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Abstract

Ultrasensitivity, as described by Goldbeter and Koshland, has been considered for a long time as a way to realize bistable
switches in biological systems. It is not as well recognized that when ultrasensitivity and reinforcing feedback loops are present
in a spatially distributed system such as the cell plasmamembrane, they may induce bistability and spatial separation of the
system into distinct signaling phases. Here we suggest that bistability of ultrasensitive signaling pathways in a diffusive
environment provides a basic mechanism to realize cell membrane polarity. Cell membrane polarization is a fundamental
process implicated in several basic biological phenomena, such as differentiation, proliferation, migration and morphogenesis
of unicellular and multicellular organisms. We describe a simple, solvable model of cell membrane polarization based on the
coupling of membrane diffusion with bistable enzymatic dynamics. The model can reproduce a broad range of symmetry-
breaking events, such as those observed in eukaryotic directional sensing, the apico-basal polarization of epithelium cells, the
polarization of budding and mating yeast, and the formation of Ras nanoclusters in several cell types.
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Introduction

Cell polarity plays a fundamental role in cell biology. Many

cellular systems use polarity not only to respond to external stimuli

but also to define tissue and organ boundaries, or to proliferate.

Eukariotic cells show an extraordinary ability of orienting toward

sources of chemical signals through a complex mechanism of cell

membrane polarization governing the early stages of chemotaxis

[1–3]. Budding yeast undergoes polarized growth during budding

and mating. Epithelial cells polarize into an apical and a

basolateral region.

Cell polarization can be guided by internal or external spatial

cues, such as internal landmark proteins or chemoattractant

signals. Many cells polarize in order to migrate in response to

external cues. For example, when presented with a gradient of

chemoattractant, neutrophils, neurons, budding yeast and Dic-

tyostelium respond with highly oriented polarity and motility

towards the source of chemoattractant. This behavior is exhibited

for a shallow gradient of chemoattractant. Several basic stages are

required for highly oriented polarity. In fact, cells rearrange

cellular components leading to the development of separate

leading and trailing edges with distinct sensitivities for chemoat-

tractant. Polarization can also occur randomly in the absence of

such cues, by a spontaneous symmetry breaking mechanism [4].

For example, even when stimulated by a spatially uniform

concentration of chemoattractant, neutrophils and Dictyostelium

cells can break their initial symmetry, acquire distinct leading and

trailing edges and start to migrate randomly [5].

Polarity corresponds to the formation of regions characterized

by different concentrations of specific signaling molecules. We can

consider these regions as ‘‘signaling domains’’ being in different

‘‘chemical phases’’. A natural and general way to partition the cell

plasmamembrane into regions characterized by complementary

chemical phases is to couple local bistability with lateral diffusion

[1,2]. Bistability is ubiquitous in cell signaling networks, often

leading to binary outcomes in response to graded stimuli [6–10].

The role of local bistability in clustering, and in the spatial

localization of activated molecules, has however started to be

appreciated only recently [1–3,11–13].

Here we provide a simple, solvable model of cell membrane

polarization based on the coupling of membrane diffusion with

bistable enzymatic dynamics. Moreover, we show that the model

can reproduce a broad range of symmetry-breaking events, such as

those observed in eukaryotic chemotaxis, epithelial morphogene-

sis, and yeast polarization.

Results

Our general model of chemical cell membrane polarization is an

abstraction of features observed in several biological systems, where

a couple of interconverting signaling molecules Wz, W{ are

localized on the cell plasmamembrane and are transformed into

each other by a couple of counteracting enzymes X ,Y (Fig. 1). The

X ,Y enzymes shuttle between the cytosol and the plasmamem-

brane, and may be activated either by a signal S coming from the

environment, or by the Wz, W{ molecules themselves through local

reinforcing feedback loops. The diffusivity of the X ,Y enzymes in

the cytosolic reservoir is much larger than lateral mobility of

molecules on the cell membrane. Therefore, an approximate

equilibrium is established between the population of bound enzymes
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and the pool of free enzymes diffusing in the cytosolic reservoir. For

instance, X and Y may represent a phosphatase-kinase couple that

control the transition of a signaling molecule between two

phosphorylation states.

In known biological models of cell membrane polarity, three-

dimensional (3D) cytosolic diffusion takes place on characteristic

times of the order of 1 s, which are much faster than the

characteristic times *100 s implied in two-dimensional (2D)

polarization dynamics [2]. This timescale separation implies that the

3D distribution of cytosolic molecules can be assumed to be

approximately uniform in space and slowly varying in time on the

characteristic timescales of 2D polarization.

The generic microscopic picture encoded in Fig. 1 can be

naturally described by means of a discrete reaction-diffusion

stochastic dynamics. The dynamics is essentially confined to the

cell surface since, due to timescale separation, the cytosol may be

described simply as an unstructured reservoir of molecules in

approximate equilibrium with the chemical factors bound to the

plasmamembrane. At larger length scales, a smoother mean-field

dynamics described by concentration fields emerges from the

microscopic interactions of individual molecules. The mean-field

dynamics can be described by an appropriate partial differential

equation (PDE) model and studied with analytical and numerical

methods.

Here we describe the microscopic model, derive its mean-field

description, study its qualitative behavior, and compare the

modeling results with available experimental data. This way, we

set up a general model of chemical phase separation correctly

reproducing the dynamics of cell polarization in different biological

models.

Microscopic model
Membrane polarization is a spatially distributed process

characterized by stochasticity, excitability [14], and the coupling

of the 2D dynamics of membrane-bound molecules with the 3D

cytosolic dynamics. The process can be conveniently described by

using a lattice approximation, i.e. by representing the cell membrane

as a 2D lattice with sites populated by discrete amounts of

molecules, while reactions and diffusive jumps are realized as

stochastic processes according to the rules of chemical kinetics. The

coupling to the cytosol is described by allowing shuttlying of

molecules between the 2D lattice and an unstructured reservoir

representing the 3D cytosolic volume. From the stochastic process

we then derive a macroscopic mean field model, where populations of

molecules are described by continuous density fields, and their

stochastic fluctuations are encoded into effective ‘‘noise’’ terms [12].

Each site i of the 2D lattice is populated by a discrete number of

molecules of the relevant chemical factors. The probability

distribution P of the molecule population evolves in time

according to standard master equations taking into account all

possible chemical conversions and diffusion jumps [15]. For

instance, the process of conversion between Wz and W{ signaling

molecules on the i-th lattice site is described by the following terms

of the master equation (see Fig. 1):

L
Lt

P n
(i)

Wz ,n
(i)
W{ ,n

(i)
X , . . .

� �

~W
(i)

Wz?W{ n
(i)

Wzz1,n
(i)
W{{1, . . .

� �
P n

(i)

Wzz1,n
(i)
W{{1,n

(i)
X , . . .

� �

zW
(i)

W{?Wz n
(i)

Wz{1,n
(i)
W{z1, . . .

� �
P n

(i)

Wz{1,n
(i)
W{z1,n

(i)
X , . . .

� �

{ W
(i)

Wz?W{ n
(i)

Wz , . . .
� �

zW
(i)

W{?Wz n
(i)

Wz , . . .
� �h i

P n
(i)

Wz ,n
(i)
W{ ,n

(i)
X , . . .

