horvath clock has a log-linear transformation for samples from 
young individuals.45 Yet, the Horvath clock was found to give a 
systemic underestimation of age in tissues of elderly subjects. 
More accurate age estimators can be constructed by focusing on 
a specific age range and tissue.91 For example, the recent PedBE 
clock illustrated increased accuracy using a single tissue with a 
focused age range (0-20 years).91 In contrast to Horvath clock, 
the PedBE clock is expected to reflect developmental pheno-
types related to growth, and the differences in the underlying 
mechanisms presented by these clocks can be traced back to the 
clock-building CpGs. As childhood is characterized by a rapid 
change in DNAm that is different from the methylome dynam-
ics in adults, it is also important to develop a DNAm clock spe-
cifically designed for an older age range that could capture the 
influence of lifetime exposures.92

Tissue-related confounders

Due to the variance in DNAm status between different cells 
and tissues, correcting for cell and tissue composition is impor-
tant for improving clock accuracy, although, in certain scenarios, 

it may cause biologically informative signals to be missed.5 Both 
tissue-specific and multitissue clocks are expected to hold 
important information on aging mechanisms. The multitissue 
markers are mostly located in evolutionary-conserved CpG 
islands, whereas tissue-specific markers are mostly mapped to 
CpG shore regions. Hence, different aspects of aging are being 
reflected by these 2 types of DNAm clocks, which should be 
taken into consideration for clock selection.

Discussion and Future Directions
A single best measure of biological aging does not exist, 
although some DNAm clocks outperform others for specific 
tasks. Each clock is built according to their unique training 
method, in which the age range, selected tissue(s), platform/
statistical methodology, number of CpGs, and samples are of 
importance. Increasing the number of CpGs leads to a higher 
accuracy in the prediction of chronological age11,13,32,33; how-
ever, it could also cause the loss of informative disease-related 
CpGs.45 The little overlap in CpGs between the different 
clocks14 is likely reflective of diverse aging processes. For 
instance, CpGs in biological DNAm clocks were selected 
based on their correlation with multisystem phenotypic meas-
ures, in contrast to CpGs linked with chronological age. 
Notably, among the genes corresponding to clock-building 
CpGs, there are 28 genes incorporated in more than 3 DNAm 
clocks, most of which show a consistent direction of age-related 
DNAm in the different clocks (Supplemental Table 2). These 
genes could be prioritized for future age-related therapies and 
functional studies, including an evaluation of whether their 
expression levels influence disease presentation.

The various DNAm clocks reflect different aspects of a 
multidimensional aging process, including telomere biology, 
epigenomic instability, transcription, cellular differentiation 
and senescence.51 Some DNAm changes could be contributed 
to disease, while others may be a response to age-related 
decline, suggesting that DNAm clocks reflect a system main-
taining epigenetic stability.11 Increasing DNAm variability 
over time may be the result of an accumulation of DNAm 
changes through cell division and DNA replication (eg, from 
errors by DNA-methyltransferases maintaining DNAm pat-
terns on division).93 However, this explanation cannot account 
for the cell-/tissue-independent DNAm clocks that accurately 
predict chronological age even in postmitotic tissues (eg, brain). 
Chronological DNAm clocks could be driven by an increase in 
entropy, in which the epigenetic landscape smoothens with age 
and the ticking rate of the clock may reflect the general pro-
gression of low-/high-methylated CpGs towards a more inter-
mediate DNAm level.12,13 Furthermore, they may reflect an 
evolutionarily selected programmed process, as such clocks 
remarkably accurately predict chronological age and display a 
link with tissue development; however, these observations are 
also consistent with the above-mentioned entropic model.6 In 
contrast, biological DNAm clocks are more likely to measure 
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the variability between individuals in age-related functional 
decline and disease. Indeed, these clocks seem to be enriched 
for genes involved in age-related diseases, and the DNAm 
changes may affect disease progression through the regulation 
of these genes (eg, the Polycomb target genes in epiTOC).6,34

Importantly, measures of age acceleration could predict the 
therapeutic efficacy of drugs aiming to slow aging. For instance, 
a recent pilot study encouraged the use of the GrimAge predic-
tor in a clinical trial intended to regenerate the thymus to pre-
vent signs of immunosenescence.94 The application of DNAm 
clocks is especially important in neurodegenerative diseases, 
because aging is the strongest risk factor for all of them. 
However, it is unknown whether acceleration of DNAm-age is 
the cause or a consequence of neurodegeneration, which could 
be addressed by longitudinal studies (eg, assessing DNAm-age 
before and after disease onset). A longitudinal approach could 
also help identify more accurate measures of biological aging. 
For example, a study assessing 18 biomarkers of mortality at age 
26, 32, and 38 revealed that worse healthspan outcomes were 
linked to a faster pace of aging.2 In the future, it would be 
important to have a longer follow-up period, use different eth-
nic cohorts and include the most recent biomarkers of age-
related decline.1,2,95 However, a longitudinal study is only 
possible for easily accessible tissues (eg, blood).

In conclusion, each reported DNAm clock has its own 
strengths and limitations. Getting a better understanding of the 
aging mechanisms reflected by each clock is crucial for selecting 
the most suitable DNAm clock in a disease-specific context.45 It 
could also assist in determining which DNAm clocks may be 
beneficial to evaluate together in the same experimental setting 
to capture the complexity of the aging process and improve pre-
dictions of health outcomes with age. However, several con-
founders may affect the accuracy of DNAm clocks, which should 
be taken into consideration to correctly interpret the link 
between age predictions or health outcomes. Novel technologies 
could detect more CpGs in the human methylome to better 
track biological aging, and longitudinal measurements would be 
informative in evaluating the rate of epigenetic aging.1,2,96
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