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Abstract: Active magnetic bearings (AMBs) commonly use pulse-width modulation to reduce
analogous hardware and manufacturing costs, but they experience sensing process, sensing
accuracy and stability problems. To address these issues, a synchronous sampling-based direct
current estimation (SS-DCE) method is proposed herein with a bistate switching power amplifier.
First—considering the reluctance evolution mechanism of AMBs—a coupling relation mathematical
model between rotor displacement and voltage/current is presented to acquire the rotor position from
the working coil current alone. Then—assuming that the switching current was an approximately
triangular signal—a DCE for the rotor position was established based on the estimation inductance
of the charging/discharging phase. Finally—to decrease the phase shift caused by the self-sensing
filters and position estimation algorithms—the SS-DCE method was introduced to conduct precise
position detection for rotors with high velocities. The simulation and experimental results indicated
that the proposed method could improve the sensing accuracy and stability. Compared to other AMB
position estimation methods, the simple linearity of the SS-DCE method was greatly improved and
could be controlled below 4%. Evaluation using frequency response analysis showed that the SS-DCE
method had excellent dynamic accuracy and could perform at a higher phase margin, especially
for the uprising/landing transient state. Moreover, there was a phase margin of 158◦ at the natural
frequency of 19.26 HZ, and the peak sensitivity in the 50–250 µm range reached 10.7 dB.

Keywords: self-sensing; active magnetic bearings; least square method; direct current estimator;
synchronous sampling

1. Introduction

For the rotating machinery of pumps, generators, turbomachines or machine tools, the rotors are
generally supported by hydraulic bearings, composite ceramic bearings or magnetic bearings. Due to
their high-speed rotation, high efficiency and low maintenance demand, active magnetic bearings
(AMBs) have been applied in a series of modern industrial high-speed motor systems to replace
conventional bearings. However, their geometric size, manufacturing cost and work reliability are
disadvantageous as they comprise numerous components, such as wires, electromagnetic actuators,
sensors and controllers. If some of these components are eliminated or integrated, the cost and
size can be reduced, and the system reliability can be improved. The first self-sensing method
proposed by Vischer [1] is based on the Luenberger model, but its estimation results are sensitive to
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systematic parameter changes. However, Cannon et al. [2] and Karkoub et al. [3] found that stable
control is easy to achieve in flexible structures with co-located sensors and actuators. For example,
a generic AMB-supported rotor, peripheral hardware and free–free rotor mode [4] are shown in
Figure 1. This AMB structure is non-collocated because the position sensor is set beside the actuator
(electromagnet); the phase difference between the position sensor and the actuator can be potentially
dangerous if the rotor is running in a high-order mode. Then, the co-located solution, called self-sensing
method, is developed, and the phase difference will be eliminated because the position sensor and the
actuator will combine.
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Figure 1. Example of a generic active magnetic bearing (AMB) system and free–free rotor mode.

Self-sensing methods can be divided into two main categories: state observer-based and parameter
estimator–based methods. Vischer [5] and Mizuno [6] presented the rotor position as a system state,
but the system robustness based on the observer was lacking in comparison to that based on the sensor.
In 1998, Morse [7] first proposed that the design scheme of self-sensing bearings lacks robustness to the
bearing model’s uncertainty; hence, several parameter estimators were developed. A high-frequency
small dither signal is injected into the coil of AMBs because Maslen [8] showed that the linear period
signal can increase robustness. The inductance change was detected and the rotor position was
estimated by Park et al. [9], Ghule et al. [10], Bugsch et al. [11] and Tan et al. [12]. However, this
approach is limited by the bandwidth of the power amplifier (PA) and the signal-to-noise ratio. Another
solution based on the ripples of a pulse–width modulation (PWM) PA introduced by Okada [13] and
Noh [14] showed that the PWM ripple components are demodulated to estimate the rotor position,
because the working current and voltage of AMBs are related to the inductance of the bearing coil.
To overcome the disadvantage of the duty cycle of the PWM PA current not being fixed and affecting
the detection accuracy, Mizuno [15] used a hysteresis amplifier to drive the magnetic bearing and
converted the rotor displacement to the switching frequency of the hysteresis amplifier. Furthermore,
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Schammass [16] suggested that digital filtering amplitude demodulation (DFAD) is better than Noh’s
analog approach.

