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nutritional intervention to
enhance disease resistance
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Enterotoxigenic Escherichia coli (ETEC) infection induced post-weaning

diarrhea is one of the leading causes of morbidity and mortality in newly

weaned pigs and one of the significant drivers for antimicrobial use in swine

production. ETEC attachment to the small intestine initiates ETEC colonization

and infection. The secretion of enterotoxins further disrupts intestinal barrier

function and induces intestinal inflammation in weaned pigs. ETEC infection

can also aggravate the intestinal microbiota dysbiosis due to weaning stress

and increase the susceptibility of weaned pigs to other enteric infectious

diseases, which may result in diarrhea or sudden death. Therefore, the

amount of antimicrobial drugs for medical treatment purposes in major

food-producing animal species is still significant. The alternative practices

that may help reduce the reliance on such antimicrobial drugs and address

animal health requirements are needed. Nutritional intervention in order to

enhance intestinal health and the overall performance of weaned pigs is one of

the most powerful practices in the antibiotic-free production system. This

review summarizes the utilization of several categories of feed additives or

supplements, such as direct-fed microbials, prebiotics, phytochemicals,

lysozyme, and micro minerals in newly weaned pigs. The current

understanding of these candidates on intestinal health and disease resistance

of pigs under ETEC infection are particularly discussed, whichmay inspire more

research on the development of alternative practices to support food-

producing animals.
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Introduction

Modern swine production becomes highly intensive in order

to maximize productivity, however, husbandry-associated stress

is also increased. Many physical and/or psychological stress,

such as environmental and nutritional changes and increased

exposure to infectious diseases, can induce a significant

depression in growth performance, alter local or systemic

immune responses, and disrupt gastrointestinal homeostasis in

different physiological stages of pigs (1). For instance,

regrouping, crowding, social isolation, and maternal

deprivation may impair the immunity and alter the regulation

of the neuroendocrine in pigs, thus inducing gastrointestinal

diseases (2). This review is mainly focused on newly weaned pigs

and post-weaning stress. The development of the intestinal

epithelial barrier, immunity, and enteric nervous system

exhibits a high degree of plasticity in the post-weaning period,

which can impact the long-term phenotypes and gastrointestinal

function (3, 4). Infectious diarrhea disease has long been one of

the leading causes of morbidity and mortality in the swine

industry (5). Post-weaning diarrhea (PWD) induced by

pathogenic Escherichia coli (E. coli) infection is one of the

most common diseases and is characterized by the discharge

of watery feces, dehydration, a thin or unthrifty appearance, and

sudden death of piglets. During acute outbreaks of PWD, the pig

mortality due to E. coli infection may reach 20 to 30% over a 1-

to 2-month time span among infected pigs (6). A survey

conducted by National Animal Health Monitoring System

reported that the mortality rate of nursery pigs ranged from

2.6 to 3.6% in the years 2000, 2006, and 2012, of which diarrhea-

caused deaths accounted for 9.4 to 12.6% of the overall mortality

(5). Therefore, the prevention of post-weaning E. coli infection is

extremely important to maintain growth performance and

welfare of pigs during the entire lifespan. In-feed antibiotics

and a number of feed additives/supplements are discussed in this

review to summarize their efficacies on growth promotion and

disease resistance in weaned pigs.
ETEC infections in weaned pigs

The commensal E. coli strains that colonize the

gastrointestinal tract of pigs rarely cause disease. However, E.

coli expressing specific virulence features confers the ability to

cause diarrheal disease (7). The major pathotypes of E. coli

include enteropathogenic E. coli (EPEC), enterohaemorrhagic E.

coli (EHEC), enteroaggregative E. coli (EAEC), enteroinvasive E.

coli (EIEC), diffusely adherent E. coli (DAEC), Vero- or Shiga-

l ike toxin-producing E. coli (VTEC or STEC) and

enterotoxigenic E. coli (ETEC) (8). Among these, the most

diffuse etiological agents responsible for PWD in pigs are

ETEC displaying the fimbriae F4 (K88) and F18 (9).
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Clinical signs

The clinical signs observed in E. coli-infected animals

include diarrhea with watery, light-orange-colored feces, loss

of appetite (decreased feed intake), depression, dehydration,

rough hair coating, and inflamed perianal regions smeared

with feces (10). The watery diarrhea condition typically lasts

from 1 to 5 days after infection, but severe cases may result in

shock or sudden death without showing obvious symptoms of

illness (11). Pigs also change in appearance, as a sallow

discoloration of the tip of the nose, the ears, and the abdomen

may be observed.
Pathogenesis and toxins

The pathogenesis of ETEC-induced diarrhea is initiated by

bacterial attachment to specific receptors expressed on the

intestinal epithelium, followed by colonization of ETEC in the

small intestine (Figure 1) (18). Fimbriae are hair-like appendages

that show characteristic patterns from the outer membrane of

the bacterial cells, which facilitate the adhesion of ETEC to the

small intestinal mucosa (19). In pigs, F4 and F18 are the fimbrial

types that are mostly associated with PWD, and these two

fimbrial genes were found in 92.7% of all ETEC-induced PWD

(20). Once ETEC successfully adheres to the small intestinal

epithelium, colonization is established, and ETEC rapidly

proliferates to produce one or more types of enterotoxins.