� �

z � � �

where n
(i)
M is the number of molecules of type M on lattice site i,

and W
(i)
(reaction) is the transition rate for the given reaction on site i.

Moreover, we assume that a pool of NXf
, NYf

free molecules Xf ,

Yf populates the cytosol. A complete list of reaction and transition

rates of the signaling network described in Fig. 1 is given in

Table 1. X molecules activated by the external signal S via

receptors are denoted by the symbol X ’, while X molecules

activated via the feedback loop are denoted by the symbol X ’’
(Fig. 1). Diffusion of the Wz and W{ molecules on the cell

membrane surface is represented by jumps from a site i to a

neighboring site j with rate DN=A, where D is the diffusivity, A is

cell membrane area, and N is the number of lattice sites. Diffusion

of the X and Y enzymes on the cell membrane is neglected.

Enzymatic reaction rates are approximated by Michaelis-Menten

terms.

Mean-field model
In the mean-field approximation, molecule distributions are

described by continuous concentration fields, and stochasticity is

encoded into an effective noise term [15]. Concentration fields are

approximations to averages of molecule numbers over small

Figure 1. Prototypical model of cell polarization. A system of receptors S transduces an external distribution of chemotactic cues into an
internal distribution of activated enzymes X , which catalyze the switch of a signaling molecule W from an unactivated state W{ to an activated state
Wz. A counteracting enzyme Y transforms the Wz state back into W{. The network contains a couple of amplifying feedback loops: the signaling
molecule W{ activates Y and Wz acvivates X . The signaling molecules Wz, W{ are permanently bound to the cell surface S and perform diffusive
motions on it, while the X , Y enzymes are free to shuttle between the cytosolic reservoir and the membrane. The result of the polarization process is
the formation of separate domains with W{-rich patches and, respectively, Wz-rich patches.
doi:10.1371/journal.pone.0030977.g001
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neighborhoods B(r) of points r on the cell membrane surface:

m(r)~
1

surfB(r)

X
i[B(r)

n
(i)
M

and it is assumed that the size of the neighborhood is larger than

the typical molecule size, but much smaller than the typical size of

the cell. Low occupation numbers n
(i)
M correspond to higher

relative fluctuations around the mean-field concentration m.

From the spatially distributed signaling pathway of Fig. 1,

Table 1, we derive the following mean-field equations:

Lwz=Lt~DDwzzg(wz,w{,x’,x’’,y) ð1Þ

Lw{=Lt~DDw{{g(wz,w{,x’,x’’,y) ð2Þ

Lx’=Lt~k’asXf{k’dx’ ð3Þ

Lx’’=Lt~k’’awzXf{k’’dx’’ ð4Þ

Ly=Lt~kaw{Yf{kdy ð5Þ

dXf=dt~{
1

V

ð
membrane

L(x’zx’’)
Lt

d(surface) ð6Þ

dYf=dt~{
1

V

ð
membrane

Ly

Lt
d(surface) ð7Þ

where D is a Laplace-Beltrami operator [16] representing diffusion

on the cell surface, d(surface) is the area element on the cell

membrane surface A, V is the cell volume, and

g(wz,w{,x’,x’’,y)~k’c
x’w{

K ’zw{ zk’’c
x’’w{

K ’’zw{ {kc
ywz

Kzwz ð8Þ

describes the enzymatic conversion of Wz and W{.

Thermal and chemical reaction noise can be taken into account

by adding the corresponding randomly fluctuating terms in the

right hand side of (1–7) [15].

Local equilibria
At equilibrium, the distribution of membrane-bound enzymes is

‘‘slaved’’ to the surface distribution of receptors and of Wz, W{

molecules (cf. 3–5):

x’~
Xf

k’d=k’a
s, x’’~

Xf

k’’d=k’’a
wz, y~

Yf

kd=ka
w{, ð9Þ

while the amount of free cytosolic enzymes is a decreasing function

of the total numbers of activated receptors and Wz, W{ molecules

(cf. 3–7):

Xf~
XT

1z(k0a=k0d)hsavez(k00a=k00d)hwz
ave

,

Yf~
YT

1z(ka=kd)hw{
ave

:

ð10Þ

Here mave~
1

A

ð
A

md(surface) denotes the average of the molecule

distribution m over the cell membrane surface A, and h~A=V is

the factor needed to convert surface concentrations (measured in

m{2) into volume concentrations (measured in m{3).

Finally, the total amount of Wz and W{ is conserved (cf. 1–2),

then

wzzw{~c~const ð11Þ

Effective potential
Timescale separation implies that the equilibria (9, 10) for

x’,x’’,y,Xf ,Yf are reached in much faster time than the equilibria

for the surface distributions wz
, w{

of signaling molecules. This

fact suggests a convenient way to study the dynamic of cell

membrane polarization, namely to substitute the fast variables

x’,x’’,y in equations (1, 2) with their steady state expressions (9,

10). The rationale here is that the concentrations (9, 10) are

approximately stationary on timescales which are much shorter

than the typical timescales of wz
, w{

variation, and slowly vary on

longer timescales. This procedure coincides with the quasi steady

state approximation used for instance in the derivation of Michaelis-

Menten laws from the theory of the transition state [17].

By using the conservation law (11) we are finally reduced to

consider the dynamics of a single relevant degree of freedom

w~wz{w{

which obeys the dynamic equation

Lw

Lt
(r,t)~DDw(r,t)zV ’(w) ð12Þ

Table 1. Reactions belonging to the signaling pathway of
Fig. 1 and corresponding transition rates W .
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We denote by NXf
and NYf

the number of free X , Y molecules available in the
cytosolic reservoir, by n

(i)
X ’ the number of X molecules on site i that are

activated by the external signal S via receptors, by n
(i)
X ’’ the number of X

molecules on site i that are activated via the feedback loop in Fig. 1.
doi:10.1371/journal.pone.0030977.t001
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with:

V 0(w)~(c2{w2):

2(k0ck0a=k0d)Xf s

(2K 0zc{w)(czw)
z

(k00c k00a=k00d)Xf

2K 00zc{w
{

(kcka=kd)Yf

2Kzczw

� �ð13Þ

(see Fig. 2). In what follows, we will assume for simplicity

K~K ’~K ’’. For slowly varying Xf , Yf , equation (12) can be

written in the variational form [18]:

Lw

Lt
(r,t)~{

dF½w�
dw(r,t)

ð14Þ

with

F½w�~
ð

membrane

D

2
(gradw)2zV (w)

� �
d(surface) ð15Þ

showing that the dynamics of the signaling field w tends to

minimize F , which plays the role of an effective energy functional.

It is worth observing here that F does not measure the actual

energy consumed by chemical reactions, but is just a convenient

mathematical bookkeeping tool which allows to determine the

direction of catalytic and diffusion processes taking place in any

given point on the membrane surface, at any given instant of time.

