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Abstract
Study design
Biomechanical cadaveric study 

Objective
To compare biomechanical properties of a single stand-alone interbody fusion and a single-
level pedicle screw construct above a previous lumbar pedicle fusion.

Summary of background data
Adjacent segment disease (ASD) is spondylosis of adjacent vertebral segments after previous
spinal fusion. Despite the consensus that ASD is clinically significant, the surgical treatment of
ASD is controversial.

Methods
Lateral lumbar interbody fusion (LLIF) and posterior spinal fusion (PSF) with pedicle screws
were analyzed within a validated cadaveric lumbar fusion model. L3-4 vertebral segment
motion was analyzed within the following simulations: without implants (intact), L3-4 LLIF-
only, L3-4 LLIF with previous L4-S1 PSF, L3-4 PSF with previous L4-S1 PSF, and L4-S1 PSF
alone. L3-4 motion values were measured during flexion/extension with and without axial load,
side bending, and axial rotation.

Results
L3-4 motion in the intact model was found to be 4.7 ± 1.2 degrees. L3-4 LLIF-only decreased
motion to 1.9 ± 1.1 degrees. L3-4 LLIF with previous L4-S1 fusion demonstrated less motion in
all planes with and without loading (p < 0.05) compared to an intact spine. However, L3-4
motion with flexion/extension and lateral bending was noted to be greater compared to the L3-
S1 construct (p < 0.5). The L3-S1 PSF construct decreased motion to less than 1° in all planes of
motion with or without loading (p < 0.05). The L3-4 PSF with previous L4-S1 PSF constructs
decreased the flexion/extension motion by 92.4% compared to the intact spine, whereas the L3-
4 LLIF with previous L4-S1 PSF constructs decreased motion by 61.2%.
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Conclusions
Stand-alone LLIF above a previous posterolateral fusion significantly decreases motion at the
adjacent segment, demonstrating its utility in treating ASD without necessitating revision. The
stand-alone LLIF is a biomechanically sound option in the treatment of ASD and is
advantageous in patient populations who may benefit from less invasive surgical options.

Categories: Orthopedics, Neurosurgery
Keywords: interbody fusion, posterior spinal fusion, adjacent segment disease, spondylosis,
biomechanics

Introduction
Adjacent segment disease (ASD) is a postoperative diagnosis in patients with prior histories of
spinal fusion. A diagnosis of ASD is predicated on both adjacent segment radiographic
degeneration and the development of clinical symptoms. Multiple longitudinal studies have
demonstrated that radiographic evidence of adjacent segment degeneration is not directly
correlated with ASD, as some radiographic findings can be nonspecific and not clinically
relevant [1-3]. Numerous studies have identified multiple risk factors for the development of
ASD, including age over 60 years, male gender, facet degeneration, multilevel fusion, fusion to
L5, and preexisting degenerative disc disease adjacent to the fused segment [4-8].

Treatment of symptomatic ASD traditionally includes surgical decompression and extension of
the existing posterior instrumentation and fusion. The approach to revising posterior spinal
fusions is often more complex than the index procedure and has been associated with increased
complications and poor outcomes [2, 9-10]. The difficulty of revision posterior spinal fusion
often leads to the use of minimally invasive interbody fusion. Anterior, oblique, and lateral
retroperitoneal approaches have become increasingly popular for the treatment of symptomatic
ASD [11-12]. The direct lateral approach is an effective means for both successful arthrodesis
and indirect decompression [11, 13-14].

While the use of lateral lumbar interbody fusion (LLIF) for ASD has been reported in recent
literature, LLIF alone has not been rigorously investigated in a cadaveric model [15-16]. The
adjacent segment is a difficult biomechanical environment for fusion with increased stresses
and abnormal motion patterns due to the lack of mobility. The purpose of this study was to
compare biomechanical properties of a single stand-alone interbody fusion and a single-level
pedicle screw construct above a previous lumbar pedicle fusion.

Materials And Methods
Six fresh-frozen human lumbar spine specimens (T10-S1) were used for this study with the
demographics of each listed in Table 1.
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Specimen Age (years) Sex Cause of Death

1 52 M Respiratory Distress Syndrome

2 39 M Lung Cancer

3 44 M Cirrhosis of the Liver

4 49 F Drug Overdose

5 51 F Diabetic Shock

6 32 M GSW to the Head

Mean 44.5   

SD 7.8   

TABLE 1: Specimen Demographics
GSW: gunshot wound; SD: standard deviation

Radiographic screening was performed to exclude specimens with fractures, metastatic disease,
bridging osteophytes, osteoporosis, previous spine surgeries, or other conditions that could
significantly affect the biomechanics of the spine. The specimen was thawed and stripped of
the paraspinal musculature while preserving the discs, facet joints, and osteoligamentous
structures.