The secreted enterotoxins, including heat-labile toxins (LTs)

and heat-stable toxins (STs), act on stimulating water and

electrolyte secretion and reduce fluid absorption in the small

intestine (12). Briefly, LTs bind to the receptors on the cell

surfaces and activate the adenylate cyclase system to stimulate

the secretion of cyclic adenosine monophosphate (cAMP). The

up-regulated cAMP induces the activation of an apical chloride

channel and a basolateral Na/K/2Cl cotransporter, resulting in

chloride secretion from the apical region of enterocytes, reduced

sodium absorption, and a concomitant massive water loss into

the intestinal lumen (21, 22). STs produced by ETEC are

secreted peptides that can be classified as STa and STb based

on their solubility and enzyme sensitivity. STa binds to the

extracellular domain and accumulates cyclic guanosine

monophosphate (cGMP) and consequently opens the ion

channel to induce Cl- and HCO3
- release into the intestinal

lumen (23). STa also enhances the luminal secretion of pro-

inflammatory cytokines and chemokines, including interleukin

(IL)-6 and IL-8, in the small intestinal mucosa of pigs (24). STb

was shown to specifically interact with calcium ion channels on

the intestinal epithelial surface to elevate intracellular Ca2+

concentration, which may increase paracellular permeability

via claudin-1 redistribution (25). STb can also concurrently

reduce the expression of other tight junction proteins,
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including zona occludens-1 and occludin, thus accelerating fluid

loss into the intestinal lumen (26).

Moreover, Shiga toxins (Stxs) and lipopolysaccharides (LPS)

derived from ETEC are also involved in the pathogenicity in the

host (13). After binding to the cell surface, Stxs are internalized

via the Golgi apparatus to the endoplasmic reticulum before

being translocated to the cytosol of enterocytes (27). During the

translocation, Stxs are able to induce DNA fragmentation and

cell apoptosis of infected cells, which further facilitates

proteolysis in neighboring cells and toxic effects on the host

(28). Additionally, Stxs can stimulate the intestinal epithelial

cells to secrete pro-inflammatory cytokines and neutrophil

chemoattractant molecules, like IL-8 (29). Bacterial LPS are

the major components of the outer membrane of Gram-

negative bacteria, including ETEC (30). LPS receptors are

mainly located on the cells in the innate immune system, such

as macrophages and endothelial cells (31). The activation of

immune cells induced by LPS binding can stimulate various

immunological signaling pathways, leading to the release of a

large amount of cytokines, including tumor necrosis factor-a
(TNF-a), IL-6, and IL-1 from target cells (32).
Intestinal barrier disruption during
ETEC infection

The intestinal epithelium forms as a single layer lining the

gastrointestinal tract and is responsible for the uptake of nutrients

and water. Meanwhile, the epithelium also serves as a physical

barrier to exclude potential antigens, pathogens, and toxins from

the external environment (33). ETEC infection could damage the
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intestinal epithelial barrier functions, resulting in electrolytes and

water imbalance and watery diarrhea, and induce intestinal

inflammation in piglets (19, 34, 35).
Mucus

The mucus layer is a gel-like sieve structure covering the

luminal surface of the gastrointestinal tract and acts as a physical

barrier to bacteria and other antigens present in the lumen (36, 37).

Mucus is known to be a highly dynamic matrix, mainly consisting

of glycosylated mucin proteins secreted by intestinal goblet cells. In

the small and large intestine, mucin 2 (MUC2) is the most

abundant mucus protein (38). However, the inner mucus layer

also contains antimicrobial peptides, immunoglobulin-A (IgA),

and other molecules that are essential in the innate immune

defense and the maintenance of intestinal homeostasis (39).

ETEC infection could alter the expression of MUC2 in the

small intestine. An in vivo ETEC F18 challenged study observed

that ETEC-infected pigs expressed more MUC2 gene in the

jejunal mucosa during the peak of infection (40). The up-

regulated MUC2 gene in the intestinal epithelium was also

reported by several in vitro studies when LTs or Stxs

producing ETEC were used (41, 42). However, a down-

regulated MUC2 gene expression was observed in ETEC F18

infected pigs during the post-peak infection period (40). A

growing body of evidence demonstrated that a highly

conserved mucin-degrading metalloprotease from ETEC is

responsible for mucin reduction, which facilitates the

interaction of ETEC with intestinal enterocytes and immune

cells and triggers inflammatory responses in the gut (43–45).
FIGURE 1

The pathogenesis of enterotoxigenic Escherichia coli (ETEC) (1) ETEC are ingested by susceptible pigs and enter the gastrointestinal tract. (2)
ETEC express fimbrial adhesins, which mediate adherence to specific receptors present on the intestinal epithelial cells. (3) Bacterial
colonization occurs in the small intestinal mucosa. Once colonization is established, ETEC rapidly produce toxins (e.g., heat-labile, heat-stable,
and/or Shiga toxins). (4) Enterotoxins stimulate water and electrolyte loss into the intestinal lumen, increase gut permeability, and/or transport
across the epithelial cells to blood circulation, resulting in edema. (5) Increased gut permeability and massive water loss into the intestinal lumen
lead to diarrhea, which results in the poor performance and productivity and increased mortality. Adapted from: Nagy and Feteke (12), Kaper
et al. (13), Croxen et al. (14), Fleckenstein et al. (15), and Mirhoseini et al. (16), Rhouma et al. (17).
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Tight junction and epithelial barrier

Intestinal tight junctions are junctional complex in

epithelium, consisting of three integral transmembrane

proteins, including occludin, claudins, and junctional adhesion

molecule (JAM), as well as the cytoplasmatic plaque proteins

zonula occludens, cingulin, and 7H6 (46, 47). Occludins and

claudins are the major sealing protein. Zonula occludens directly

interact with most of the transmembrane proteins localizing at

tight junctions and provide the structural basis for the assembly

of multiprotein complexes at the cytoplasmic surface of

intercellular junctions (48, 49). Tight junctions act as gates or

fences to control intestinal permeability and to maintain

intestinal integrity (50). Beyond that, growing evidence

indicates that tight junctions are also involved in cell-cell

signal transduction to guide cell proliferation and

differentiation (51).

