
Vol.:(0123456789)1 3

Interdisciplinary Sciences: Computational Life Sciences (2022) 14:1–14
https://doi.org/10.1007/s12539-021-00473-0

REVIEW

A Review of Parallel Implementations for the Smith–Waterman
Algorithm

Zeyu Xia1 · Yingbo Cui1  · Ang Zhang1 · Tao Tang1 · Lin Peng1 · Chun Huang1 · Canqun Yang1 · Xiangke Liao1

Received: 19 April 2021 / Revised: 2 August 2021 / Accepted: 4 August 2021 / Published online: 6 September 2021
© International Association of Scientists in the Interdisciplinary Areas 2021

Abstract 
The rapid advances in sequencing technology have led to an explosion of sequence data. Sequence alignment is the central
and fundamental problem in many sequence analysis procedure, while local alignment is often the kernel of these algorithms.
Usually, Smith–Waterman algorithm is used to find the best subsequence match between given sequences. However, the high
time complexity makes the algorithm time-consuming. A lot of approaches have been developed to accelerate and paral-
lelize it, such as vector-level parallelization, thread-level parallelization, process-level parallelization, and heterogeneous
acceleration, but the current researches seem unsystematic, which hinders the further research of parallelizing the algorithm.
In this paper, we summarize the current research status of parallel local alignments and describe the data layout in these
work. Based on the research status, we emphasize large-scale genomic comparisons. By surveying some typical alignment
tools’ performance, we discuss some possible directions in the future. We hope our work will provide the developers of the
alignment tool with technical principle support, and help researchers choose proper alignment tools.

Graphic abstract

target sequence

qu
er

y
se

qu
en

ce

Anti-diagonal Layout

target sequence

qu
er

y
se

qu
en

ce

Sequential Layout

qu
er

y
se

qu
en

ce

target sequence

Striped Layout

1t
2t

3t
4t

1q
1q

1q
1q

Many-to-one Layout
1q

2q
3q

4q

1t
2t

3t
4t

Many-to-many Layout

…

CPU
core core core

…

CPU

core core core

SM SM SM

SM SM SM

…

…

GPU

…

CPU

core core core

FPGA

…

CPU

core core core

Xeon Phi

…

CPU
core core core

SM SM SM

SM SM SM

…
…

GPU

FPGA …Xeon Phi

Intra-sequence alignment Inter-sequence alignment

Keywords  Smith–Waterman algorithm · Vector-level parallelization · Intra-sequence alignment · Inter-sequence alignment

 *	 Yingbo Cui
	 cuiyingbomail@163.com

	 Ang Zhang
	 zhangang@me.com

1	 School of Computer, National University of Defense
Technology, Changsha 410073, China

http://orcid.org/0000-0003-4000-4957
http://crossmark.crossref.org/dialog/?doi=10.1007/s12539-021-00473-0&domain=pdf

2	 Interdisciplinary Sciences: Computational Life Sciences (2022) 14:1–14

1 3

1  Introduction

Sequence alignment is one of the most significant techniques
in bioinformatics. The result of sequence alignment is the
basis of many other steps. It can be used to find the differ-
ences and similarities between aligned sequences [1], which
is the premise of biological sequence recognition, structure
prediction, and function analysis [2]. Taking the corona-
virus (COVID-19) as an example, scientists identified its
common features by aligning it against other viruses [3].
However, sequence alignment is a highly time-consuming
task. In recent years, as the parallel alignment algorithm has
continuously matured and optimized, the computation time
has reduced significantly.

Depending on the alignment method used, sequence
alignment algorithms can generally be classified into two
main types: global alignment and local alignment [4]. In
1970, Saul B. Needlman and Christian D. Wunsch proposed
the Needleman–Wunsch (NW) algorithm to find the best
match in the entire sequences [5]. Then, in 1981, based on
the NW algorithm, Temple F. Smith and Michael S. Water-
man developed a local alignment algorithm, which was
afterward called the Smith–Waterman (SW) algorithm, to
find the best subsequence match between sequence pairs [6].
Both the NW and SW algorithms apply dynamic program-
ming [7] (DP) to compute the sequence alignment, which
makes the two algorithms have quadratic time complexities.
Accordingly, large-scale sequence alignment is computation-
ally demanding [4, 8]. Significant efforts have been made to
accelerate the process. Most of these tasks are accelerated by
parallel-computing, including vector-level, thread-level, pro-
cess-level, and heterogeneous parallelization. In this review,
we surveyed these parallel approaches of the SW algorithms
and the scopes of their applications. Then, we discussed the
development trend of the alignment tools.