Solutions of equation (12) are obtained from

V ’(w)~0, ð16Þ

which, once solved, gives two stable equilibrium values Qz~c, Q{

and one unstable equilibrium Qu. The values Qz,Q{ correspond to

distinct, stable, uniform chemical phases, enriched respectively in

the signaling molecules Wz and W{. We refer to the existence of

two distinct stable chemical phases as bistability. The explicit

concentration values are

Qu,Q{~
1

2
{(SzTzc)+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(SzT{c)2{8KS

q� �
ð17Þ
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S~
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rz1
(2kz1)c, k~

K

c
, ð18Þ

with

r~
k’’ck’’akd

kckak’’d

� �
Xf

Yf

, s~2
k’ck’ak’’d
k’’ck’’ak’d

� �
s

c
: ð19Þ

Eqs. (17–19) show that the concentration values (17) are

completely controlled by the enzyme ratio r, which measures the

relative strength of the counteracting X and Y enzimes, and by

the renormalized activation signal s.

A graph of the concentration values in the two stable phases is

given in Fig. 2. An important consequence of the existence of two

distinct, locally stable phases is that different regions of the cell

membrane can be occupied by different phases, giving rise to

patterning into distinct signaling domains.

Patterning is possible only if the enzyme ratio r lies in the

bistability region shown in Fig. 3 (see Supplementary Material Text

S1). The enzyme ratio r may therefore also be called a bistability

parameter for the pathway of Fig. 1.

Polarity
The cell membrane is polarized when it is divided into two

complementary regions, stably occupied by one of two distinct

chemical phases, separated by a thin diffusive interface. Stable

polarized equilibria are reached when the effective energy F is

minimal, i.e. when both terms in Eq. (15) take on their minimal

values. If e.g. V (Qz)vV (Q{), no polarized configuration can be

stable because the energy can still decrease by extending the area

covered by the Qz phase, which has lower energy than the Q{

phase. The same is true if V (Qz)wV (Q{). Therefore, stability of

polarized equilibria (or phase coexistence) is possible only if the

following mathematical condition is satisfied:

DV~V (Qz){V (Q{)~

ðQz

Q{

V ’(w)dw~0 ð20Þ

Equations (13, 20) together provide an integral equation for the

value at equilibrium of the enzyme ratio req (see Supplementary

Material Text S1), that can be solved numerically to determine the

phase coexistence line r~req (Fig. 3).

The second condition for energy minimization is that the square

gradient term in Eq. (15) is minimized. The main contribution

from this term comes from the interface between regions occupied

by uniform distributions of the Qz and Q{ phase: energy

minimization implies therefore minimization of the length of the

interface that separates the two phases. The minimal value for the

interface length is obtained when the cell membrane is polarized in

two complementary caps, separated by a circular interface.

In the equilibrium state r~req, the circular patches occupied

by the Qz and Q{ phases have areas Az and A{ determined by

the integral constraints (10). The two areas can be explicity

computed if the size of the interfacial region separating the two

patches is negligible with respect to the cell size (Fig. 4 and

Supplementary Material Text S1). For small values of the

stimulation s, patches of the Qz and Q{ phase are mainly

sustained by positive feedback loops, while for large values of s,

they are mainly sustained by receptor activity. The two regimes

correspond to the two asymptotic plateaux appearing in Fig. 4,

respectively for small and large values of the stimulation s. It is

Figure 2. Stable chemical phases. Left: relative concentrations of
signaling molecules in the stable chemical phase w{ and unstable
chemical phase wu, as a function of the renormalized activation signal s
(19) (black) and for different values of the saturation constant k. Right:
Behavior of the potential V (w), as a function of the phase w, see (13).
The potential V has two minima: the left-hand one corresponding to a
stable Q{-rich and the right-hand one corresponding to a stable Qz-
rich phase. The two phases are separated by an effective energy barrier.
The existence of the two distinct stable chemical phases is called
bistability.
doi:10.1371/journal.pone.0030977.g002

A Bistable Model of Cell Polarity

PLoS ONE | www.plosone.org 4 February 2012 | Volume 7 | Issue 2 | e30977



worth observing here that on two plateaux the areas of the

signaling patches are almost insensitive to the absolute value of the

external stimulation s, in agreement with experimental observa-

tions ([19], Fig. 3).

Nucleation of signaling patches
The evolution from a quiescent state towards polarized

equilibria involves a complex dynamics of nucleation and

competitive growth of signaling patches. Similar processes have

been known for a long time in the physics of materials [20,21].

Let us assume that in the quiescent state, the plasmamembrane

is uniformly occupied by the Q{ phase (Fig. 3, region II). By

switching on a strong enough external stimulation field at initial

time, the plasmamembrane can be brought out of chemical

equilibrium, making the Qz phase energetically more favorable

than the Q{ phase. The energetic barrier b between the two

potential wells (see Fig. 2) blocks however the continuous transition

of the Q{ phase into the Qz phase. The transition can take place

only by the formation of sizable initial germs of the Qz phase,

driven by random thermal and/or chemical processes. Actually,

small germs are mainly destroyed by diffusion, while germs larger

than a critical size rc!1=DV expand in the Q{ sea with a front

velocity !DV [1,20,22]. The larger the barrier b, the longer the

waiting time for the first appearance of a sizable germ of the Qz

phase.

Once the first sizable germ appear, the transition towards the

Qz phase is initially limited only by the velocity of front

propagation !DV . However, the growth of the Qz phase implies

depletion of the cytosolic X population, repletion of the cytosolic

Y population, and decrease of DV , cf. equations (10, 13, 19).

Thus, the process of growth of the Qz phase slows down as time

advances. The cytosolic reservoir of X and Y enzymes works here

as a negative feedback control that drives the plasmamembrane

towards the phase coexistence line (Fig. 3) and makes polarization

possible.

As soon as the plasmamembrane is driven towards the phase

coexistence line, the potential difference DV decreases and the

critical radius rc gets larger, so that patches that were previously

growing fall below the critical size rc and start shrinking. Thus,

large patches grow at the expense of smaller patches until a single

patch survives. This kind of competitive growth of patches has

been known for a long time in the physics of materials as Lifshitz-

Slyozov coarsening [2,3,20,21]. The corresponding dynamics may be

understood via a simple physical analogy with the nonequilibrium

process taking place during the formation of precipitate from a

supersaturated solution (see Fig. 5). At initial time, the concentra-

tion of some molecule w is higher than the critical value wc, so that

a small fluctuation, or an impurity, can easily give rise to the

formation of small germs of precipitate. Germs larger than a

critical size rc*(w{wc){1 grow steadily, while germs smaller than

rc are dissolved by diffusion. As the size of the germs grows, the

molecule w is extracted from the hydrated phase and transferred to

the solid phase, moving the concentration w closer to the critical

value wc, increasing the value of rc, and correspondingly slowing

down the process of germ growth. Grains that were initially larger

than rc are dissolved, so that larger grains grow at the expense of

the smaller grains. Eventually, an equilibrium is reached when

w~wc and a single large grain of precipitate survives.

Robustness
An important result of the mathematical theory of phase

ordering processes [20] guarantees that the scenario described in

the previous paragraph does not depend on details such as the

precise values of reaction and diffusion rate constants, on the

identity of the individual biochemical factors, or on the precise

analytical expressions derived from the law of mass action, but

only on the following set of robust properties of the signaling network

[2,3,20].

1. Single relevant concentration field: The polarization state of the cell

membrane can be described in terms of a single relevant

concentration field w, while the values of other concentration

fields can be derived by approximate equilibrium relations.