The alteration of tight junction proteins by bacterial

pathogens or enterotoxins can lead to permeability defects in

the intestinal epithelium (52). Numerous research articles have

reported that ETEC can impair intestinal barrier function by

modulating tight junction protein expressions (Table 1), which

may induce diarrhea and initiate inflammatory cascades. The

common methods to assess in vivo intestinal permeability include

the mannitol and lactulose test, analyzing the flux of intact FD4,

and measuring bacterial translocation. The flux of intact FD4

across the intestinal epithelium occurs primarily through

paracellular pathways, thus, increased flux rates of FD4 can

reflect the intestinal barrier defects (62). McLamb et al. (34) and

Kim et al. (40) reported that ETEC F18 infection elevated FD4 flux

rates across the porcine ileum or jejunum, respectively. Bacterial

translocation is defined as the passage of viable bacteria or its

products from the gastrointestinal tract to normally sterile tissues,

including mesenteric lymph nodes and other internal organs (i.e.,

the spleen) (63, 64). The major mechanisms promoting bacterial
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translocation are intestinal bacterial overgrowth, deficiencies in

host immune defenses by disturbed gut integrity, and increased

permeability or mucosal injury (65). It was reported that ETEC

F18 clearly increased bacterial translocation from the intestinal

lumen to the mesenteric lymph nodes of weaned pigs (66).

Collectively, ETEC infection negatively impacts tight junction

integrity, and increases paracellular movements of molecules,

thus inducing inflammatory responses and diarrhea in pigs.
Immune responses of pigs during
ETEC infection

In addition to the physical barrier function of the mucus, the

mucosal immune system constitutes an extensive and highly

specialized innate and adaptive immune system to protect the

host against potential insults from the environment (67). When

inflammation occurs in the intestines, the robust innate immune

responses are first observed by the marked elevations in the

production of inflammatory mediators, including IL-1b, IL-6,
and IL-8, which further promote leukocyte accumulation and

survival in the inflamed sites (68). The recruited neutrophils and

activated macrophages are responsible for the elimination of

pathogens and stimulating systemic inflammation and acute-

phase reaction (69, 70). ETEC F18 that expressed LT, STa, and

Shiga-like toxins remarkably induced the recruitment of

neutrophils and macrophages in the ileum of weaned pigs

during the peak of infection (71). Consistently, the

up-regulated expression of genes encoding inflammatory

mediators (e.g., COX2, IL1B, IL6, IL7, and TNF) were also

observed in the ileal mucosa of ETEC F18 infected piglets

(40). LPS, the major component of the outer member of

ETEC, are highly involved in the activation of innate

immunity, as indicated that ETEC F18 increased the mRNA

expression of LPS binding protein andMyD88 in ileal mucosa of
TABLE 1 Enterotoxigenic Escherichia coli (ETEC) altered the expression of tight junction proteins in the small intestine of pigs in vivo or epithelial
cells in vitro.

Pathogen Pig
age

Tight junction proteins/outcomes Reference

ETEC K88 35 d Reduced protein expression of occludin and claudin in ileum Ewaschuk et al.
(53)

ETEC K88 Altered the distribution of ZO-1 and claudin in porcine Caco-2 cells (fluorescence microscopy analysis) Yu et al. (54)

ETEC K88 35 d Reduced mRNA expression of occludin in jejunum; reduced expression of ZO-1 in jejunum and ileum Gao et al. (55)

ETEC K88 18 d Reduced mRNA expression of occludin in jejunum Yang et al. (56)

ETEC K88 Reduced mRNA expression of ZO-1, claudin, and occludin in porcine IPEC-J2 cells; Reduced protein expression of claudin and
occluding in porcine IPEC-J2 cells

Wu et al. (57)

ETEC K88 36 d Reduced protein expression of ZO-1 and occludin in jejunum Yang et al. (58)

ETEC K88 36 d Reduced protein expression of ZO-1 in jejunum Li et al. (59)

ETEC F18 39 d Reduced mRNA expression of claudin in jejunum Kim et al. (40)

ETEC F18 37 d Reduced mRNA expression of claudin in ileum Li et al. (60)

ETEC F18 38 d Reduced mRNA expression of ZO-1 and occludin in ileum Becker et al.
(61)
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pigs (72). In addition, flagellin, a globular protein in the flagella

of ETEC, is also involved in the activation of intestinal immune

responses by stimulating IL8 expression in the ileal mucosa (72,

73). Several pathways may be involved in the process of ETEC

infection, as the NF-kB and MAPK pathways are particularly

important to stimulate downstream inflammatory responses (72,

74–77).

Systemic inflammation could be evoked due to Gram-

negative sepsis (78, 79). ETEC F18 infection could induce

systemic inflammation, as indicated by the gradually increased

total white blood cell counts, neutrophils, and lymphocytes in

the blood circulation of infected pigs (71, 80, 81). Systemic levels

of pro-inflammatory cytokines (e.g., TNF-a) and acute phase

proteins (C-reactive protein and haptoglobin) were also elevated

accordingly after ETEC F18 or K88 infection (71, 82–84). The

peak of systemic inflammation in weaned pigs appears on day 2

to 7 post-ETEC challenge depending on the severity of infection,

while it usually disappears or cannot be detected after day 14

post-infection.
Intestinal microbiota changes during
ETEC infection

Intestinal microbiota plays pivotal roles in maintaining

the nutritional, physiological, and immunological function of

the intestine (85, 86). The pig intestine harbors a very

complex and diverse microbial community, which shifts

along the intestinal tract and changes by age, diet, and

many other factors (87). The colonization of intestinal

microbiota in pigs is initiated at birth but still develops at

the weaning stage (88). Thus, the intestinal microbial

composition in newly weaned pigs could be easily disrupted

due to weaning stress and dietary changes, making the pigs

more susceptible to pathogenic bacteria (89).