The rest of this paper is organized as follows. Section 2
reviews the principle of the SW algorithm and existing
common parallel approaches. Section 3 analyzes the paral-
lelization of the SW algorithm based on different parallel
approaches. Section 4 presents the discussion.

2 � Preliminaries

2.1 � Smith–Waterman Procedure

For a given sequence S, define S[i] as the i-th character,
while S[i, j] denotes the substring from position i to position
j. St[1...m] and Sq[1...n] denote the target sequence and query
sequence, respectively. We assume that the target sequence
St is placed horizontally, while the query sequence Sq is
placed vertically in the SW alignment matrix. x(1 ≤ x ≤ m)

is the horizontal coordinate and y(1 ≤ y ≤ n) is the vertical
coordinate.

The SW algorithm is used to find the best subsequence
match between the sequence St and Sq . This algorithm con-
sists of two phases: matrix filling and backtracking. The first
phase calculates the alignment matrix between sequences St
and Sq , while the second phase searches for the best subse-
quence match.

The original SW algorithm uses linear gap costs to calcu-
late the alignment matrix. Gotoh [9] modified the SW algo-
rithm with affined gap costs. The algorithm can be defined
as follows.

where Hi−1,j−1 +M(St[i], Sq[j]) indicates the alignment score
of St[i] and Sq[j] . Ei,j and Fi,j denotes the influence of the
previous column and row on the current score, respectively.
� and � are the two symbols of the gap open and extension
penalty, respectively. M(St[i], Sq[j]) is the scoring matrix,
it is usually used to calculate the matching or mismatch-
ing scores between the symbols St[i] and Sq[j] . Additionally,
define Hi,j , Ei,j and Fi,j to be equal to 0 when the index i or
j is less than 1.

Once the computation of the alignment matrix is com-
plete, we assume that the cell ( i′ , j′ ) stores the optimal align-
ment score. The backtracking phase would start from ( i′ , j′ )
until it reaches a cell with a value equal to zero.

Compared with the other phase in this algorithm, the
alignment matrix calculation is far more time-consuming.
With the length of the target and query sequence |St| and |Sq|
of m and n (assuming m > n ), the computational and space
complexity of the algorithm is equal to O(mn) and O(m),
respectively, [10].

(1)

Hi,j = max

⎧
⎪⎨⎪⎩

Hi−1,j−1 +M
�
St[i], Sq[j]

�
Ei,j

Fi,j

0

Ei,j = max

�
Ei,j−1 − �

Hi,j−1 − � − �

Fi,j = max

�
Fi−1,j − �

Hi−1,j − � − �

Fig. 1   Comparison between scalar operation and vector operation

3Interdisciplinary Sciences: Computational Life Sciences (2022) 14:1–14	

1 3

2.2 � Parallel Technologies

Based on the vector-level, thread-level, process-level, and
heterogeneous parallelization, existing parallel technologies
can be classified into four categories, as outlined below.

2.2.1 � Vector‑Level

Single Instruction Multiple Data (SIMD), also known as
vector-level parallelization, uses a controller to control mul-
tiple processors and simultaneously perform the same opera-
tion on each group of data to achieve spatial parallelism [11].
In short, it executes one instruction to process multiple data
at the same time. Figure 1 illustrates the difference between
the scalar and vector operations. The scalar operation can
only operate one pair of data points at a time; by contrast,
the vector addition instruction can operate eight pairs of data
points simultaneously.

Intel was the first to introduce Multi Media Extensions
(MMX) in 1996. MMX pioneered the SIMD instruction sets
and can process 64 bits of data at a time. In 1999, Intel
upgraded the MMX and introduced streaming SIMD Exten-
sions (SSE). SEE expanded the vector processing capacity
from 64 bits to 128 bits [12]. Subsequently, Intel developed
the SSE2 (2000), SSE3 (2004), and SSE4 (2007) instruction
sets. In 2008, Intel developed Advanced Vector Extensions
(AVX), which expanded the register size to 256 bits and
increased the floating-point performance up to twice that
of the SSE.

2.2.2 � Thread‑Level

Multiple Instructions, Multiple Data (MIMD) computers
can be divided into the shared memory system and the dis-
tributed memory system. In the shared memory system, all
computing units share a memory area. Figure 2A presents a
simple model of the shared memory system.