All biomechanical testing was performed at room temperature. The specimen was fixed to the
apparatus at the caudal end and free to move in any plane at the proximal end. The apparatus
allowed continuous cycling of the specimen between specified maximum moment endpoints in
flexion-extension, lateral bending, and axial rotation (Figure 1).
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FIGURE 1: Radiographic images before and after interbody
spacer placement
A) X-ray images of the cadaver spine specimen before interbody spacer placement; B) X-ray
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images of the cadaver spine specimen after interbody spacer placement

The load-displacement data was collected until two reproducible load-displacement loops were
obtained.

The angular motion of the T10 to S1 vertebrae was measured using an optoelectronic motion
measurement system (Optotrak Certus®, Northern Digital, Inc., Waterloo, Ontario, Canada)
(Figure 2). 
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FIGURE 2: Photograph of the lumbar spine specimen with
motion analysis sensors in place

In addition, biaxial angle sensors (Model 902-45 Biaxial Clinometer) (Applied Geomechanics,
Inc., Santa Cruz, CA) were mounted on each vertebra to allow real-time feedback for the
optimization of the preload path. A six-component load cell (Model MC3A-6-1000) (AMTI, Inc.,

2019 Chioffe et al. Cureus 11(11): e6208. DOI 10.7759/cureus.6208 6 of 10

https://assets.cureus.com/uploads/figure/file/80665/lightbox_f68fe690ec5211e9a96e6969ae8b4d36-Figure-2.png


Watertown, MA) was placed under the specimen to measure the applied compressive preload
and moments. Fluoroscopic imaging (General Electric OEC® 9800 Plus digital fluoroscopy
machine) (GE Healthcare, Chicago, IL) was used during implantation to ensure proper implant
placement. Fluoroscopic images of the mobile segments were taken in the neutral, flexed, and
extended postures during the kinematic testing.

Each specimen’s intact range of motion (ROM) was tested in flexion-extension, lateral
bending, and axial rotation under moment control using 8 N (newtons) flexion and 6
N extension moments with no preload and then with 400 N following preload. Each specimen
was tested using the following stepwise protocol: intact, L4-S1 posterior spinal fusion (PSF),
L3-S1 PSF, L4-S1 PSF with LLIF at L3-4, then LLIF at L3-4 without PSF. Following intact
testing, a fusion was performed at L4-S1 using posterior pedicle screws with rods. Bilateral
pedicle screws and rods were then extended to the L3-L4 segment and the previous load control
protocol was repeated. Next, the lateral interbody cage was implanted at the L3-L4 segment and
the previous load control protocol was repeated. The lateral technique involved the
preservation of the anterior longitudinal ligament but with the release of the ipsilateral and
contralateral annulus. The final step of the protocol was testing a stand-alone LLIF at L3-L4
after removing posterolateral fusion.

Results
Following posterolateral fusion at L4-S1, the ROM at L3-L4 increased compared to the intact
condition in flexion-extension, lateral bending, and axial rotation but did not reach statistical
significance (p > 0.05) (Table 2). 

L3-L4 ROM
(degrees)

Intact
L4-S1
Fusion

L3-S1
Fusion

L4-S1 Fusion, DLIF at L3-
L4

Stand-alone DLIF at L3-
L4

Flex-Ext 0N
4.7 ±
1.2

5.4 ± 1.3 0.5 ± 0.2* 2.0 ± 0.9*† 1.9 ± 1.1

Flex-Ext 400N
5.2 ±
1.0

5.7 ± 1.1 0.4 ± 0.1* 2.1 ± 0.8*† 1.8 ± 1.0

Lateral Bending
8.2 ±
1.7

8.3 ± 1.7 0.6 ± 0.1* 4.0 ± 1.8*† 4.6 ± 2.0

Axial Rotation
1.4 ±
0.7

1.3 ± 0.8 0.5 ± 0.2* 0.7 ± 0.3* 1.3 ± 0.8

TABLE 2: The L3-L4 Range of Motion Values (Mean ± SD) During Flexion-Extension
(0N and 400N), Lateral Bending, and Axial Rotation
(* denotes significant difference from intact, p < 0.05)