Although E. coli is one of the first bacteria to colonize in the

intestine of piglets at birth, it is phased out after weaning (90).

ETEC infection or increased abundance of E. coli during the

post-weaning stage could impact intestinal microbiota. Bin et al.

(91) reported that ETEC K88 infection reduced microbial

diversity and the Bacteroidetes : Firmicutes ratio in jejunum

and feces in weaned pigs. Bacteroidetes and Firmicutes are the

most dominant intestinal microbial phyla in young pigs, which

cooperatively utilize carbohydrates in the gut (92). The reduced

fecal Bacteroidetes : Firmicutes ratio is used as a biomarker for

intestinal dysbiosis and was also observed in pigs with other

types of diarrheal diseases (93, 94). Significant changes in

community structure were also reported in many ETEC F18

or K88 infection cases. Pigs challenged with ETEC F18 or K88

were reported to have increased relative abundance of

Proteobacteria family in the ileum or colon by increasing

Escherichia-Shigella or Helicobacteraceae (91, 95–97). A

reduced relative abundance of Lactobacillus was observed in
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the ileum of weaned pigs when challenged with ETEC F18 (97).

The disturbance of intestinal microbiota by ETEC infection

further shifts the intestinal ecosystem to be more favorable for

the growth of pathogens and reduces the production of volatile

fatty acids in the large intestine (97–99). Many of these

microbiota changes were reported to be negatively correlated

with growth performance and the overall intestinal health of

weaned pigs (100, 101).
In-feed antibiotics

In-feed antibiotics were one of the most powerful substances

to prevent and treat bacterial infections in food-producing

animals. In swine production, the use of antibiotics at

intermediate or therapeutic levels served many purposes,

including 1) treating sick animals, 2) preventing diseases by

mass treatment of the entire population, 3) reducing the negative

impacts of stresses, namely weaning stress, and 4) promoting

growth. The potential mechanisms of action of antibiotics target

different anatomical parts of bacteria. First, antibiotics could

induce a lethal malfunctioning of the bacterial cell wall synthesis.

The presence of penicillin-binding proteins (PBPs) is critical for

proper bacterial cell wall assembly (102). However, PBPs are the

main targets of b-lactam and glycopeptide antibiotics in order to

inhibit bacterial cell wall synthesis. More specifically, b-lactam
agents target PBPs, and their interaction could lead to failure in

the synthesis of new peptidoglycan and lysis of bacterium (103).

Second, antibiotics could inhibit protein biosynthesis in the

ribosomes of bacterial cells. The bacterial ribosome (70S) is

composed of two ribonucleoprotein subunits, 30S and 50S

subunits, with each performing different functions (104). Some

antimicrobial agents, like aminoglycosides and tetracyclines,

target the 30S subunit by either preventing the binding of the

mRNA to the ribosome or inducing misreading and premature

termination of translation of mRNA (105). Chloramphenicol,

macrolides, and oxazolidinones antibiotics are the major

inhibitors of the 50S subunit. They can prevent the binding of

aminoacyl-tRNA to the mRNA-ribosome complex or inhibit the

formation of complete peptide chains by targeting the conserved

sequences of the peptidyl transferase (106). Third, antibiotics

can inhibit bacterial DNA replication. Quinolone antibiotics are

the major DNA replication inhibitors. They can inhibit bacterial

nucleic acid synthesis by disrupting topoisomerase and DNA

gyrase, two critical bacterial enzymes that regulate the

chromosomal supercoiling required for DNA synthesis (107).

The disturbance of these enzymes can break bacterial

chromosomes and cause rapid bacterial death (108). Fourth,

antibiotics can inhibit folic acid metabolism. Folate is a cofactor

for many enzymes that are required for DNA and RNA

biosynthesis and amino acid metabolism in bacteria (109).

Sulfonamides and trimethoprim interrupt folic acid synthesis

and ultimately disturb the synthesis of purines and thus DNA
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biosynthesis (110). A combination of sulfonamides and

trimethoprim has shown synergistic antibiotic activities

because they target distinct steps in folic acid metabolism (111).

As reviewed by Cromwell (112), in-feed antibiotics

improved growth rate by an average of 16.4% and improved

the efficiency of feed utilization by 6.9% of young pigs from 7 to

25 kg body weight. Moreover, the inclusion of antibiotics in feed

dramatically reduced the mortality of young pigs (3.1%) under

high-disease conditions and environmental stress when

comparing with non-antibiotic-treated pigs (15.6%) (113).