Thread-level parallelization approaches such as POSIX
Threads (Pthreads) are based on a shared memory archi-
tecture [13]. It contains a library that can be linked to a C
program. Pthreads creates and controls threads through a set
of custom APIs [13, 14]. Compared with other thread-level
parallelization tools, such as OpenMP [13, 15, 16], Pthreads
is a low-level API. This makes it more challenging to pro-
gram, but more efficient during execution.

2.2.3 � Process‑Level

Unlike the shared memory system, each core in this system
can only access the memory is associated with in the distrib-
uted memory system. Figure 2B presents a simple model of
the distributed memory system.

Message-Passing Interface (MPI) is a cross-language
communication protocol. This is a process-level paralleli-
zation approach that is commonly used to achieve parallels
in distributed memory systems. Message-passing refers to
cases in which each process has an independent stack and
code segment when executed in parallel. As independent
programs, the information interaction between processes can
be completed by explicitly calling communication functions
[13]. Notably, MPI is a programming interface standard, not
a specific programming language.

2.2.4 � Heterogeneous Parallel

Nowadays, many computer clusters contain multiple high-
performance processing units. Different processing units
can perform different computational tasks, which provides
the possibility for heterogeneous parallels. Compared with
homogeneous parallels, heterogeneous parallels are focused
more on specificity. This approach typically comprises a
standard processing unit and a battery of specialized pro-
cessing units.

Popular heterogeneous accelerators include FPGA, GPU,
Xeon Phi, etc. FPGA is a type of circuit that allows for pro-
gramming by users after manufacturing. It utilizes hardware
description language (HDL) for this programming, thus
accomplishing a specific task [17]. GPU consists of a large
number of streaming multiprocessors (SM). An SM com-
prises multiple streaming processors (SP), along with other
resources, such as a warp scheduler, register, and shared
memory. More specific instructions and tasks are processed

Fig. 2   Distributed and shared memory system model

4	 Interdisciplinary Sciences: Computational Life Sciences (2022) 14:1–14

1 3

on the SP; as its function is similar to that of threads in the
CPU [18], the amount of SP determines the GPU’s parallel
processing capability [19]. Xeon Phi coprocessor [20, 21] is
often used as a high-performance computing (HPC) accel-
erator card. It uses a set of shared-memory coprocessors to
accomplish parallelism, which provides a solid foundation
to parallel the Smith–Waterman algorithm [22, 23]. How-
ever, the heterogeneous parallel needs to be accommodated
among different devices, which makes it more cumbersome
when programming.

The above parallel technologies implement parallel com-
puting of data by different means. The main advantage is
that they can process a large number of data simultaneously,
thus significantly reduces the running time of the program.
Noteworthily, parallel programs have some extra overheads
at runtimes, such as context switching, memory, and com-
munication overhead. These overheads will have some
impact on program performance. Generally speaking, when
processing the mass of data, the running time of these over-
heads accounts for a small proportion and has little impact
on the results of the program. But for the situation with small
amounts of data, the time wasted on these overheads can
be close to or even more than the program runs. This will
severely degrade program performance.

3 � Parallelization on Smith–Waterman
Algorithm

3.1 � Vector‑level Parallelization

As described in Eq. 1, the calculation of Hi,j depends on the
value of Hi−1,j−1 , Ei,j and Fi,j . Meanwhile, the calculation of
Ei,j depends on the value of Ei,j−1 and Hi,j−1 , the calculation
of Fi,j depends on that of Fi−1,j and Hi−1,j . By observing the
position of the above cell, we can determine that each cell’s
value depends on the upper-left, left and upper adjacent
cells’ values [24]. Figure 3A presents the data dependencies
of each cell in the Smith-Waterman algorithm.

Existing solutions aimed at eliminating data dependen-
cies can be classified into the intra-sequence alignment and
the inter-sequence alignment [25]. In the remainder of this
subsection, we illustrate these two solutions in detail.

3.1.1 � Intra‑sequence Parallelization

The intra-sequence alignment focuses on accelerating align-
ment of one single pair of sequences. Figure 4 presents the
three main layouts of intra-sequence alignment: anti-diag-
onal layout [26] (A), sequential layout [24] (B), and striped
layout [27] (C).

Anti-diagonal Layout was first introduced by Wozniak
in 1997 [26]. Figure 3A shows the calculation of Hi,j and
Hi−1,j+1 . By examining the data dependencies of the two
cells, it is not difficult to discover that the calculation of
these two cells is independent of each other which means
that they can be executed in parallel. From the above, moreo-
ver, we can conclude that the cells that lie in the anti-diago-
nal direction are independent of these cells. This provides a
theoretical basis for parallel computing of the SM algorithm.