The evolution equation for w can be expressed in terms of an

effective energy potential V (w).

2. Bistability: Feedback loops embedded in the signaling network

allow for the realization of distinct, locally stable chemical

phases, separated by a potential energy difference DV .

Figure 3. Bistability region, yellow region (II)-(III), as a function
of the level of external renormalized stimulation s for k~1. The
purple line corresponds to phase coexistence (polarization) and is an
attractor for the polarization dynamics. The two stable domains, blue
(IV) and red (I), correspond to the two Q{ and Qz stable phases.
doi:10.1371/journal.pone.0030977.g003

Figure 4. In the equilibrium state the circular patches occupied
by the Qz and Q{ phases have areas, respectively, Az and A{.
Here we show the ratio A{=A at different values of the stimulation s.
Curves are plotted from top to bottom with increasing ratio of the
initial enzymes quantities XT=YT. Each curve shows two plateaux that
are approximatively independent of the signal s. For small s the system
is dominated by the mutual interaction between Wz and W{, i.e., by
the feedback loop, whilst for large s the system is dominated by the
interaction with receptors, i.e., by the external signal.
doi:10.1371/journal.pone.0030977.g004

A Bistable Model of Cell Polarity
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3. Self-tuning: A global feedback mechanism drives the energy

difference DV to zero, thus bringing the plasmamembrane

towards the coexistence of the two chemical phases.

The robustness of our approach has important implications.

First of all, it suggests that polarization phenomena observed in

distant biological models can be described mathematically in a

unified way since they share a set of common features.

Secondly, it implies that robust quantitative results can be

independent on the detailed knowledge of a majority of

microscopic details. This property cannot be underestimated in

the study of biological phenomena where the relative abundances

of biochemical factors, their interactions and reaction rates are

often known with comparatively poor accuracy.

Eukariotic chemotaxis
Experiments with Dictyostelium cells exposed to uniform

concentrations of cyclic AMP (cAMP) reveal a complex dynamics

of membrane polarization into signaling domains enriched in

either phosphatidinositol bisphosphate (PIP2) or trisphosphate

(PIP3) [19]. Two enzymes, phosphatidylinositol 3-kinase (PI3K)

and phosphatase and tensin homolog (PTEN), respectively,

transform PIP2 into PIP3 and vice versa. The phospholipids are

permanently bound to the inner face of the cell membrane, while

PI3K and PTEN diffuse in the cell volume and are active only

when they are adsorbed by the membrane. PI3K adsorption takes

place through binding to receptors activated by the extracellular

attractant signal. This way, the external attractant field is coupled

to the inner dynamic of the cell. PTEN adsorption takes place

through binding to the PTEN product, PIP2. This process

introduces a positive feedback loop in the system dynamics [19].

In experiments, cells initially at rest are exposed to a sudden

increase in the concentration of uniformly distributed extracellular

signal and allowed to relax to equilibrium [19,23]. During this

interval of time a complex relaxational dynamics towards the final

polarized state is observed. PIP3 patches are visualized by the use

of fluorescent PH-Crac, a molecule that binds to a PH-binding

domain present on the PIP3 molecule. The increase in PIP3 in the

plasmamembrane signaling domain is accompanied by a corre-

sponding decrease of PH-Crac from the cytosol: the decrease in

cytosolic PH-Crac fluorescence is therefore a measure of the total

amount of PIP3 in the membrane. A puzzlying aspect here is that

plasmamembrane polarization seems to take place in two distinct

stages. The initial stimulation with cAMP induces a uniform but

transient increase in plasmamembrane PIP3 levels, of the duration

of approximately 10 s. A second increase in PIP3 levels takes place

after *20{30 s, but is now localized in isolated, fluctuating

domains, that occupy only a fraction of the membrane surface.

The decay of the initial uniform PIP3 burst suggests that an

adaptation mechanism is at work [24]. The origin of the

adaptation is likely upstream of PI3K [25]. However, the origin

of the subsequent birth of localized PIP3 spots remains unclear.

During the whole process PTEN and PI3K colocalize with their

products, respectively PIP2 and PIP3 [19]. Although the

appearence of PIP3 patches is triggered by cAMP, their size is

approximately independent on cAMP levels over a wide range of

concentrations, suggesting that the patches are self-organizing

structures triggered by cAMP [19]. PIP3 patches show a

competitive growth dynamics, with large clusters growing at the

expense of smaller ones.

Colocalization of enzymes with their products implies the

existence of positive feedbacks involving PIP2 and PTEN, as well

as PIP3 and PI3K. Biochemical data confirm the existence of a

PIP2–PTEN positive feedback loop, due to a PIP2-binding

domain of PTEN [26–29], and of a PIP3–PI3K positive feedback

loop at least in part mediated by actin [24,30–32].

The structure of the PIP2–PIP3 signaling network has the form

described in Fig. 6, which fits with the abstract scheme (1–8, Fig. 1)

once we identify Wz~PIP3, W{~PIP2,X~PI3K,Y~PTEN.

To understand the origin of the two-stage plasmamembran e

polarization dynamics we start by simulating a spatially homoge-

neous version of Model (1–8). We mimick the experimental

conditions by switching on receptor activation at initial time. To

take into account the initial transient adaptation we let the input

signal s(t) adapt in the experimentally observed time t*1 min
(Fig. 7). As discussed above, the evolution of the phospholipid

Figure 5. Physical analogy: membrane polarization and precipitation from a supersaturated solution. At initial time, the concentration
of some molecule w is higher than the critical value wc , so that a small fluctuation, or an impurity, can easily give rise to the formation of small germs
of precipitate. Germs larger than a critical size rc grow steadily, while germs smaller than rc are dissolved by diffusion. As the size of the germs grows,
the molecule w is extracted from the hydrated phase and transferred to the solid phase, moving the concentration w closer to the critical value wc ,
increasing the value of rc , and correspondingly slowing down the process of germ growth. Grains that were initially larger than rc are dissolved, so
that larger grains grow at the expense of the smaller grains. Eventually, an equilibrium is reached when w~wc and a single large grain of precipitate
survives.
doi:10.1371/journal.pone.0030977.g005
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concentration field is driven by the slow variation in time of the

effective potential V (Q), that follows the slow variation of the

enzyme ratio r!PI3Kf=PTENf (13, 19).

Receptor activation at t~0 (Fig. 7, red line) induces a uniform

increase of PI3K–PIP3 on the whole plasmamembrane, which

corresponds to the appearance of a single potential well centered

in the PIP3-rich region. The PI3K/PTEN enzyme ratio r
decreases, corresponding to PI3K recruitment to the plasmamem-

brane and PTEN relocation to the cytosol (Fig. 7, red line). When

the enzyme ratio crosses the boundary of the bistable region (Fig. 7,

blue curve) the effective potential V (Q) develops a secondary

potential well centered in the PIP2-rich region.

The appearence of a secondary potential well follows from the

increased concentration of cytosolic PTEN, which stabilizes the

PIP2-rich phase. The potential barrier between the PIP2- and the

PIP3-rich phase blocks further uniform increase in the PIP3 levels,

but still allows the formation of locally enriched PIP3-rich regions

through a nucleation and growth dynamics, as described above.