Therefore, approximately 70% of the swine farms in the

United States used a wide variety of antibiotics in nursery

diets over the past 20 to 30 years before 2015 (5). Several

commonly used antibiotics and their effects are summarized in

Table 2. However, the potential risks of antibiotic resistance and

contamination and the adverse health effects of trace amounts of

antibiotics in humans and animals have been increasingly

recognized as global health concerns (124). Therefore, effective

alternative practices to strengthen the disease resistance of

animals are greatly needed.
Nutritional intervention

Research on exploring alternatives to antibiotics is growing

and has been reviewed by Pettigrew (125), Lallès et al. (126), Heo

et al. (127), and Liu et al. (128). Many nutritional interventions

have been widely applied to weanling pigs to enhance their

disease resistance and growth performance. Although their exact

protective mechanisms may vary and are still not completely

understood, one or more following functions may be involved:

(1) to favorably affect the characteristics of feed (2), to satisfy the
Frontiers in Immunology 06
nutritional needs of animals without any adverse effects, or (3) to

favorably impact animal production and performance,

particularly by regulating gut microbiota, intestinal immunity

or digestibility of nutrients.
Zinc oxide

Zinc is an essential micro-mineral required in trace amounts

in animal feed. Zinc performs broad types of functional roles,

including (1) structural roles in forming components of organs

and tissues, (2) physiological roles in maintaining homeostasis,

(3) catalytic roles in regulating enzymes and endocrine systems,

and (4) regulatory roles in cellular replication and differentiation

(129). Zinc also plays a central role in the immune system, as it is

crucial for the development and function of immune cells, the

production or biological activity of cytokines, and the regulation

of T and B cell signaling (130–132). Zinc deficiency affects many

aspects of innate and adaptive immunity. Acute zinc deficiency

can cause decreased innate and adaptive immune responses,

while chronic zinc deficiency is highly associated with many

diseases and inflammation (133).

Zinc is commonly added to the nursery diet at

pharmacological levels to promote performance and control

post-weaning diarrhea (134–136). Numerous studies also

reported that supplementation of a high dose of zinc in the

form of zinc oxide (ZnO) enhanced disease resistance of weaned

pigs against ETEC infection. For instance, the inclusion of 2,880

mg/kg of ZnO reduced the incidence of diarrhea and boosted the

recovery of pigs from ETEC F4 infection (119). Kim et al. (118)

also reported that 2,400 mg/kg of ZnO administration enhanced

average daily gain, reduced diarrhea and fecal shedding of E. coli,
TABLE 2 In-feed antibiotics on ETEC infection of weaned pigs.

Pathogen Antibiotics Outcome Reference

ETEC K88 Chlortetracycline+
sulfamethazine+
penicillin

Enhanced immunological responses, improved intestinal morphology Nyachoti et al. (114)

ETEC K88 Colistin sulfate+
olaquindox

Enhanced feed efficiency, reduced diarrhea Pan et al. (115)

ETEC K88 Apramycin+
tiamulin+
sulfathiazole+
bacitracin methylene disalicylate

Enhanced growth performance, improved systemic immune responses Lee et al. (116)

ETEC K88 Colistin Reduced mortality, reduced diarrhea Trevisi et al. (117)

ETEC K88 Apramycin Reduced fecal shedding of ETEC Kim et al. (118)

ETEC K88 Carbadox Enhanced growth performance, reduced fecal shedding of ETEC Owusu-Asiedu et al. (119)

ETEC F18 Chlortetracycline+
tiamulin

Reduced diarrhea, improved systemic immune responses Hong et al. (120)

ETEC F18 Carbadox Enhanced growth performance, reduced diarrhea, enhanced intestinal integrity He et al. (121)
Kim et al. (122)
Kim et al. (123)
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and improved small intestinal morphology in weaned pigs

challenged with ETEC F4. Other beneficial effects of

pharmacological zinc included the enhancement of intestinal

integrity (137), restoration of the injured intestinal mucosa

(138), reduction of intestinal permeability by enhancing the

expression of tight junction proteins (139), and improvement

of intestinal immunity (140) in ETEC-infected pigs. The

potential mechanisms of action of high dose ZnO in reducing

post-weaning diarrhea include but are not limited to: 1)

inhibiting pathogen viability and 2) modulating the intestinal

microbial population. Roselli et al. (141) demonstrated that in

vitro ZnO treatment may protect intestinal epithelial cells from

ETEC F4 infection by inhibiting the adhesion and

internalization of bacteria. Supplementation of 2,500 mg/kg of

ZnO in vivo helped to stabilize the microbial community while

preventing pathogenic microbes proliferation during the first 2

weeks of post-weaning (142).

Although pharmacological ZnO is very effective in

preventing post-weaning diarrhea, its environmental impact is

significant and increases public health and safety concerns.

Recent research demonstrated that supplementation of

pharmacological ZnO may induce the excessive accumulation

of zinc in animal tissues, including kidney, liver, and pancreas

(143, 144). The overload of ZnO might also contribute to the

acquisition and spread of antibiotic resistance genes in pigs

(145–147). Therefore, the use of pharmacological ZnO in piglet

diets was banned in the European Union from June 2022.
Direct-fed microbials

Direct-fed microbials (DFM) are live microorganisms that

confer a health benefit on the host, when administered in

adequate amounts (148). There are 3 main categories of DFM,

including Bacillus (Gram-positive spore-forming bacteria), lactic

acid-producing bacteria (e.g., Lactobacillus, Bifidobacterium,

Enterococcus, etc.), and yeast (149). The beneficial effects of DFM

on the host may be attributed to several mechanisms, including but

not limited to: (1) production of antimicrobial products, (2)

regulation of gut microbial profile, (3) immunomodulation, and

(4) enhancement of epithelial gut barrier function (150, 151).

Bacillus-based DFMs are spore-forming bacteria. They are

thermostable for feed storage and processing (e.g., pelleting and

extrusion) and are able to survive at low pH in the stomach (152).