For the given alignment matrix, its size is equal to m × n .
We define d = x + y − 1(1 ≤ d ≤ m + n − 1) as the diagonal
index. For the diagonal d, the starting row index rows and the
ending row index rowe can be calculated as follows:

Based on Eq. 2, the starting column index cols and
the ending column cole can be calculated as d − rows and
d − rowe , respectively, while the number of cells Nd on
diagonal d is rows − rowe + 1 . We need to run the for-loop d
times in the total computation. In each for-loop, moreover,
the Nd pieces of data need to be calculated. Due to that, Nd
may sometimes not be divisible by the number of elements
processed in the SIMD register, we add some dummy sym-
bols to the target and query sequence, which will not influ-
ence the final result of the alignment matrix.

(2)
rows = max(1, d − m)

rowe = min(d,m)

Fig. 3   Data dependencies in the alignment matrix

Fig. 4   Three intra-sequence alignment approaches

5Interdisciplinary Sciences: Computational Life Sciences (2022) 14:1–14	

1 3

When computing any cell (i, j) on the diagonal d, the
value of Hi−1,j−1 on the diagonal d − 2 and the values of
Ei,j−1 , Hi,j−1 , Fi−1,j and Hi−1,j on the diagonal d − 1 are
needed. Therefore, the program allocates four intermedi-
ate buffers to store the values of H on the diagonal d − 2 ,
H, E, and F on the diagonal d − 1 , respectively, [22]. The
advantage of this anti-diagonal layout is that it eliminates the
data dependencies in the alignment matrix. The drawback
here is obvious: namely, it does a large amount of useless
computations, which results in a massive waste of comput-
ing resources.

Anti-diagonal layout implements the parallel computation
of values in the alignment matrix. It does not change the
computational and space complexity of SW algorithm. The
result is proved correct by Wozniak [26].

Sequential Layout was first proposed by Rognes and See-
berg in 2000 [24]. Figure 4B presents the sketch map of the
sequential layout.

In each for-loop of the sequential layout, one residue of the
target sequence is aligned to a whole piece of the query
sequence. To accelerate the process of alignment, the
query sequence is divided into segments of equal length
Seg, where the length of Seg is equal to the number that
the SIMD register can process at a time. We assume that

(3)

Seg1 = Sq[1] Sq[2] Sq[3] Sq[4]

Seg2 = Sq[5] Sq[6] Sq[7] Sq[8]

Seg3 = Sq[9] Sq[10] Sq[11] Sq[12]

⋮

Segk = Sq[4k − 3] Sq[4k − 2] Sq[4k − 1] Sq[4k]

⋮

Seg n

l

= Sq[n − 3] Sq[n − 2] Sq[n − 1] Sq[n]

the SIMD register can process r = 4 pieces of elements
simultaneously. Thus, the length of each segment l is 4,
and the segment’s number Nseg can be calculated as ⌈ n

l
⌉ .

Suppose that the query sequence is not divisible by l, in
that case, some dummy symbols are added as padding,
which will also not influence the final result. The general
expression of the query sequence segments is as follows:
Segk = Sq[4k − 3], Sq[4k − 2], Sq[4k − 1], Sq[4k](1 ≤ k ≤ ⌈ n

l
⌉) ,

where k is the segment index. Figure 5A and Eq. 3 present
the query sequence segment layout when l = 4 , on the condi-
tion that n is divisible by l. Each segment in the equation is
processed by a SIMD register.

As Fig. 3B illustrates, the red arrows show the data
dependencies on the diagonal direction, the blue ones show
the dependencies in the horizontal direction, and the green
ones show it in the vertical direction. Suppose we want to
calculate the values in Seg i

l

 for column j, which contains
Hi−3,j , Hi−2,j , Hi−1,j and Hi,j . We require one vector to store
the values of H for cell (i − 4, j − 1) , cell (i − 3, j − 1) , cell
(i − 2, j − 1) and cell (i − 1, j − 1) , two vectors to store the
values of H and E for cell (i − 3, j − 1) , cell (i − 2, j − 1) , cell
(i − 1, j − 1) and cell (i, j − 1) , and two vectors to store the
values of H and F for cell (i − 4, j) , cell (i − 3, j) , cell (i − 2, j)
and cell (i − 1, j) . By observing the computational dependen-
cies, the values of the four cells in the vector of diagonal H,
horizontal H and horizontal E can be calculated and stored
in the intermediate buffer in advance, enabling the four cells’
values in the vector of current H to be calculated in parallel.
However, in the vertical H and F, the value of each cell in
the vector relies on the value of the upper cell.