In order to validate the present scenario we have simulated the

full, spatially distributed system (1–8) by using a finite-element

method, with D~0:02 m2=s and other parameters values

reported from the literature (Table 2). Thermal and chemical

reaction noise is taken into account by adding an additive random

perturbation in the r.h.s. of (1, 2) (see Methods). Noise has the

effect of creating germs of the PIP3-rich phase as localized, rare

concentration fluctuations. In the simulation, before starting to

stimulate cells with a uniform concentration of cAMP, the system

is left to relax with zero signal until the levels of the relevant factors

become stationary and the cell membrane becomes uniformly

covered by the PIP2-rich phase (blue, Fig. 8b). The stimulation is

switched on at time t~0, when we also impose a 5% Gaussian

noise on the uniform concentration background in order to

mimick random inhomogeneities. In Fig. 8 we compare the

experimental results reported in Ref. [19] with the simulations of

model (1–8).

In both experiments (Fig. 8a) and simulations (Fig. 8b),

switching on receptor activation leads to a transient increase in

PIP3 concentrations (Fig. 8a). After a characteristic time of 5 s,

PIP3 levels decrease by adaptation. After 30 s new PIP3 patches

are nucleated and grow.

The kimograph in Fig. 8b shows the time evolution of simulated

PIP3 levels along the major cell perimeter, while Fig. 9 shows this

very same dynamics in 3D. Similarly to what observed in

experiments, a transient, uniform increase in PIP3 levels is

followed by a second regime where localized PIP3 patches phase

nucleate and grow competitively in a PIP2-rich sea. In both the

experiments and simulations, the speed of patch growth slows

down with time. The features of the simulated dynamics are

therefore completely consistent with the experimental data.

Simulation data reported in Fig. 9 hint at the 3D patch

dynamics that we expect will be observed when dynamic 3D

reconstructions of PIP3 patches in chemotactic experiments will

become available.

Epithelial polarization
In multicellular organisms, epithelial cells form layers separating

compartments responsible for different physiological functions. At

the early stage of epithelial layer formation, each cell of an

aggregate defines a basal and an apical side. The in vivo process

of epithelial morphogenesis is recapitulated in well established

in vitro cell systems [33]: canine kidney cells are seeded in three-

dimensional gels, where they divide and form cysts, i.e. hollow

multicellular aggregates [33]. PIP2, PIP3 localization is central in

the establishment of epithelial apico-basal polarity [34]. The apical

Figure 6. Model of chemotactic polarization. With respect to the abstract scheme in Fig. 1 we have the identification wz = PIP3, w{ = PIP2,
s~REC. The PIP3-rich domain corresponds to the presence of a high concentration of chemoattractant factor.
doi:10.1371/journal.pone.0030977.g006

Figure 7. We simulated a spatially homogeneous version of the
Model. We mimick the experimental conditions by switching on
receptor activation at initial time. The phospholipid concentration field
is driven by the slow variation in time of the effective potential V , that
follows the slow variation of the enzyme ratio r!PI3Kfree=PTENfree .
Receptor activation at t~0 (blue line) induces a uniform increase of
PI3K, PIP3 on the whole plasmamembrane, which corresponds to the
appearance of a single potential well centered in the PIP3-rich region.
The enzyme ratio r decreases, corresponding to PI3K recruitment to the
plasmamembrane and PTEN relocation to the cytosol (blue line). When
the enzyme ratio crosses the boundary of the bistable region (light blue
area) the effective potential V develops a secondary potential well
centered in the PIP2-rich region.
doi:10.1371/journal.pone.0030977.g007
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side facing the cyst lumen is characterized by high PTEN–PIP2

plasmamembrane levels, while the basolateral side is characterized

by high PI3K–PIP3 levels (Fig. 10a). PTEN levels at the

plasmamembrane are controlled by its binding to PIP2, thus

realizing a positive feedback loop (Fig. 10b). PI3K levels in the

membrane are controlled by its binding to cell-cell adhesive

receptors, cadherins, and cell-matrix adhesive receptors integrins.

To bind PI3K, cadherins must be activated by engagement with

cadherins of a neighboring cell (C/M in Fig. 10b) [35]. PI3K is

activated when associated with either activated cadherins or

integrins. Since PIP3 stabilizes the activated form Cad [36], these

interactions create a positive PI3K–PIP3 feedback loop, mediated

by the existence of cell/cell contacts (Fig. 10).

Before polarization, cadherins and integrins are activated along

the whole plasmamembrane and PIP3 uniformly prevails on PIP2

determining a stable PIP3-rich phase over the whole membrane. A

local depletion of PI3K–PIP3 can be created if a large enough

membrane area with disrupted cell-cell links is formed [37],

thereby breaking the PI3K–PIP3 feedback loop (Fig. 6) and

originating a germ of a PIP2-rich phase (Figs. 1b and 2). The

creation of this initial germ takes place by active transport of

vesicles enriched in PTEN–PIP2 and antiadhesive factors to the

midpoint of the mitotic spindle during the process of cell division

[38,39]. After the formation of the initial PTEN–PIP2-rich germ,

the PTEN–PIP2 feedback loop may locally prevail, inducing a

PIP2 and PIP3 surface compartmentalization that splits the cell

membrane in two regions, characterized by different chemical

concentrations of the signaling molecules.

The structure of the PIP2–PIP3 signaling network in epithelial

polarization has the form described in Fig. 10, which fits with

the abstract scheme (1–8, Fig. 1) once we identify wz~PIP3,

w{~PIP2,X~PI3K,Y~PTEN. These are the same identifica-

tion we used in the study of chemotactic polarization, but now

with interactions and parameter values characteristic for epithelial

polarity.

We have simulated Model (1–8) with parameter values

compatible with the interactions described in Fig. 10 for the

process of epithelial polarization (Table 3). At initial time the

plasmamembrane is in a uniform PIP3-rich state. We than create a

circular patch of radius r0 of the PIP2-rich phase of radius r0 and

investigate its dynamics to check whether a stable polarization

state is attained.

Patches smaller than a threshold radius rc^0:3mm are

dissolved by diffusion and thermal processes and do not impair

the stability of the uniform PIP3-rich phase. Patches larger than rc

grow in time triggering the separation of the plasmamembrane

surface in a PIP2-rich and a PIP3-rich region, and eventually

reach an equilibrium, thus completing the separation into a PIP2-

rich apical region and a PIP3-rich basolateral region (Fig. 11 and

Ref. [37]). The critical radius for nucleation and the final PIP-

patch size are functions of the PI3K/PTEN ratio r [37]. This fact

suggests that the precise amount of PI3K and PTEN is a critical

parameter for the establishement of epithelial polarity, providing

an explanation for the experimental observation that deletion of a

single PTEN allele can interfere with epithelial cell polarization

and foster invasion of carcinoma cells [40].