Some common species of Bacillus include Bacillus subtilis, Bacillus

licheniformis, Bacillus pumilus, Bacillus amyloliquefaciens, Bacillus

anthracis, and Bacillus cereus, in which Bacillus anthracis and

Bacillus cereus are known to be pathogenic to humans and

animals (153). Bacillus spp. can be isolated extensively from

plants and their rhizosphere (soil in the vicinity of plant roots)

and can also be found in other environments (154). Bacillus spp.

were characterized as mesophilic and neutrophilic bacteria that
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can survive and germinate in the gut, form biofilms, and secrete

antimicrobials (155, 156). A variety of Bacillus-based supplements

have been found to promote growth, feed utilization, and

intestinal health of pigs (157–159). The potential mechanisms of

action of Bacillus spp. against ETEC infection include: 1)

modulating the host immune responses by regulating the

expression of major cytokines that are involved in initiating and

regulating immune responses (160), 2) enhancing the expression

of tight junction proteins (161), and 3) and promoting the growth

of beneficial microbes and overall gut health of the host (162). Our

previously published research reported that dietary

supplementation of 2.56 × 109 CFU/kg of Bacillus subtilis (DSM

25841) enhanced disease resistance and growth performance and

reduced diarrhea of weaned pigs infected with ETEC F18 (40,

121). Pigs fed with Bacillus subtilis also strengthened intestinal

integrity and barrier function, as indicated by reduced

transcellular and paracellular permeability and enhanced gene

expression of tight junction protein, ZO1. In addition, the same

Bacillus subtilis (DSM 25841) strain was able to reduce the

incidence and severity of diarrhea in weaned pigs infected with

ETEC F4 (163). Supplementation of Bacillus subtilis DSM 25841

was also observed to reduce cecal Enterobacteriaceae level, up-

regulate the expression of gene sets related to immunity, and

improve amino acids metabolism and utilization in jejunal

mucosa (163).

Lactic acid-producing bacteria administration can modulate

intestinal microbial profiles by competing for the binding sites

on the intestinal epithelial cells with pathogens, or by producing

microbicidal substances that inhibit or kill pathogens (164–166).

Lactobacillus plantarum is a widespread strain that can be

produced by plant fermentation or directly isolated from the

gastrointestinal tract of healthy humans or animals. Lee et al.

(116) and Yang et al. (56) demonstrated that supplementation of

Lactobacillus planatrum (1010 cfu/kg of CJLP243 or 5 × 1010 cfu/

kg of CGMCC 1258, respectively) enhanced growth

performance and reduced diarrhea of weaned pigs challenged

with ETEC F4. Pigs fed with Lactobacillus planatrum also had

enhanced intestinal morphology, reduced fecal shedding of

ETEC, or reduced adhesion of ETEC to the small intestinal

mucosa. Another study reported that Lactobacillus plantarum

(CCFM1143 or FGDLZ1M5; 5 × 1010 cfu/kg, respectively)

supplementation reduced the relative abundance of

Bacteroidetes and Enterobacteriaceae in feces and increased the

concentration of total short-chain fatty acids in the cecum of

ETEC infected pigs (99). Consistently, Lactobacillus rhamnosus

(ACTT 7469; 1010 cfu/day or 1012 cfu/day) administration

ameliorated ETEC F4-induced diarrhea and reduced

pathogenic coliform shedding in feces, possibly due to its

abil i ty to increase the number of Lactobaci l l i and

Bifidobacteria in feces (167). Some research also reported that

supplementation of lactic acid-producing bacteria could regulate

intestinal mucosa immunity and stimulate the immune system
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of the host (168, 169). A previous in vitro study reported that

Lactobacillus planatrum (299v) could increase the mRNA

expression of MUC2 and MUC3 in HT 29 intestinal cells, thus,

inhibiting the adherence of enteropathogenic E. coli to the

intestinal cells (170). Moreover, lactic acid-producing bacteria

contribute to an acidic environment in the gastrointestinal tract,

which partly alters the growth of pathogenic microorganisms,

including E. coli (171). Therefore, lactic acid-producing bacteria

is another common type of DFMs used in weaned pigs to

promote intestinal health.

Yeast consists of a broad range of products, including

whole live yeast cells, heat-treated yeast cells, ground yeast

cells, purified yeast cell cultures, and yeast extracts. The efficacy

of yeast-based products varies depending on their forms (128).

The majority of the dry weight of the yeast cell wall is

polysaccharides, with a-D-mannan and b-D-glucan as the

major components. These polysaccharides have been

recognized for their immune-regulatory activities through

specific interactions with different immunocompetent cells

(172). In particular, a-D-mannan in yeast was reported to

bind to mannose-specific receptors that are present in many

pathogenic bacteria, including E. coli and Salmonella spp., thus,

inhibiting the adhesion of these pathogens to the mannose-rich

glycoproteins lining the intestinal lumen (173). Growing

evidence supports the immunostimulatory benefits of b-D-
glucans, as it could stimulate the activity of macrophages and

neutrophils via binding to their receptors (174). Saccharomyces

spp. are the most studied yeast species for controlling intestinal

disorders in young animals due to their remarkable immune-

regulatory properties (175, 176). The beneficial effects of live

Saccharomyces cerevisiae yeast on controlling diarrhea and

reducing mortality of weaned pigs infected with ETEC F4

were reported by Trevisi et al. (117). The results of gene

expression profiles in jejunal mucosa indicated that

supplementation of Saccharomyces cerevisiae yeast modified

the expression of genes related to mitosis, mitochondria

development, metabolic process, and transcription in ETEC-

infected pigs (177).
Prebiotics

Prebiotics were originally defined as ‘non-digestible food

substances that selectively stimulate the growth of favorable

species of bacteria in the gut, thereby benefitting the host’ by

Gibson and Roberfroid (178). This definition has been expanded

by including three broad criteria: (1) resistance to gastric acid and

hydrolysis by mammalian enzymes and gastrointestinal

absorption; (2) ability to be utilized by the gastrointestinal

microbiota; and (3) selectively stimulate the growth and/or the

activity of intestinal bacteria associated with health-promoting

effects (179). The best-characterized prebiotics are non-digestible
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oligosaccharides, including inulin, lactulose, pyrodextrins, fructo-

oligosaccharides (FOS), galacto-oligosaccharides (GOS),

xylo-oligosaccharides, transgalactooligosaccharides, and

isomalto-oligosaccharides (180).