The analog solution of Schammass’s approach is shown in Figure 2, while its digital solution is
shown in Figure 3. Both solutions inherently involve the band-pass filter (BPF), rectifier or absolution
algorithm and low-pass filter (LPF) to isolate the fundamental ripples of the coil current and voltage.
Lu et al. [17], Zhang et al. [18,19], Pan et al. [20] and Tan et al. [21,22] investigated the digital model
of amplitude demodulation. Similarly, Yu et al. [23] and Li et al [24,25] improved the estimation
accuracy using an accurate analytical model in the frequency domain. Moreover, the displacement
estimation module of the amplitude demodulation method has been constructed, including BPF, LPF
and envelope detection module. Compared to the analog filtering amplitude demodulation (AFAD),
DFAD increases the ADC (analog-to-digital converter) and replaces the analog filters with digital
filters. Therefore, the outputs of the two estimators roughly have the same gain and phase response.
The advantage of the amplitude demodulation estimation of both approaches is that it can conduct
relatively mature electronic technology and involve communication demodulation method.
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Figure 2. Diagram of the AFAD approach.
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In general, the extra phase shift is inevitably introduced in the demodulator self-sensing process,
comprising the signal conditioning the electronic circuits, the filters extracting the fundamental ripple
and the position estimation algorithm operation. Another issue is the nonlinear effect of the change of
the duty cycle, by which the estimation accuracy, stability and robustness will inevitably decrease.

Another position estimation approach is gradient demodulation, which uses the coil current
gradient signal. Li et al. [26] presented a self-sensing model based on the current change rate and
Haarnoja et al. [27], Tian et al. [28] and Zhang et al. [29,30] reported that the rotor position can be
estimated by the current slope due to the switching amplifier. This approach is obviously advantageous
as no filters are employed in the self-sensing process and the nonlinear compensation of the duty
cycle change effect is eliminated. Figure 4 shows the diagram of the gradient demodulation estimator.
After the signal passes the anti-alias LPF, the demodulation method extracts the position information
from the current’s rate of change (di/dt) or the gradient. In the figure, KN is the product of the coil
length and the self-inductance, V is the voltage, i is the current and t is the time.
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Since the current sampling method and technique are limited by the nonlinear magnetic effect and
the eddy current in the PA transients, several challenges exist in the precise measurement of the current
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slope. Hence, Glück et al. [31] and Rizzello et al. [32,33] proposed a rotor position calculated by the
estimation inductance based on the least squares identification model with the coil current. Evidently,
a large phase shift is introduced by a more complex algorithm of position estimation and the ADC with
higher speed and greater precision is adopted in the self-sensing process [34]. The extra phase shift
introduced by the complex estimation algorithm reported by Nevaranta et al. [35], Sun et al. [36], Yang
et al. [37] and Ge et al. [38] or the advanced filters proposed by Sun et al. [39] and Matsuda et al. [40]
will affect the stability and robustness of AMBs. Consequently, developing a technical solution scheme
with an adequate phase margin for the long-term operation of self-sensing AMBs is necessary.

As the switching frequency is generally high, updating the rotor position at each switching cycle is
difficult. Therefore, Ranft et al. [41], Van Schoor et al. [42] and Yu et al. [43] and Li et al. [44] suggested
the reduction of the switching frequency or updating of the position every several cycles. Apparently,
for self-sensing AMBs to adapt to high-speed rotary machines is challenging.

If no flux cross-coupling is present between adjacent poles of the eight-pole heteropolar radial
AMB, we can set up a principle model of a single-degree-of-freedom (DOF) AMB, as shown in Figure 5.
Based on the model, the self-sensing solution employs an estimator that uses the coil current and
voltage to calculate the gap between the rotor and stator [45]. The self-sensing estimator tends to utilize
filters to extract the target signal, and its digital implementation must use the AD convector. Finite
impulse response (FIR) filters or electronic filters are adopted in the self-sensing process. Since the
external phase shift is introduced by the filters and complex estimation algorithms, the system stability
margin will be limited. The symmetrical design of the demodulation circuit is the key section that
concurrently takes charge of the fundamental current and voltage extraction process. Consequently,
PWM switch amplifiers based on self-sensing schemes experience sensing process, sensing accuracy
and work stability problems.
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To address this issue, Schammass [16] proposed a normal ADC applied with the analog solution
because the synchronous demodulator’s output is the fundamental ripple of the voltage and current.
It is an inevitable consequence of the large phase shift introduced by the BPF and LPF in Niemann’s
work [46]. Therefore, the temperature sensitivity and phase shift can be improved in the digital
solution; another advantage of this solution is that changing the mathematical algorithm is easy [47,48].
The stability margin of the system will be limited since an extra phase shift is introduced by the FIR
filters and complex estimation algorithms [11]. In addition, the symmetrical design of the demodulation
plays a key role in the position estimator [49].