Table 2. Parameters used in the simulations of Eukariotic chemotaxis (Dictyostelium cells).

kc 1:00 s{1 k’c 1:00 s{1 k’’c 0:10 s{1 c 1000 mm{2

ka 0:006 mm3 s{1 k’a 0:06 mm3 s{1 k’’a 0:006 mm3 s{1 K 500 mm{2

kd 0:10 s{1 k’d 0:10 s{1 k’’d 0:01 s{1 xT 20mm{3

Kd 1:00 mm{3 K ’d 1:00 mm{3 K ’’d 200:00 mm{3 yT 2 mm{3

We have simulated the full, spatially distributed system (1–8) by using a Finite Element Method, with the present parameter values, that were extracted from the
literature.
doi:10.1371/journal.pone.0030977.t002

Figure 8. Kimograph for a simulation of the full, spatially
distributed, chemotaxis system. In the simulation, before starting
to stimulate cells with a uniform concentration of cAMP, the system is
left to relax with zero signal until the levels of the relevant factors
become stationary. Then, the stimulation is switched on at time t~0,
when we also impose a gaussian noise on the uniform concentration
background in order to mimick random inhomogeneities. We compare
the experimental results reported in Reference [19] with the simulations
of model (1–8). The kimograph shows the time evolution of simulated
PIP3 levels along the major cell perimeter. Time t~0 in the simulation is
to be compared with time 5 s in the experiment.
doi:10.1371/journal.pone.0030977.g008

Figure 9. The dynamics of the simulated 3D spatially distrib-
uted model for different times. The colorbar is the same as in Fig. 9,
the major cell perimeter is the one considered in Fig. 9.
doi:10.1371/journal.pone.0030977.g009
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In the process of epithelial apico-basal symmetry breaking the

roles of the PIP2- and PIP3-rich phases are reversed with respect

to chemotaxis. More importantly, in chemotacting cells the

tendency of the cell membrane to separate in two distinct signaling

domains is triggered by shallow stimulation gradients, but can also

take place spontaneously [4]. On the contrary, in order to preserve

well-organized geometry of epithelia, the process of apico-basal

symmetry breaking must be tightly regulated and cannot take

place randomly [34]. It is worth observing here that a similar

network topology may induce different dynamical behaviors,

depending on parameter values. The model suggests that in

chemotacting cells, the high sensitivity to shallow chemoattractant

gradients depends on the existence of a low potential barrier

separating the PIP2- and PIP3-rich phases. On the contrary, in the

case of epithelial polarization a high potential barrier prevents the

random occurrence of phase separation, making it a highly

controlled process. In other words, our findings suggest that in

eukaryotic chemotaxis germs of the PIP3-rich phase are created in

the PIP2-rich phase by a process of homogeneous nucleation triggered

by a random fluctuation, while in epithelial polarization a single

germ of the PIP2-rich phase is created in the PIP3-rich phase by

an active process, i.e. by a process of heterogeneous nucleation. Notably,

this prediction is in agreement with the observation that lumen

formation depends on the delivery at the plasmamembrane of

exocytic vesicles containing PIP2 and apical proteins [41].

Budding yeast
Exposure to mating pheromone of haploid Saccharomyces cerevisiae

cells results in polarized growth towards the mating partner [42].

Proteins involved in signaling, polarization, cell adhesion, and

fusion are localized at the tip of the mating cell (shmoo) where

fusion will eventually occur. Polarization involves localization of

the small GTPase Cdc42 and of its guanine nucleotide exchange

factor (GEF), Cdc24. The expression of a constitutively activated

form of Cdc42 is sufficient to cause polarization in otherwise

nonpolarized cells [43].

During budding, polarization is independent from extracellular

cues [42]. At the G1–S phase transition of each cell cycle, yeast

cells polarize to form a bud in a direction specified by a remnant

from the previous round of budding, the bud scar. Haploid cells

form new buds adjacent to the previous bud scar. Diploid cells

form new buds alternating between both cell poles, resulting in a

bipolar budding pattern.

The Cdc24 GTPase is activated by Cdc42 via the scaffold

protein Bem1, resulting in the amplifying feedback loop of Fig. 12.

Moreover, several GTPase activating proteins (GAP), such as

Rga2, can negatively regulate Cdc42 [44]. The structure of this

signaling network fits with the abstract scheme (1–8, Fig. 1)

once we identify wz~Cdc42GTP, w{~Cdc42GDP, X~Cdc24,

Y~Rga2.

It has been observed that intermittent, or ‘‘flickering’’

polarization may arise as a consequence of feedback mechanism

as the one shown in Fig. 12 [45]. The model proposed in Ref. [45]

is a limit case of our more general model, obtained by neglecting

receptor activation and considering the limit of small number of

bound Cdc42 molecules (see Supplementary Material Text S1).

In this limit, V (Q) has a single potential well and no stable

polarization can be observed. However, intermittent signaling

patches can still arise due to the interplay of chemical and reaction

noise with the nonlinear feedback. In order to study the stochastic

dynamics of intermittent patches we have simulated the full

stochastic model (1–8) by Gillespie’s algorithm (see Methods).

Fig. 13 shows the time evolution of simulated Cdc42GTP levels

along a major cell cross section, while Fig. 14 shows the 3D

behavior of intermittent Cdc42GTP patch formation. Values of the

parameters used in the simulations are shown in Table 4. The

Figure 10. Model of epithelial polarization, with respect to the scheme in Fig. 1 we identify wz~PIP3, w{~PIP2, X~PI3K,
Y~PTEN, and s~C/M. To bind PI3K, cadherins must be activated by engagement with cadherins of a neighboring cell. The PIP2, PIP3 localization
is central in the establishment of epithelial apico-basal orientation.
doi:10.1371/journal.pone.0030977.g010

Table 3. Parameters used in the simulations of epithelial polarization.

kc 7:00 s{1 k’c 7:00 s{1 k’’c 0:10 s{1 c 1000 mm{2

ka 0:006 mm3 s{1 k’a 0:06 mm3 s{1 k’’a 0:006 mm3 s{1 K 500 mm{2

kd 0:10 s{1 k’d 0:10 s{1 k’’d 0:01 s{1 xT 20mm{3

Kd 1:00 mm{3 K ’d 1:00 mm{3 K ’’d 200:00 mm{3 yT 2 mm{3

We have simulated Model (1–8) with parameter values compatible with the interactions described in Fig. 10 for the process of epithelial polarization. At initial time the
plasmamembrane is in a uniform PIP3-rich state. We then create a circular patch of the PIP2-rich phase of radius r0 and investigate its dynamics to check whether a
stable polarization state is attained.
doi:10.1371/journal.pone.0030977.t003
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graphs of our realistic surface model are similar to those obtained

in the one-dimensional model of Ref. [45]. It is worth observing

here that intermittent, as opposed to stable, patch formation is

here a consequence of the particular, small-concentration limit

considered in [45]. However, our previous analysis shows that, if

working in the appropriate parameter range, the signaling

pathway described by Fig. 12 is bistable and capable of producing

persistent polarized patches as those shown in Figs. 8, 9, in full

agreement with experimental data [42].

Ras signaling domains
Ras GTPases are lipid-anchored G proteins which play a

fundamental role in cell signaling processes [46]. Ras acts as a

molecular switch with ‘‘on’’ (GTP-bound) and ‘‘off’’ (GDP-bound)

states, the former promoting the activation of effector proteins.

Ras activation is important for instance for the development of T

and B lymphocytes and for their functions directed against

invading pathogens [47]. Ras proteins have been observed to form

dynamic non-overlapping domains (nanoclusters) in the inner

leaflet of the plasmamembrane [48–50]. It has been shown that

Ras clustering results in a prolonged immobilization at the

plasmamembrane and in increased MAP-kinase activation [51].