The most striking effect of prebiotics is their ability to reshape

the composition of gut microbiota in the host. Prebiotics can boost

the production of health-promoting bacteria, such as lactic acid-

producing bacteria, which can further inhibit the growth of enteric

pathogens (e.g., E. coli, Campylobacter, Salmonella spp.) and/or

attenuate their virulence (181, 182). The enhancement of the

beneficial bacteria population by adding prebiotics could

indirectly affect the immunity of the host. In addition to that,

prebiotics per se can directly interact with intestinal cells, including

epithelial cells, goblet cells, or immune cells (183, 184). This

interaction may trigger the downstream benefits, as indicated by

more mucin production (185), strengthened gut barrier functions

(186), or enhanced inflammatory responses (187, 188). Many

studies have confirmed the beneficial effects of prebiotic

supplementation in weaned pigs challenged with ETEC. For

example, supplementation of 2.5 g/kg of FOS extracted from

plants can improve growth performance and gut health of pigs

infected with ETEC F4 (189). Specifically, pigs supplemented with

FOS reduced plasma IL-1b and TNF-a, and improved small

intestinal morphology against ETEC F4. Moreover, FOS

administration also elevated mRNA expression of duodenal and

jejunal ZO-1 and ileal occludin, but down-regulated TNF-a and IL-6

in the small intestine. These results indicated that supplementation

of FOS was associated with suppressed inflammatory responses and

improved intestinal barrier functions. Luo et al. (190) also observed

that dietary supplementation of FOS attenuated the intestinal

mucosa disruption in ETEC-infected pigs by increasing their anti-

oxidative capacity and intestinal barrier functions. GOS, one of the

main bioactive compounds in human milk, was well studied in

humans as it supports the colonic health of breast-fed infants (191).

GOS exhibited in vitro antimicrobial effects on ETEC F4 by

inhibiting the adherence of the F4 strains to porcine intestinal

mucins (192). This observation suggests that GOS may serve in the

prophylaxis of ETEC infection. b-glucans originated from different

sources (cereal grains, yeast, or algae) also show prebiotic properties

(193). Stuyven et al. (194) reported that b-glucans extracted from

yeast reduced the colonization of ETEC F4 to the small intestine,

thus alleviating diarrhea of weaned pigs. However, the immune-

modulatory activity of b-glucans was more attractive and well-

studied in humans and animals. Our previously published research

observed that supplementation of algae-derived b-glucans
enhanced gut integrity, reduced intestinal paracellular

permeability, and boosted intestinal and systemic immune

responses in weaned pigs infected with ETEC F18 (81). This

study also suggests that dectin, a major b-glucan receptor

expressed on many immune cells (e.g., macrophages), is

potentially involved in the immune-regulatory effects of b-
glucans, thus protecting the host from the ETEC infection (81, 195).
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Phytochemicals

Phytochemicals include a large variety of secondary plant

metabolites that are naturally derived from plant materials or

directly synthesized (e.g., polyphenols, terpenoids, carotenoids,

limonoids, flavonoids, catechins, anthocyanidins, indoles,

ethnobotanicals, etc.) (196). Phytochemicals exhibited broad

biological properties, including antimicrobial, antioxidant,

anti-inflammatory, and antiviral effects (197–200). Notably,

many phytochemicals display broad-spectrum antibacterial

activities against Gram-negative and Gram-positive bacteria

(201–203). The antimicrobial mechanism of action varies due

to the sources and extraction methods of phytochemicals. Based

on the literature view, several potential antimicrobial

mechanisms were proposed. First, many plant-derived

essential oils could destabilize the phospholipid bilayer,

causing the loss of permeability, leakage of intracellular

constituents (e.g., ions, proton), and even the coagulation of

cytoplasm (204, 205). Second, some phytochemicals contain a

high proportion of phenolic compounds that possess strong

antibacterial properties by inhibiting the efflux pump (206).

Third, phytochemicals could disrupt the enzymes involved in

the synthesis, replication, repair, and transcription procedures of

virulent bacteria (207). Fourth, certain active components in

phytochemicals may prevent the development of adhesion

formation (208, 209) and inhibit bacterial adhesion (210, 211).

The anti-inflammatory effects of phytochemicals have also

been widely reported with in vitro and in vivo models. For

example, phytogenic compounds (e.g., crude extracts, phenolics,

triterpenoids, polysaccharides, saponins, lectins) obtained from

fruits, vegetables, and food legumes could suppress the

production of inflammatory markers (e.g., C-reactive protein,

IL-1, IL-6, TNF-a) or major inflammatory mediators (e.g., NO,

iNOS, COX2, PGE2) in human intervention studies and in vitro

cell models (212, 213). Essential oils from clove, pine, tea, garlic,

cinnamon, and other compounds also possess anti-

inflammatory activities that were observed in vitro (214, 215)

and in livestock, fish, and poultry (216, 217). The anti-

inflammatory mechanisms of action have not been completely

understood in phytochemicals, and some research indicates that

the in vitro anti-inflammatory or in vivo immune-modulatory

effects are partially mediated by blocking the NF-kB activation

pathway (218, 219). Other potential modes of action include

inhibiting lipoxygenase and cyclooxygenase, two important

enzymes in the activation of inflammatory responses (220–222).