To address the above problems, this study proposes a position estimation method that can not
only extract the rotor position from the current gradient information, but also reduce the overhead time
of the estimation algorithm’s operation. A direct current estimator based on the least squares method
(DCE-LSM) is introduced, and since the overhead time is too large, a synchronous sampling-based
direct current estimator (SS-DCE) method is subsequently presented. The most obvious feature of the
SS-DCE is the current sampling instant that is taken at the synchronized triangle wave of PWM in the
bistate switching PA.
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The rest of this study is organized as follows: Section 2 presents the position estimation method
for direct current data. Section 3 discusses the simulation/experimental results and checks the
static/dynamic performances of the proposed self-sensing estimator. Finally, in Section 4, the conclusions
are summarized, and a short future outlook is mentioned.

2. Methodology

2.1. Research Framework

To restrain the phase shift in the position estimator and improve the system performance and
stability, a self-sensing research framework is proposed herein (Figure 6). In step 1, the closed-loop
controller with a reference position sensor is set up, and the systematic parameters, which comprise
the bias current, the current/position signal amplifier’s gain, the anti-alias filters, the PID controller
parameters, etc., are tested and recorded. Then, the basic work framework of the AMBs is implemented.
In step 2, the self-sensing framework is applied in the AMBs. Compared to the ideal sensor, the position
estimators’ performances are measured in a simulation test. The position estimation algorithms
include the SS-DCE, DCE-LSM, AFAD and direct current measurement (DCM) methods. In step 3,
the experimental results are obtained on a single-DOF rig.
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2.2. Amplitude Demodulation Algorithm

In Figure 7, neglecting the nonlinear magnetic effects (i.e., hysteresis, saturation, eddy current and
fringing) and flux leakage, the equivalent reluctance Rm of the overall system is described as

Rm = Rfc + Rg + Rfr =
1
µ0A [2(g0 ± x) + (lfc + lfr)/µr]

xg = 2(g0 ± x) + (lfc + lfr)/µr,
(1)

where Rfc is the effective reluctance of the core, Rfr is the reluctance of the rotor, Rg is the reluctance of
the gap, Rlk is the reluctance of the leakage fluxes, lfr and lfc are the average length of the magnetic
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circuit of the iron rotor and core, respectively, x is the change in the air gap, g0 is the initial air gap
length, A is the area of the magnetic pole, llk is the length of the magnetic flux leakage circuit, µ0

and µr are the permeability of air and ferromagnetic materials, respectively and xg is the estimation
position amplitude.
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According to the Faraday laws of inductance, ampere loop and flux conservation, we can obtain
the model control equation as follows:

u− iR = N2 d(i/Rm)

dt
= L(xg)

di
dt

+ i·
∂L(xg)

∂xg

dxg

dt
, (2)

where L = L(xg) = KN/xg, KN = µ0N2A, u is the working voltage of the coil, i is the working current,
N is the number of individual coil turns, and R is the electrical resistance. Then, the gradient of the
current can be expressed as

di
dt

=
1

L(xg)

(
u− iR− i·

∂L(xg)

∂xg

dxg

dt

)
. (3)

Assuming that the rotor vibration is slow compared to the high-frequency coil current and that
the coil resistance is far less than the coil inductive impedance, we can neglect the derivative term of
the rotor position and coil resistance. The rotor position is described by

xg(t) =
KN

2u
di
dt

. (4)

The integral of Equation (4) can be written as

i =
2xg(t)

KN

∫
udt. (5)

If the switching fundamental ripple i1(t) = i1d cos(ωst) and u1(t) = u1d sin(ωst), the estimation
position amplitude is expressed as

xg = ωsKN·
i1d

u1d
= KA·

i1d

u1d
. (6)

Equation (6) is the conventional solution of the position estimation approach [16,50,51] as the
amplitude demodulation approach, wherein ωs is the angular frequency.



Sensors 2020, 20, 3497 7 of 27

The DCM approach reported by Niemann [46] is a simplistic solution that measures the maximum
amplitude of the current fundamental ripple isolated by BPF during a constant 50% duty cycle.
The position estimation of DCM is depicted as

xg =
−2

KNωs
[max(i1(t) − avg(i1(t)))]. (7)

In the DCM estimation, the current ripple amplitude is measured with a constant 50% duty cycle
each time; thus, voltage u in Equation (3) is constant. Since the switching time is now also fixed,
the current gradient becomes proportional to the current amplitude during the measurement cycle.