One feasible solution is the Lazy-F evaluation [27]
(sometimes referred to as SWAT-like optimization [25]).
The core concept behind this approach is as follows. Equa-
tion 1 shows that the calculation of Fi,j relays on the value
of Hi−1,j and Fi−1,j . By checking the values of Hi−1,j and
Fi−1,j in the alignment matrix, it can be determined that
the values of most cells are below � + � . If each value of
the four cells in the vector is less than � + � , then Fi,j can
be ignored when computing Hi,j , which would greatly sim-
plify the computations [24, 28]. For cases in which these
values are above the threshold, a Lazy-F loop is added to
go through and correct the Hi,j.

Algorithm 1 outlines the pseudocode of the sequential
layout. The algorithm’s procedure can be divided into two
key phases: the outer loop and the inner loop. The outer
loop is responsible for the target sequence. All values in
the first F vector are set to 0 on every column in the inner
loop. Subsequently, we follow the pseudocode to calculate
the H vector. After the calculation is complete, each ele-
ment in the H vectors is checked and the errors are cor-
rected during the Lazy-F loop.

Fig. 5   Sequential layout and striped layout

6	 Interdisciplinary Sciences: Computational Life Sciences (2022) 14:1–14

1 3

Sequential Layout also needs to calculate the whole align-
ment matrix, so its computational complexity remains the
same as O(mn), and the space complexity also equals O(m).
Rognes and Seeberg verified this algorithm’s correctness
and it has better performance than previous algorithms [25].

Striped Layout is a modified version of the sequential
layout. In 2007, Farrar refined the sequential layout and
developed the striped layout [27], which follows the main
idea of the sequential layout but changes the arrangement
of the query sequence. Figure 4C presents the basic form of
the striped layout. For ease of comprehension, the order of
the query sequence is rearranged in the vertical coordinate,
as shown in Fig. 5B.

Due to the different arrangement of the query sequence, the
notations are redefined. In the striped layout, the division of
the query sequence follows the idea of the sequential layout.
But each segment’s length l changes which equals to ⌈ n

r
⌉ ,

where r denotes the number of elements capable of being
processed at one time by the SIMD register. For the query
sequences that are not divisible by r, some dummy symbols
are padded into them. The query segments are defined as
Segk = Sq[(k − 1)l + 1] , Sq[(k − 1)l + 2] , Sq[(k − 1)l + 3] , ⋯ ,
Sq[kl] , where k(1 ≤ k ≤ r) represents the index of segments.
The ⟨Hi,j⟩ vector takes in charge of the elements which have
the same index i in segments on column j. Equation 4 out-
lines the segment layout when r = 4 ; here, elements marked
in red are processed by the ⟨H2,j⟩ vector.

The rearrangement of the query sequence also leads to
changes in the positions of the elements in the scoring
matrix M. To make the general formula of vector ⟨Mi,j⟩ easier
to understand, we use the symbol M(i, j) to represent the
former symbol M(Sq[i], St[j]) . Accordingly, the ⟨Mi,j⟩ vec-
tor stores the values of M((k − 1)l + 1, j) , M((k − 1)l + 2, j) ,
M((k − 1)l + 3, j) , ⋯ , M(kl, j). Equation 5 shows the vectors
of the scoring matrix M in column j when r = 4.

Here, the calculation of ⟨Hi,j⟩ is the sum of ⟨Hi−1,j−1⟩ and
⟨Mi,j⟩ on column j. To simplify the calculation process, the
program preallocates two buffers to store the intermediate

(4)

Seg1 = Sq[1] Sq[2] Sq[3] ⋯ Sq[l]

Seg2 = Sq[l + 1] Sq[l + 2] Sq[l + 3] ⋯ Sq[2l]

Seg3 = Sq[2l + 1] Sq[2l + 2] Sq[2l + 3] ⋯ Sq[3l]

Seg4 = Sq[3l + 1] Sq[3l + 2] Sq[3l + 3] ⋯ Sq[4l]

(5)