The activation of Ras by receptor tyrosine kinases proceeds

through the recruitment of the Ras-GEF Son of sevenless (Sos) to

the plasma membrane [52,53]. It was discovered recently [53] that

catalysis of Ras-GDP to Ras-GTP aided by SOS is 75-fold faster

when a membrane associated SOS molecule is bound to Ras-GTP

at an allosteric site. This mechanism introduces positive feedback

regulation of Ras activation, which in the presence of slow

diffusion, may result in clustering of activated molecules on the

plasma membrane [12,48]. Moreover, several Ras-GAP proteins

can negatively regulate Ras activation [54].

In Dictyostelium, Ras signaling domains have been observed at

the leading edge of chemotaxing cells [25].

The Ras activation pathway (Fig. 15) is still another realization

of the abstract scheme described in Fig. 1, with the identification

wz~RasGTP, w{~RasGDP,X~Sos, Y~Ras{GAP. In par-

ticular, the creation of germs of the wz
-rich phase is expected to

take place via the formation of small germs of the new phase by the

action of random thermal and chemical fluctuations, as observed

in [12]. Our previous analysis shows that the Ras-GDP/Ras-GTP

system can support the formation of both intermittent nanoclus-

ters, or stable signaling domains of Ras-GTP, depending on

parameter values. The formation of patches of the wz
-rich phase

is expected to be intermittent outside of the bistable region II,III in

Fig. 3, and generating stable signaling domains in the interior of

these regions. Moreover, we expect that the role of the finite

cytosolic reservoir of SOS should be central in tuning the cell

plasma membrane towards coexistence of the Qz-rich and Qz-

poor phases.

Discussion

Generation of spatio-temporally localized signaling domains is

an ubiquitous feature of many cellular functions, such as

chemotaxis, epithelial morphogenesis and mating. Interestingly,

the organization of most of the corresponding molecular

machineries involves molecules that exist in two alternative

biochemical states, phosphatydilinositol and GTPases being

prominent examples. The transition between these two states is

typically controlled by the activity of a couple of counteracting

enzymes. In addition, substrate-to-enzyme feedbacks can often

generate hypersensitive responses. This ubiquitous pathway

architecture can be formally described as a Goldbeter-Koshland

hypersensitive module coupled with one or more reinforcing

feedback loops. Here we have presented a general mathematical

analysis of its properties.

Hypersensitivity has been been considered for a long time as a

way for a biochemical system to realize abrupt step responses to

small variations in input concentrations. In the usual treatment,

uniform spatial concentrations are considered. Here we have

extended this approach to the case of spatially distributed, diffusive

systems with reinforcing feedback loops. Our results show that in

this context, Goldbeter-Koshland hypersensitivity can induce the

separation of a biological system such as the cell plasmamembrane

into distinct signaling domains. This simple principle appears of

sufficient generality to explain the emergence of polarized domains

in several basic biological settings, such as differentiation,

proliferation, migration, and morphogenesis.

Figure 11. Growth of the PIP2-rich phase (blue lower patch).
The color scale shows the gradation of PIP2 content: the color is the
relative concentration difference between PIP3 and PIP2 at a given site.
The system at initial time is in a uniform PIP3-rich phase (red), apart
from an initial PIP2-rich seed germ of size larger than the threshold
radius. Then, a PIP2-rich patch becomes apparent and its radius
saturates to an equilibrium value.
doi:10.1371/journal.pone.0030977.g011

Figure 12. Model of cell polarization for budding yeast. With respect to the scheme in Fig. 1, we identify Wz~Cdc42GTP, W{~Cdc42GDP,
X~Cdc24, Y~Rga2.
doi:10.1371/journal.pone.0030977.g012
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The idea that chemotactic cell polarization may result from the

simple ingredients of bistability induced by a positive local

feedback loop in a signaling network and global control induced

by shuttling of enzymes between the cytosol and the membrane

was advanced in our previous works [1,2,55]. Other authors have

adopted similar models [11,13,56–60]. Alternative models include

‘‘local excitation – global inhibition’’ [24,61,62], Turing-like [65]

and excitable systems [66]. An extensive review of cell polarization

models can be found in [63,64].

It is worth observing here that the coupling of local bistability

and diffusion is an alternative way to produce patterning in an

extended system, with respect to the better known mechanism of

Turing instabilities [65,67,68]. The main difference is that Turing

instabilities are linear instabilities of the uniform (mixed-phase)

state. Instead, in our model an ‘‘energy’’ barrier has to be

overcome to pass from the uniform state to the phase-separated

state, similarly to what happens in the theory of phase separation

in statistical physics. The mean-field, uniform state is stable, but a

finite perturbation may break it. The finite perturbation may be

produced either by random fluctuations (noise) in the system, or by

an external perturbation, such as the introduction of a finite-size

germ of one of the two phases. This way, the process of phase

separation may be finely controlled by the signaling network.

Feedback loops participating in cell polarization may involve

the actin cytoskeleton [24,30–32,69–71]. Such actin-mediated

feedbacks may imply the active transport of signaling molecules

along cytoskeleton filaments [69–71]. As long as the local

geometry of actin filaments is neglected, active transport along

cytoskeleton filaments may be taken into account in our model

through renormalized values of the adhesion rates ka (compare,

e.g., Eq.s. 1–8, or Eq.s B.1–B.5 from Ref. [3], with Eq.s 1–4 from

Ref. [71]). Different local geometries (e.g., astral or radial) of actin

filaments in the proximity of the cell membrane may however

facilitate or inhibit the development of instabilities leading to cell

polarization [71,72]. These effects are expected to be particularly

relevant if polarization is driven by Turing-like instabilities. In our

bistable scenario, the effect of local inhomogeneities in the

distribution of signaling molecules in the proximity of the cell

membrane has still to be investigated.

Figure 13. Intermittent and persistent polarization obtained by simulation of model (1–8). In the graphs we plot concentrations of
membrane-bound molecules along a 1 m thick cross section of the plasmamembrane vs. time, normalized with the average membrane
concentration. Upper three rows: small number N of A-molecules (PTEN in Ref. [1], or Cdc24 in Ref. [45]). Intermittent polarization as shown here was
already described in [1]. The graphs of our realistic surface model are similar to those obtained in Ref. [45] in the monodimensional case. Patches of
signaling molecules randomly form and disappear. Observe that patches are the macroscopic counterpart of clans of signaling molecules, as defined
in [45]. Parameter values were taken as follows: diffusivity of membrane-bound molecules is D~0:02, m2=s, [A] = 1, 10, 50 nM, the decay rate of A is
adjusted in order to get 10% of A molecules bound to the plasmamembrane, all other parameters are as in [6,42].
doi:10.1371/journal.pone.0030977.g013

Figure 14. The 3D behavior of intermittent Cdc42GTP patches.
The graphs of our realistic surface model are similar to those obtained
in the one-dimensional model of Ref. [45]. It is worth observing here
that intermittent, as opposed to stable, patch formation is here a
consequence of the particular, small-concentration limit considered in
[45].
doi:10.1371/journal.pone.0030977.g014
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It has been recentely shown that a bistable scenario for diffusible

signaling molecules satisfactorily accounts for the polarization of

fertilized oocytes, and for the flow of actomyosin cell cortex that is

observed in the process, provided that the polarization pathway is

properly coupled to the mechanics of membrane advection [73].