2.3. DCE-LSM Algorithm

The switching current of PA is controlled by a duty cycle, and the flux of AMBs is always regulated
by the switching current. Assuming that the rotor vibration position is represented by a sinusoid
function xm sinωct, the duty cycle’s function can be described as αk = α0 ±αmk cosωct [14]. Meanwhile,
the cosine function [51–54] of the bistate switching voltage and current of the electromagnets in the kth
cycle can be expressed as follows:

uk(t) = V(2α0 − 1) + 2Vαmk cos(ωct) +
∞∑

n=1

4V
nπ

∣∣∣sin(nπαk)
∣∣∣ cos(nωst− nπαk) (8)

ik(t) =
V(2α0 − 1)

R
+

2Vαmk cos(ωct)√
R2 + (ωcL)

2
+
∞∑

n=1

4V
∣∣∣sin(nπαk)

∣∣∣
n2πωsL

cos(nωst− nπαk) (9)

where α0 is a constant for the duty cycle of the bias flux, αmk is the quantity variation, V is the supply
voltage of PA, ωc is the control angular frequency, ωs is the switching angular frequency and αk ∈ (0, 1).

In Figure 8, the switching voltage and current are shown, and the triangle carrier is drawn as a
symmetrical wave that is compared with the reference signal controlling the PWM generator. Avoiding
the influence of the switching glitches, the current measurement occurs in the time interval [t1

I , tp
I ].

The current and change of flux linkage in the charging phase can be described as

i(kI) = i(t1
I ) +

1
LkI

∫ kI

t1
I

(u−Ri)dt (10)

∆ψkI =

∫ kI

t1
I

(u−Ri)dt (11)

where ∆ψkI is ∆ψ(kITs) with kI = m1
I , . . . , mp

I and sampling interval Tsp.
Then, the change of the discretized flux linkage is given by

∆ψkI = Ts
kI−1∑
j=m1

I

(u j −Ri j)

∆ψmI
s
= 0

(12)

where kI = m1
I + 1, . . . , mp

I . The current in Equation (10) reads as

ikI = im1
I
+

∆ψkI

LkI

. (13)
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Since the measurement noise will lead to very imprecise estimations, the resulting equations
cannot be practically resolved. According to Equation (13), the inductance in the charging phase can
be theoretically deduced in vector notation, wherein a quadratic measure is used by LSM.

im1
I

im1
I +1

.

.

.
imp

I

︸     ︷︷     ︸
ImI

=



1 ∆ψm1
I

1 ∆ψm1
I +1

. .

. .

. .
1 ∆ψmp

I

︸             ︷︷             ︸
SI

 ĩm1
I

(LkI )
−1

︸       ︷︷       ︸
OI

(14)

where ImI ∈ Rm1
I−mp

I +1 is the measurement vector of the current in the charging phase, SI ∈ R2∗(m1
I−mp

I +1)

denotes the regression matrix and OI ∈ R2 is the output vector to be determined. To improve the
robustness of the estimator and decrease the measurement errors of the current, the estimation ĩm1

I
in

vector OI can replace the initial value im1
I

in Equation (14). The approximation ÔI of the output vector
OI in the least squares sense is given by

ÔI = [(SI)
TSI]

−1
(SI)

TImI. (15)

The estimations for the initial current value ˆ̃im1
I
= Ô1

I and the inductance L̂kI = Tsp/Ô2
I are

obtained in charging phase I. In the same approach, the estimations for the initial value of the current
ˆ̃im1

II
= Ô1

II and the inductance L̂kII = Tsp/Ô2
II can be obtained in discharging phase II.

If the current ripple is almost triangular and the time derivative of inductance
.
LkI or

.
LkII is constant

within [t1
I , tp

I ] or [t1
II, tq

II], respectively, the average value of the inductance is defined as LkI = L̂kI −
.
LkI

∆tI
∆iI

iI
LkII = L̂kII −

.
LkII

∆tII
∆iII

iII
, (16)

where ∆tI
∆iI

=
t(tp

I )−t(t1
I )

i(tp
I )−i(t1

I )
and ∆tII

∆iII
=

t(tq
II)−t(t1

II)

i(tq
II)−i(t1

II)
are the reciprocals of the current derivative ∆i/∆t,

.
LkI = LkI − L̂kI and

.
LkII = LkII − L̂kII are the estimation errors and iI = 1

p

p∑
j=1

i j
I and iII = 1

q

q∑
j=1

i j
II are

the average current of the charging and discharging phases, respectively. The average value of the
inductance in the kth PWM cycle can be yielded as

Lk =
LkI ∆iIiII∆tII − LkII ∆iIIiI∆tI

∆iIiII∆tII − ∆iIIiI∆tI
. (17)