(† denotes significant difference from L3-S1 fusion, p < 0.05)

DLIF: direct lateral interbody fusion; Ext: extension; Flex: flexion; N: newtons; ROM: range of motion; SD: standard deviation

When the posterolateral fusion was extended to L3, there was a significant decrease in L3-L4
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motion (less than one degree) in all-loading modes (p < 0.05). When posterolateral fusion at L3-
L4 was replaced by a stand-alone LLIF (above a fusion at L4-S1), the ROM at L3-L4 continued to
be significantly lower than intact (p < 0.05 in all loading modes) but was also significantly
greater than that of a posterolateral fusion at L3-L4 (p < 0.05 for flexion-extension and lateral
bending, p = 0.11 for axial rotation). Overall, the L3-S1 pedicle screw fusion constructs
decreased the flexion-extension ROM at 400 N by 92.0%, whereas the L3-4 LLIF and L4-S1
fusion construct decreased flexion-extension ROM by 58.6% of intact. Removal of a
posterolateral fusion at L4-S1, leaving a stand-alone direct lateral interbody fusion (DLIF) at
L3-L4, did not significantly change the motion at L3-L4 (p > 0.05).

Discussion
The adjacent level of a prior posterior spinal fusion is a biomechanically and biologically
challenging environment [17]. The lateral approach offers a minimally invasive method of
fusion while avoiding the complications associated with revision posterior spinal fusion [18]. In
addition to avoiding these complications, the LLIF can address underlying foraminal and
central stenosis via indirect decompression [8, 19]. Recent studies have demonstrated the
capabilities of lateral interbody fusion in the treatment of ASD [6, 20-21]. LLIF is an attractive
alternative in treating ASD due to limited blood loss, no need to reexplore previous
laminectomies, and an overall reduction in complications [6]. Although LLIF has been
demonstrated to be a viable alternative to PSF, there still lacks a significant body of literature
supporting its use as the gold standard in treating ASD [22]. 

This biomechanical study demonstrates a statistically significant reduction in motion in all
load parameters and all axes of motion with a stand-alone lateral interbody fusion adjacent to a
prior posterolateral fusion. Although our model demonstrated less rigidity (56% loss of motion)
with the interbody construct compared to the posterior instrumented fusion (92% loss of
motion), it remains an attractive option in the treatment of ASD.

Within our study, the results of extending the PSF in the treatment of ASD provide evidence of
this construct’s ability to provide increased structural rigidity. Our outcomes demonstrate a
significant decrease in L3-L4 motion in all-loading modes (p < 0.05); however, this study did
not assess the significance of this increased stability in comparison to the LLIF construct.
Results demonstrated that the LLIF construct provides a significant reduction in motion
compared to an intact spine; however, this study was unable to assess superiority between
revision PSF and LLIF. The tenants of orthopedic surgery and spine fusion surgery are
predicated on reducing motion, thus increasing a construct’s ability to aid in fusion; therefore,
increased rigidity can be correlated with a likely increased fusion mass. Assessing the
association between rigidity and likelihood of fusion is outside the scope of this study; thus,
one limitation of our study is its inability to quantify significant motion reduction to a fusion
between the two constructs.

This study confirms the stability provided by a stand-alone LLIF construct for the treatment of
adjacent segment disease above a previous lumbar fusion. In addition to avoiding the
complication associated with posterior revision surgery, the LLIF’s rigidity and large
intervertebral fusion bed make it an attractive option in the treatment of ASD. Recent studies
have demonstrated LLIF’s viability as a treatment modality for ASD; however, large scale
prospective studies are needed to further delineate potential benefits and indications for use of
this stand-alone interbody construct for this disease [15, 20].

Conclusions
Recent advancements with the implementation of interbody fusion constructs and their
versatility within spinal surgery have made for an attractive option in minimally invasive spine
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fusion. In the setting of ASD, interbody constructs, specifically, LLIF, are powerful tools for
surgeons in need of fusion options while avoiding the complications associated with posterior
revision surgery. Our study provides in vitro biomechanical evidence demonstrating a
significant reduction of motion at the level adjacent to a prior posterior spinal fusion. The LLIF
is a biomechanically sound option for fusion in the treatment of ASD and is advantageous in
patient populations who would benefit from minimally invasive surgery.
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