⟨
M1,j

⟩
= {M(1, j), M(l + 1, j), ⋯ M(3l + 1, j)}⟨

M2,j

⟩
= {M(2, j), M(l + 2, j), ⋯ M(3l + 2, j)}⟨

M3,j

⟩
= {M(3, j), M(l + 3, j), ⋯ M(3l + 3, j)}

⋮⟨
Mk,j

⟩
= {M(k, j), M(l + k, j), ⋯ M(3l + k, j)}

⋮⟨
Ml,j

⟩
= {M(l, j), M(2l, j), ⋯ M(4l, j)}

7Interdisciplinary Sciences: Computational Life Sciences (2022) 14:1–14	

1 3

H vectors [27]. We use the notations buf1 and buf2 to repre-
sent the two buffers. They are used to store the previous and
current column’s H vectors, respectively. Once on a loop,
buf1 stores the previous column’s H vectors, and buf2 stores
the current ones. Then, on the next loop, they swapped the
values between each other. Now buf1 stores the current col-
umn’s H vectors, and buf2 is ready to store the next column’s
H vectors. The remaining loops can be constructed in the
same manner.

Figure 6A presents the data dependencies of the H vec-
tors, except for the first one, on the adjacent columns. Each
element in the ⟨Hi,j⟩ vector depends on the value of the same
position in the ⟨Hi−1,j−1⟩ vector. Figure 6B presents the ele-
ments’ data dependencies in the last H vector of each col-
umn. To align the values between the two vectors, the values
are needed to shift to the left in the last H vector of the previ-
ous column. Figure 7 illustrates the left shifting operation of
the last H vector on column j − 1 . The left figure presents the
dependencies of each value before shifting, while the right
figure presents the situation after shifting.

Figure 6C illustrates the dependencies of each vector in
matrix E. Values of the elements in each vector in the cur-
rent column rely on that of the same position in the previous
column. Therefore, we simply need to load the result of E
vectors in the previous column when calculating the E vec-
tors in the current column.

Figure 8A presents the data dependencies between the
adjacent F vectors on the same column, while Fig. 8B
shows the same dependencies between the first and the
last. To align the last F vector to the first, its values are
shifted to the left (the same operation as that in the last
H vector). The operation of shifting values in the last F
vector is illustrated in Fig. 8C. By observing the cells in
the matrix, it can be found that most values of F remain
at zero, while H is less than the threshold � + � [27, 28].
Therefore, Lazy-F evaluation is implemented to eliminate
the data dependencies between the F vectors.

Based on the discussion above, the striped layout is a
modification of the sequential layout. Algorithm 2 presents
the pseudocode of the striped layout. It can be divided
into three phases: processing the target sequence, process-
ing the query sequence, and correcting the values in H,
respectively.

By comparing the striped layout with the sequential lay-
out, it can be determined that the procedure of the sequen-
tial layout consists of two key phases: the outer loop and
the inner loop. Moreover, the Lazy-F loop is nested in

8	 Interdisciplinary Sciences: Computational Life Sciences (2022) 14:1–14

1 3

the inner loop. The inner loop first initializes the F vec-
tor to zero in the sequential layout and computes the H
vector. Subsequently, in each iteration of the inner loop,
the Lazy-F loop corrects the values after computing the
F vector. The striped layout modifies the procedure; spe-
cifically, it takes the Lazy-F loop as a separate loop [27,
29]. Therefore, the Lazy-F loop corrects the errors after
the inner loop is finished. The separation of the Lazy-F

Fig. 8   Data dependencies of the F vectors on each column

Fig. 7   Data dependencies of the first and last H vectors between the
adjacent columns

Fig. 6   Data dependencies of matrix H and E in striped layout

9Interdisciplinary Sciences: Computational Life Sciences (2022) 14:1–14	

1 3

loop relieves the computation pressure of the iterations in
the inner loop. And it also improves the efficiency of the
Lazy-F loop.

Due to that striped layout implements a similar comput-
ing process as the sequential layout, its computational and
space complexity remains the same as O(mn) and O(m). The
experiment done by Farrar showed that striped layout also
does not change the SW algorithm’s correctness [27].

Farrar compared the performance of anti-diagonal layout,
sequential layout, and striped layout in 2006, by testing these
three layouts on the same computer configuration with scor-
ing matrices BLOSUM62 and BLOSUM50. When using
the same � and � , the anti-diagonal, sequential, and striped
layout complete the search with an average of 352 MCUPS
(million cell updates per second), 816 MCUPS, and 2553
MCUPS separately on the scoring matrices BLOSUM62.
And on the scoring matrices BLOSUM50, the speed of
their average search is 351 MCUPS, 374 MCUPS, and 1817
MCUPS separately [27]. The results show that despite the
influence of the scoring matrix, the striped layout performs
best among the three intra-sequence alignment layouts. The
sequential layout’s performance is far behind the striped lay-
out but still better than the anti-diagonal layout.