If ∆tI = ∆tII = Tsp and ∆iI = −∆iII are assumed, Equation (17) can be simplified to

Lk =
LkI + LkII

2
. (18)

Estimation for the rotor position is derived from Equation (18) as

x̂g1 = KN/L̂k. (19)



Sensors 2020, 20, 3497 9 of 27

DCE-LSM obtains better estimation precision of the rotor position [31]. However, its operation is
limited in industrial applications due to the time consumed by the algorithm and the electronic circuit
costs. The LSM algorithm is essentially a position estimation algorithm using the average inductance
in every PWM cycle. Therefore, seeking an equivalent LSM algorithm and a solution with cheaper
hardware cost is necessary.
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2.4. SS-DCE Algorithm

As shown in Figure 8, if the working current is sampled at the instant in the kth PWM cycle,

tks = kTs + (1 + αk)Ts/2, (20)

Then
∞∑

n=1

4V
∣∣∣sin(nπαk)

∣∣∣
n2πωsL

cos(nωst− nπαk) = 0. (21)

Equation (8) can be rewritten as

iks(k) = ik(tks) =
V(2α0−1)

R +
2Vαmk cos(ωctks)√

R2+(ωcL)2

iks(k) = I0 + Ikm cos(ωctks)
(22)
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where Ts is the switching period, I0 is the bias current V(2α0−1)
R , αmk is the quantity variation, tks is

the sampling instant and Ikm is the control current amplitude 2Vαmk√
R2+(ωcL)2

. Assuming that the control

frequency of rotor ωc is far less than the carrier frequency ωs, we can ensure that cos(ωctks) , 0. Then,
the inductive impedance of the coil can be obtained as

Lks =

√(
2Vαmk cos(ωctks)

iks(k) − I0

)2

−R2. (23)

Therefore, the rotor position can be depicted as

x̂g2 = KN/Lks. (24)

Furthermore, by considering the equations of the kth cycle and the (k− 1)th cycle from Equation (22),
we can yield the differential current:

iks(k) − i(k−1)s(k− 1) =
x̂g2,k

KN
[VTs(2αk − 1)]. (25)

Consequently, the estimation for the rotor position is

x̂g2,k =
VTs(2αk − 1)

KN
[
iks(k) − i(k−1)s(k− 1)

] . (26)

In Figure 8, during one switching cycle in the time interval [tk, tk+1], two instants, t+k and t−k ,
are defined as the moments at which the voltage changes from −V to +V and conversely, respectively.
Since the duty cycle for this period is at fixed αk and the symmetrical triangle wave period is Ts, we can
obtain t−k − t+k ≡ αkTs and tks as

tks = t+k + Ts − Ts(1− αk)/2 = kTs + Ts(1 + αk)/2. (27)

Assuming αk = 50%, Equation (25) can be rewritten as

ik(k) = ik−1(k− 1). (28)

Briefly, from the above conclusions, the self-sensing SS-DCE process is shorter than the other
estimator processes in this study because the signal conditioning the electronic circuits can be canceled,
and the operation of the position estimation algorithm is simple. In the digital signal processor,
the duty cycle can be provided by the controller, and the symmetrical triangle wave is easy to
generate in FPGA (field programmable gate array) or other digital signal process chips from Texas
Instruments Incorporated.

Equations (24) and (26) are both formulas of the rotor position. Equation (26) is limited since
the current change of the steady state is smaller than that of the transient state. Equation (26) may
overflow if the AD convector cannot distinguish the adjacent sampling current. Another issue may
occur when ik(k) = ik−1(k− 1) and, simultaneously, αk = 50%. That is, the SS-DCE estimator will fail if
the force on the rotor is constant. Consequently, Equation (24) must dominate in the running system
and Equation (26) must somehow supplement, e.g., the rotor uprising or landing.

Equation (28) can be a holder of the sampling current, which is obtained with the 50% duty cycle.
Furthermore, the coil current is kept unchanged during this time, which helps coordinate with the
mechanical system. Upon insertion of one or more 50% control cycles, the rotor vibration would
be regulated.
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3. Results and Discussion

3.1. Experimental Platform

To verify the effectiveness of the proposed method, a platform for the experimental AMB was
developed herein based on SS-DCE and dual closed-loop control. The experimental platform comprised
a controller based on digital signal processor TMS320F2812, a micropositioning platform, current sensor
LEM HX-05P, switching PAs and a referring position sensor HZ-891. The micromotion displacement
platform was composed of a base, a truss and a flexible hinge. The double-parallel four-bar flexible
hinge supported the truss, and the rotor was embedded and fixed on the truss, as shown in Figure 9.
The double-parallel four-bar flexible hinge mechanism adopted a symmetrical design on both sides.
When the displacement in the horizontal direction was caused by force, the displacements on both
sides of the hinge in the vertical direction were equal, which produced strict translation. This could
ensure the stability of the single-DOF magnetic bearing in the vertical direction.
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As shown in Figure 10, the flexible hinge adopted a straight circular-cut flexible hinge structure
design, and the material was carbon steel. The specific parameters are shown in Table 1:
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Table 1. Flexible hinge parameters for the AMB.