It is important to notice that a definitive assessment of the roles

of Turing vs. bistable mechanisms in cell polarity can not be done

by purely theoretical means. For instance, the mathematical

description of the same signalling pathway may involve either

nonlinearities leading to bistable behavior, if Michaelis-Menten

saturation terms are taken into account to describe enzymatic

kinetics (as we did here), or to Turing-like systems [65] if reactions

are believed to be working in the non-saturating regime.

Therefore, the Turing vs. bistability alternative can be ultimately

solved only by performing accurate, targeted experiments.

Our model is simple enough to be studied by analytical

methods, that in particular allow to derive a phase diagram

showing the region of parameters where the coexistence of two

signaling plasmamembrane domains is allowed. The dynamics

leading to cell polarization can then be studied by introducing an

effective energy function which encodes many of the qualitative and

quantitative properties of the real process. This fact allows to draw

a useful analogy with physical processes, such as the formation of

precipitate from a supersaturated solution, and to take advantage

of a well-developed mathematical theory of their dynamical

properties. The main feature emerging from this analysis is that

the system dynamics depends only on robust properties of the

pathway architecture, such as bistability and self-tuning, and not

on the precise values of microscopic details such as diffusion and

chemical rate constants, or the identity of individual biochemical

factors. This unified picture suggests that polarization phenomena

observed in apparently distant biological models are sharing a set

of common features.

Our theoretical framework leads to well-defined predictions

about the polarized response of eukaryotic cells under both

uniform and gradient stimulation conditions. To validate these

predictions it would be necessary to systematically collect time-

lapse, 3D microscopy data of signaling patches induced by

controlled space-time extracellular stimulation patterns, such as

those that can be realized by computer-controlled microfluidics.

Such measurements should be performed also by modulating

the cellular levels of X and Y enzymes, e.g. by plasmid or virus-

mediated overexpression as well as by gene silencing. Our theory

suggests that when a cell is uniformly stimulated, the dynamic of

signaling domains should show similar features in different

biological models: at appropriate stimulation levels, signaling

domains should appear as small intermittent spots that coarsen in

time in a process where larger domains grow at the expense of

smaller ones, finally reaching a configuration characterized by a

single polarized cap.

A threshold in the stimulation levels is expected to separate a

dynamics characterized by a ‘‘sea’’ of intermittent, small signaling

domains (below threshold) and the above-mentioned coarsening

dynamics leading to a single polarized cap (for above threshold

stimulation levels). It is worth observing here that at low

stimulation levels the signaling mechanism can be influenced by

autocrine stimulation loops, which must therefore be accurately

monitored.

The dynamics of signaling patches under gradient stimulation

conditions is predicted to be quite similar to the dynamics

observed under uniform stimulation conditions, except that

polarization times should be much shorter and the direction of

polarization should be aligned with the direction of the stimulation

gradient.

Methods

The diffusion on the plasmamembrane has been simulated with

a Finite Element Method for the Laplace-Beltrami operator and a

suitable discretization of the spherical surface. The resulting ODE

Table 4. Parameters for simulations of budding yeast.

kc 50 s{1 k’c 0 s{1 k’’c 0:1 s{1 c 1000 mm{2

ka 0:01 mm3 s{1 k’a 0 mm3 s{1 k’’a 0:1 mm3 s{1 K 500 mm{2

kd 0:10 s{1 k’d 0 s{1 k’’d 0:1 s{1 xT 1{50 mm{3

Kd 10 mm{3 K ’d 0 mm{3 K ’’d 1 mm{3 yT 1 mm{3

Exposure to mating pheromone of haploid Saccharomyces cerevisiae cells results in polarized growth towards the mating partner. Proteins involved in signaling,
polarization, cell adhesion, and fusion are localized at the tip of the mating cell (shmoo) where fusion will eventually occur. Polarization involves localization of the small
GTPase Cdc42 and of its guanine nucleotide exchange factor (GEF), Cdc24. The expression of a constitutively activated form of Cdc42 is sufficient to cause polarization
in otherwise nonpolarized cells.
doi:10.1371/journal.pone.0030977.t004

Figure 15. Ras activation pathway. With respect to the scheme in Fig. 1., we identify Wz~RasGTP , W{~RasGDP, X~Sos, Y~Ras-GAP.
doi:10.1371/journal.pone.0030977.g015
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system has been approximated by using a Runge-Kutta stiff solver

[74].

In the simulation of eukaryotic chemotaxis, noise intrinsic in the

reaction-diffusion system is taken into account by adding an

additive Poissonian random perturbation in the r.h.s. of (1, 2). In

detail, nodes in the lattice are chosen randomly with rate 0:1 s{1

in time and with uniform probability in space and their state is set

to w~c.

Reaction-diffusion kinetics has been simulated using Gillespie’s

method [75,76]. At time zero, a random number is generated to

determine the next reaction or elementary diffusion process to

occur, with a probability proportional to the corresponding W
factor from Table 1. Then, the time is advanced as a Poissonian

process with a rate again determined by the W factors. These steps

are repeated iteratively until the desired simulation time is

reached.

Supporting Information

File S1 Supplementary material.

(PDF)

Acknowledgments

GN and MS wish to thank G. Aletti, for useful discussions on mathematical

modelling and numerical algorithms.

Author Contributions

Conceived and designed the experiments: MS AV GN GS AG. Performed

the experiments: MS AV GN GS AG. Analyzed the data: MS AV GN GS

AG. Contributed reagents/materials/analysis tools: MS AV GN GS AG.

Wrote the paper: MS AV GN GS AG.

References

1. Gamba A, De Candia A, Di Talia S, Coniglio A, Bussolino F, et al. (2005)

Diffusion limited phase separation in eukaryotic chemotaxis. Proc Natl Acad

Sci U S A 102: 16927–16932.

2. Gamba A, Kolokolov I, Lebedev V, Ortenzi G (2007) Patch coalescence as a

mechanism for eukaryotic directional sensing. Phys Rev Lett 99: 158101–1–4.

3. Gamba A, Kolokolov I, Lebedev V, Ortenzi G (2009) Universal features of cell

polarization processes. J Stat Mech 2009: P02019.

4. Wedlich-Soldner R, Li R (2003) Spontaneous cell polarization: undermining
determinism. Nat Cell Biol 5: 267–70.

5. Kriebel PW, Barr VA, Parent CA (2003) Adenylyl cyclase localization regulates

streaming during chemotaxis. Cell 112: 549–60.

6. Angeli D, Ferrell JE, Sontag ED (2004) Detection of multistability, bifurcations,

and hysteresis in a large class of biological positive-feedback systems. Proc Natl
Acad Sci U S A 101: 1822–1827.

7. Clarke BL (1980) Stability of complex reaction networks, volume 43 of Adv Chem Phys,

pages 1–216.

8. Ferrell JE, Jr. (2002) Self-perpetuating states in signal transduction: positive

feedback, double-negative feedback and bistability. Curr Opin Cell Biol 14:

140–8.

9. Goldbeter A, Koshland DE, Jr. (1981) An amplīed sensitivity arising from
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