3.1.2 � Inter‑sequence Parallelization

The intra-sequence alignment is typically used to acceler-
ate the alignment between one pair of the target and query
sequences. In the actual scenario, multiple target sequences
are sometimes aligned to one or many query sequences.
The inter-sequence alignment is proposed to handle these
two cases. To facilitate better comprehension of the inter-
sequence alignment, we first define two notations Nt and Nq ,
which represent the number of target and query sequences,
respectively.

Many-to-one Layout was first proposed by Alpern et al. in
1995 [30]. It is applied to the case in which multiple target
sequences are aligned to one target sequence [30]; in other
words, the target and query sequence satisfy the condition
where Nt ≥ 2 and Nq = 1.

Figure 9A illustrates the case of the many-to-one layout
where Nt = 4 and Nq = 1 . In this figure, there are four align-
ment matrices, each of which have the same query sequence
but different target sequences. We assume that each vec-
tor stores four values. The values of the same position in
the alignment matrices are stored in a vector [25]; thus, the
red, orange, blue and green cells in the figure are processed
simultaneously.

Due to that, the target sequence file may have multiple
sequences. The target sequence is usually read in the order
it is presented in the original file. Figure 10 illustrates how
the many-to-one layout processes the target sequence in
parallel. Each vector processes the residues of the same

position in the four target sequences. The first four vectors
processed are depicted in red, orange, blue, and green in
this figure. Each target sequence is partitioned into blocks
of equal length. Four blocks in the vertical direction are
processed as a group. For the target sequences that are not
an integer multiple of four, padding is added in the form
of dummy symbols, which are revealed as dashes on a grey
background. The black triangle indicates the start of new
target sequences [25].

Many-to-many Layout is a modification of the many-to-
one layout [31]. It is applied to the case in which multiple
target sequences are aligned to multiple query sequences.
The target and query sequences satisfy the condition in
which Nt ≥ 2 and Nq ≥ 2.

Figure 9B illustrates the differences between the two
inter-sequence layouts. In the many-to-many layout, each
target sequence is aligned to one query sequence. In this
figure, four target sequences are aligned to four query
sequences, respectively. Each pair of target and query
sequences has an alignment matrix [31]. The values of
the same position in the alignment matrix are stored in a
SIMD vector. Therefore, this approach enables four pairs
of target and query sequences to be aligned in parallel.

Compared with the many-to-one layout, the many-to-
many layout is more significant in practical scenarios.
There are two major reasons for this. First, many sequence
alignments are among the multiple target and query
sequences. Second, some sequence alignment tools align
multiple target sequences to certain candidate positions of
the query sequences.

The two inter-sequence alignment layouts both facili-
tate the alignment of multiple pairs of sequences in paral-
lel. They have different application scenarios depending on
their underlying principle. The main advantage of the inter-
sequence alignment is that it eliminates all data dependen-
cies between the sequences to be aligned. These two layouts
realized the parallel processing of data, so the computa-
tional and space complexity of them does not change as
well. Rognes and Rahn verified the correctness of these two
layouts, respectively, with the alignment tool SWIPE and
SeqAn [31, 32].

SWIPE implements the many-to-one inter-sequence lay-
out. The experiments done by Rognes show that SWIPE is
more than twice as fast as the striped layout on the same
computer configuration. Furthermore, its performance is less
affected by the scoring matrix and query length [32]. SeqAn
is a frequently used many-to-many inter-sequence layout.
Its performance is very close to SWIPE when choosing
the same instruction set [31]. Although the inter-sequence
alignment may have a faster speed compared with the intra-
sequence alignment, they can not accelerate the align-
ment between one pair of the query and target sequence.

10	 Interdisciplinary Sciences: Computational Life Sciences (2022) 14:1–14

1 3

Therefore, the choice of specific layouts depends on the
actual scenario.

3.2 � Thread‑Level Parallelization

In an attempt to further improve the parallel degree of the
sequence alignment tools, many of them have implemented
thread-level parallelization (e.g. KSW, KSW2 [33, 34],
libssa [25], SeqAn [31], SWIPE [25], SWPS3 [35], etc).
Modern processors typically have multiple computing cores.
Moreover, with hyper-threading (HT) technology, a proces-
sor may have more logical cores than its physical cores. A
sequence alignment tool usually obtains optimal perfor-
mance when the number of threads is equal to the number
of logical cores.