The effects of phytochemicals on ETEC F18 and F4 infection

have been evaluated in many in vivo pig studies. Dietary inclusion

of 10 mg/kg of capsicum oleoresin, garlic botanical, or turmeric

oleoresin reduced diarrhea and enhanced disease resistance of

weaned pigs infected with ETEC F18 (71). Pigs fed with

phytochemicals developed better intestinal health, as indicated by

higher villi height, lower immune cell accumulation, and milder
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intestinal inflammation than infected control. The further

microarray analysis confirmed that feeding these phytochemicals

enhanced the integrity of membranes, especially tight junction-

related genes in ileum of weaned pigs (72). In addition, the reduced

intestinal inflammation by feeding phytochemicals was also

observed at the transcriptional level, as indicated by the down-

regulation of genes in the categories of responses to stimulus,

antigen processing and presentation, and inflammatory mediators

in ileal mucosa (72). Devi et al. (223) reported that supplementation

of a 0.05% phytogenic combination, including clove, cinnamon,

and fenugreek, improved weight gain and apparent total tract

digestibility in pigs under ETEC F4 infection. Likewise, the

chestnut extract containing hydrolyzable tannins was reported to

reduce diarrhea and enhance the growth performance of pigs

challenged with ETEC F4 (224). Cranberry supplementation in

feed (10 g/kg) or via drinking water (1 g/L) significantly reduced the

diarrhea severity of ETEC F18-infected pigs (225).
Lysozyme

Lysozyme is a naturally existing antimicrobial enzyme that can

be found in blood, liver, and many bodily secretions. It cleaves 1,4-

b-linkages between N-acetylmuramic acid and N-acetyl-D-

glucosamine in the peptidoglycan layer of the bacterial cell wall,

thus inducing cell death (226). Lysozyme is part of innate immunity

and plays an important role in limiting bacterial overgrowth at

mucosal surfaces. Recent research suggests lysozyme could

modulate the host immune responses to infection (227, 228). The

lysozyme-mediated degradation and lysis of bacteria enhance the

release of bacterial products, such as bacterial peptidoglycans, which

further regulate the immune response in the host (229). However,

the location of lysozyme activity, the susceptibility of bacterial

peptidoglycans to lysozyme digestion, and the amount and

composition of bacterial products can all modulate the degree

and extent of pro-inflammatory immune responses. Thus,

lysozyme could enhance or dampen the innate immune response

(229). Other research also reveals that lysozyme may contribute to

resolving intestinal inflammation via restricting bacterial growth,

assisting in intestinal epithelial barrier protection, and reducing

phagocyte influx and concomitant cellular inflammatory responses

(227, 229, 230).

Lysozyme is one of the suitable alternatives to replace

antibiotic growth promoters in swine production. Lysozyme

derived from chicken eggs was reported to improve growth

performance of weaned pigs, with its efficacy comparable to

neomycin/oxytetracycline (101), carbadox/copper sulfate (214),

or chlortetracycline/tiamulin hydrogen fumarate (231). Growing

evidence also supports that the administration of lysozyme could

enhance the disease resistance of weaned pigs against ETEC

infection. For instance, Nyachoti et al. (114) reported that

supplementation of lysozyme sourced from egg white
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improved intestinal development, decreased ETEC counts in the

intestinalmucosa, and reduced serumpro-inflammatory cytokines

in weaned pigs infected with ETEC F4. Garas et al. (232) observed

that feeding lysozyme-rich goat milk reduced the incidence of

diarrhea and significantly suppressed total bacteria translocation

into the mesenteric lymph nodes in pigs infected with ETEC F4.

Supplementing lysozyme-rich milk also reduced the relative

abundance of fecal Enterobacteriaceae family, in which many

prevalent enteric pathogens (e.g., E. coli and Salmonella) belong

to. Similarly, pigs fed with human lysozyme-richmilk had a higher

survival rate and reduced diarrhea when they were challenged with

ETECF4 (233).The enriched relative abundance ofLactobacillus in

feces and enhanced intestinal integrity andmucosa immunitywere

also observed in these pigs (233).
Conclusions

ETEC is one of the most predominant causes of post-weaning

diarrhea in pigs. In-feed antibiotics and pharmacological ZnO were

routinely added to the nursery diet to prevent diarrhea and to

increase the survival rate of newly weaned pigs. However, the heavy

use of medically important antimicrobials in food-producing

animals induces the development and spread of antimicrobial

resistance. The resistance results in the loss of effectiveness of

these drugs as antimicrobial therapies, which poses a serious

threat to public and animal health. The significant environmental

impacts and public concerns are also highly recognized in the

application of high-dose ZnO in pig feed. Thus, the exploration of

alternative practices that may help reduce the reliance on

antimicrobial drugs and pharmacological ZnO and address animal

health needs is warranted. Accumulating evidence has confirmed

the importance of nutritional interventions, including modified

feeding strategies and nutrient supplements, in the control of

diarrheal disease caused by ETEC. Several categories of feed
Frontiers in Immunology 10
additives are widely applied to nursery pigs to assist in enhancing

intestinal barrier function and immunity, balancing intestinal

microbiota diversity, and promoting overall health and

performance. Although no single substance can fully replace the

functions of in-feed antibiotics and high-dose ZnO so far, their

beneficial effects on pig health and welfare are promising. Future

research should focus on the development of fundamental

knowledge on defining healthy gut and robust intestinal function

of pigs by adopting novel approaches. Understanding the interaction

of host-microbiome-nutrition is also extremely important to

exploring the mechanisms of new nutritional interventions.
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