Parameters Values

Elastic modulus: E/Gpa 196.2
Width of flexible hinge: b/mm 14
Height of flexible hinge: h/mm 9

Minimum thickness of flexible hinge: t/mm 1
Notch radius: R/mm 4

Mechanism length: l/mm 69
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The rigidity formula of the flexible hinge’s four-bar mechanism is

K =
8Ebt5/2

9πR1/2l2
. (29)

Calculated with specific parameters, K = 0.0816 N/m. Since the micromotion displacement
platform adopts the structure of a double-parallel four-bar flexible hinge, the total stiffness iwass
2 K = 0.1632 N/m.

The experimental platform used an intelligent power module (PM10CSJ060) designed for power
switching applications at 2-kHz frequencies. PAs are configured in two-state modes (±50 V) to ensure
high-frequency ripples and increased the working stability of the self-sensing AMB. The built-in control
circuits provided the optimum gate drive and protection for the power devices. The experimental
platform entity is shown in Figure 11. In Table 2, the main parameters of the experimental self-sensing
AMB are listed. The force/displacement factor kx is calculated by [55].

kx = −
µ0N2AI2

0

2g3
0

= −2.8× 104N/m. (30)

A vital part of SS-DCE is a synchronized-sampling event, which is implemented in the timer
underflow interrupt T1UFINT/T3UFINT of the EVA/EVB of TMS320F2812. Since the interrupt occurs
at instant tks, obtaining the current synchronized with the PWM signal is not difficult.
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Figure 11. Self-sensing AMB’s experimental platform. (1) Reference sensor amplifier; (2) controller
board; (3) signal process board; (4) power board; (5) PA board; (6) current sensor; (7) reference sensor
HZ-891; (8) rotor; (9) electromagnets.

Table 2. Parameters of single-DOF AMB.

Parameters Values

Single magnetic pole area: A/cm2 6.16
Coil number: N/turns 50.00

Initial gap: g0/µm 6.76 × 102

Rotor mass: m/kg 1.93
Relative permeability: µr 2.30 × 103

Coil resistance: R/Ω 0.50
Nominal inductance: L0/mH 13.20

PWM frequency: fs/kHz 2.00
Sampling frequency of DFAD/DCM/LSM:/kHz 100.00

Bias current: I0/A 3.00
Force/displacement factor: kx/(N/m) −2.8 × 104

Natural frequency of test rig:/Hz 19.26
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In this study, the simulation and experimental resulted were compared with several other
estimation algorithms, including the DFAD approach, DCM approach and DCE-LSM and SS-DCE
position estimation approaches. The current and voltage signals were digitized via a 100-kHz A/D
converter when filtered by the analog BPFs that isolate the fundamental component to improve the
sampling resolution. Then, the ideal absolute value functions were implemented to detect the envelope
of the fundamental component of the current and voltage, and the position information was shifted to
low frequencies. LPFs can select only low-frequency baseband signals as the control signal. An FIR
filter was employed in the digital signal processor.

The Bode plots of BPF are shown in Figure 12. The band-pass of 30-, 50- and 300th order BPFs was
0.3–0.5π when the sample frequency fs = 10 kHz. The 30th order filter precision was the lowest level,
but its phase lag was the smallest; the 300th order filter precision was the highest level, but its phase
lag was the largest. When the sample frequency fs = 100 kHz, BPFs’ Bode plots were noticeably closer
to the corresponding LPFs. Accordingly, BPF could be replaced by LPF in practice because the former
had a low-pass effect and the fundamental ripple was just 2 kHz. The Bode plots of the last LPF were
shown in Figure 13, from which similar conclusions could be drawn. The 30th order filters of BPF and
LPF were qualified for the self-sensing process. The 50-Hz working currents by sensor, BPF and LPF in
the DFAD estimator were shown in Figure 14. Since the power frequency was 50 Hz, the noise and
disturbance of 50 Hz were obvious, and significantly, the self-sensing estimator was tested at 50 Hz.
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Figure 13. Bode plots of 30-, 50- and 300th order LPF with different sample frequencies. 
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Thereafter, the rotor position can be calculated by the quotient of the max value of the current and
voltage and be compensated by the nonlinearity of magnetic material as

1/µr = am2B2 + am1B + am0, (31)

where am2 am1 and am0 are the coefficients of the quadratic polynomial that are determined via the
simple experiments reported by Schammass [16], magnetic flux density B is obtained by µ0NiL/2xg−1

and xg−1 is the prior value of the estimator output. In Table 3, the self-sensing parameters for AMB
are listed. The PD and PI controller parameters are tuned based on the extended critical proportion
method. The slight difference in the estimator convergence rate stems from the control parameters.
For example, the SS-DCE convergence rate when Kd = 10 and Kd = 22 is lower than that when Kd = 20
and Kd = 45; however, Kd cannot be over 68. Thus, the frequency of the first closed-loop mode of the
test rig is obtained:

ωec ≈
√
−(Kx + Kp·Ki)/m = 1242.60

or fec = ωec/(2π) = 197.77 Hz
(32)
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Figure 14. Currents of the DFAD estimator (50 Hz).

Table 3. Self-sensing parameters of the AMB.

Estimators
Positions (PD) PAs (PI) Compensators

Kp (A/mm) Kd (A·s/m) Kp KI am2 am1 am0

DFAD 10 22 0.2 0.01 5.51 × 105
−1.92 × 105 4.10 × 106

DCM 20 38 0.5 0.01 −2.50 × 105 1.03 × 105 3.78 × 106

DCE-LSM 20 37 0.5 0.012 −2.50 × 105 1.03 × 105 3.78 × 106

SS-DCE 20 45 0.5 0.012 −2.50 × 105 1.03 × 105 3.78 × 106

Sensor 15 32 0.2 0.01 – – –

3.2. Simulation Results

A sinusoidal excitation signal with a 10-µm peak–peak value was applied as a reference position
with a frequency ranging from 20 to 200 Hz. Figure 15 shows the simulation results of the static
performances at 20 Hz. In Figure 15a,b, the normalization inductances of the four estimators are
depicted with the nominal inductance in a working cycle. The static simulation results of the position
estimators are shown in terms of sensor linearity and the error referring to the theoretical result of
the AMBs’ output. Under open-loop conditions with a constant bias current of 3.0 A, the desired
position linearly varied between 50 and 250 µm. Figure 15c,d shows the estimation position compared
to the ideal set value, and the linearity and error of the estimation position are shown in Figure 15e–h.
As the estimation error is not discernible in Figure 15e,f, the detailed error is shown in Figure 15g,h.
Since the test frequency of 20 Hz was close to the natural frequency, the output position and error of
these estimators were affected by the resonance characteristic of the rotor.

In Figure 15, a minimum error is observed for the DCE-LSM demodulation algorithm in the
50–250 µm range. The error of the SS-DCE demodulation algorithm is equivalent to that of DCM.
The DCE-LSM demodulation algorithm showed excellent linearity, but its CPU overhead was larger
than that of the others. In regards to related research conclusions and a factual working status, the
inductance, position, linearity and error parameters in the transition frequency band (50–200 Hz) held
important significance to characterize the system performance of the self-sensing AMB. To address
the matter, static performances at frequencies of 100, 150 and 200 Hz were performed, as shown in
Figures 16–19. The proposed SS-DCE method could obtain accurate position and inductance estimation
results. Compared to the DCE-LSM and DFAD methods, the SS-DCE method conducted better linearity
and error in the transition frequency band. In Figure 20, the results of these estimators’ precisions
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are outlined in the 0.1–200 Hz range. Apparently, the SS-DCE method had higher linearity precision,
especially for the rising-speed frequency range.
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Figure 18 Static performance simulation results (150 Hz). 388 Figure 18. Static performance simulation results (150 Hz).
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Figure 19 Static performance simulation results (200 Hz). 397 Figure 19. Static performance simulation results (200 Hz).
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Moreover, the above results present that both the DCE-LSM and SS-DCE outputs differed by less
than 7.5 µm from the reference signal of the theoretical model in the 50–250 µm range when the test
frequency was kept away from the natural frequency. This was primarily attributed to the adequate
data obtained for estimating the working coil current.

The gain and phase response of the self-sensing system are denoted as

G(ω) = 20 log(Xd(ω)/Xr(ω)), (33)

where Xd(ω) is the self-sensing output and Xr(ω) is the reference signal. In Figure 21, the comparative
results show that the phase-shift could be clearly reduced by referring to the digital demodulation,
demonstrating that the phase lag of SS-DCE was around −22◦ at the natural frequency, but was −62◦

phase margin when the rotor worked at 200 Hz.
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Comparison of the simulation results of DFAD, DCM and DCE-LSM demonstrated that the
estimation precision of DCE-LSM was higher than the output of the other estimators due to the
sampling current accuracy and estimation algorithm. The difference between DCE-LSM and reference
sensor was the smallest, and the linearity was the best. Meanwhile, the DFAD, DCM and SS-DCE
estimation methods were affected by the signal data sampled once in the PWM switching cycle.

3.3. Experimental Results

To verify the estimator and restrict the air gap of the rotor in the 50–250 µm range, the output
of the position estimator was compared to that of the eddy current sensor HZ-891. The linearity test
results are shown in Figures 22–26.
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The estimation linearity of DCE-LSM was better than that of the others, and its estimation precision
was less than 2% when the test frequency was far from the natural frequency. Due to more additional
phase-shifts introduced in the sensor process, the linearity of DFAD was the poorest; the estimation
accuracy presented in Figure 27 is about 6%. The precision of DCM and SS-DCE basically maintained a
similar level. The experimental results are slightly better than the simulation results because the rotor
was dominated by the damping force of the eddy current that included the motion and electrical eddy
current. This damping force was also associated with and affected the rotor vibration and position
estimator reported by Yu et al. [52] and Ji et al. [53]. Moreover, the experimental results of the four
estimators regarding the mass are consistent with the simulation results.

The input sensitivity analysis was operated according to ISO-14,839–3 because no robustness
indicators exist for self-sensing AMBs. In Figure 28, the suspended rotor was excited by a sinusoidal
signal with a 10-µm peak–peak value from 20 to 200 Hz. The results demonstrate that the input
sensitivity peak value listed in Table 4 occurred when the frequency (20 Hz) was close to the natural
frequency; the AMBs with SS-DCE kept the lowest sensitivity.

Table 4. Summary of the input sensitivity of the proposed estimators.

Estimator DFAD DCE-LSM DCM SS-DCE

Sensitivity Peak 13.7 11.2 10.9 10.7
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4. Conclusions

In this study, the phase shift and stability challenges introduced by demodulation filters and
self-sensing algorithms were addressed with the proposed SS-DCE approach. The strengths and
weaknesses of this approach were determined by comparison to four different position estimation
approaches of AMBs.

A large number of filters are applied in the DFAD and DCM approaches to estimate the position
obtained by the fundamental amplitude of the current and voltage. Due to the additional phase-shift
introduced by these filters, the system bandwidth is limited, and the achievable stability margin is
reduced. A novel method for the position estimation of self-sensing AMBs with a PWM-controlled
magnetic suspension system was proposed based on a detailed mathematical model that is a viable
description of the effect of switching PAs on the time evolution of the rotor current and position.
Based on an analysis of the charging/discharging phases of the coil, the error induced by both a working
value of the electric resistance and the dynamic inductance was considered.

Compared to these different methods, the SS-DCE approach had great advantages regarding its
estimator. When the test frequency (20 Hz) was close to the natural frequency, the error and precision
of all estimators achieved the best performance. When the test frequency was far from the natural
frequency, the DCE-LSM estimation’s linearity was better than that of the others; the simulation result
was less than 2%, and the corresponding experimental result was about 2% in the 50–250 µm range.
Due to more additional phase-shifts introduced in the sensor process, the linearity of DFAD was the
poorest, and the estimation linearity presented was about 6%. Similar linearity between SS-DCE and
DCM was less than 4%. However, SS-DCE had an excellent dynamics performance in the open-loop
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state, which was evaluated by a frequency response analysis; a 158◦ phase margin was shown as at the
natural frequency of 19.26 Hz, and the sensitivity peak is 10.7 dB in the 50–250 µm range.

According to the simulation and experimental results, the precision of the amplitude demodulation
approach was lower because of the neglected dynamic estimation of inductance and the insufficient
signal data in the estimation process. DCE-LSM considered the inductance dynamics and optimized
the calculation algorithm, but its calculation overhead was too excessive, increasing the hardware and
software costs. Thus, SS-DCE was derived, wherein an emphasis was placed on a special description
of the influence of the switching amplifier on the duty cycle evolution of the current. Furthermore, the
robustness limitations of self-sensing magnetic bearings are concerned in the commercial application.
A limitation of this study is that it only applies to self-sensing AMBs using bistate switching PA.
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