Thread-level parallelization consists of two main
schemes. The first of these follows the concept of the inter-
sequence alignment. In this scheme, multiple pairs of the
target and query sequences are aligned simultaneously. The
set of these pairs are divided into many subsets; here, the
number of subsets usually equals the number of threads.
Each thread is responsible for the sequences it allocated.
Therefore, the distribution of the sequences should be con-
sidered to ensure load balancing.

The second scheme focuses on speeding up the alignment
between one pair of target and query sequences, in a way that
more closely resembles the intra-sequence alignment. This
scheme partitions the alignment matrix into a lot of tiles, and
each thread processes a tile. The tiled scheme processes

these tiles in the anti-diagonal direction [4] to eliminate the
data dependencies. Each tile has the size � × � , while the
number of the tile Nt is equal to ⌈m

�
⌉ × ⌈ n

�
⌉ . In each tile,

vector-level parallelization is deployed to speed up the com-
putation. However, this scheme has to add some dummy
symbol padding into the target and query sequence to ensure
the alignment matrix is divisible by the tile, which will lead
to a waste of computing resources.

3.3 � Process‑Level Parallelization

Process-level parallelization can solve the single-node per-
formance bottleneck problem. The implementation of MPI
enables the task to be distributed to multiple nodes, which
significantly reduces the workload of a single node. The first
mode works to distribute the sequences into different nodes.
Each node is responsible for the computation of alignment
matrices it distributed. The second mode follows the idea of
the tiled scheme in the thread-level parallelization.

Generally speaking, there are two possible approaches to
sequence distribution [36]. The first of these approaches is
by number. The sequence file consists of many pieces of
sequences. We assume that the number of the sequences
equals seqNum. Each node processes seqNum

p
 pieces of

sequences in this approach (where p is the number of nodes).
However, each sequence’s length in the source file is typi-
cally unequal, which leads to load imbalance. One feasible
solution is to distribute the sequences by their pointers. In
this approach, the fileSize

p
 of residues are aligned in each node,

where fileSize is the sequence file’s data size. The drawback
of this approach is that it requires redirecting the pointer of
each node to the head of a sequence after distribution. Com-
pared with the first approach, this approach runs faster and
more efficiently.

The second mode is also developed with the goal of
accelerating the computation in one alignment matrix. Based
on the tiled scheme, it assembles multiple tiles into a block
with a size equal to A × B . An alignment matrix is then
divided into ⌈m

A
⌉ × ⌈ n

B
⌉ blocks, after which each block is fur-

ther partitioned into A
�
×

B

�
 tiles. Each node is responsible for

the computation of a block. In each block, the computation
follows the concept of the tiled scheme in thread-level paral-
lelization. For cases in which the alignment matrix is not
divisible by a block, some dummy symbol padding are
added, which will lead to a waste of computing resources.
Moreover, the communication among the nodes will also
slow down the performance.

3.4 � Heterogeneous Parallelization

The sequence alignment tool comprises multiple phases.
In other phases, due to the complexity of the operations

Fig. 9   Inter-sequence alignment

Fig. 10   Blocks of target sequence computed simultaneously

11Interdisciplinary Sciences: Computational Life Sciences (2022) 14:1–14	

1 3

involved, CPU is usually utilized for processing. While the
local alignment phase is typically the most time-consuming
but relatively simple. We could also use other devices, such
as GPU, FPGA, and Xeon Phi, etc.

CUDASW++ [37], CUDAlign 3.0 [38], manymap [39],
ADEPT [40], etc. combine the CPU and GPU to accelerate
the alignment. Due to the fact that GPU has multiple SPs,
and with the implementation on GPU clusters [41], it can
achieve more parallel capability than CPU [42]. GPU is an
efficient platform for long-read alignment tasks, but it does
not perform very well when processing short-read alignment
tasks. Moreover, the memory access between the CPU and
GPU is a key link in this heterogeneous architecture. An
unreasonable level of memory access will lead to perfor-
mance degradation [43].

SWIFOLD [32] and OSWALD [44] implement FPGA
with OpenCL to reduce the computational times of the SW
algorithm. Due to FPGA’s strong computational capability
[45], both of the alignment tools can be used for short-read
alignment tasks. Compared with the CPU and GPU plat-
form, the FPGA platform typically achieves better perfor-
mance per watt [46]. With the help of OpenCL [47], they
have better portability and lower programming cost than the
traditional FPGA alignment tools. However, good versatil-
ity and large memory requirements [48] also come at the
expense of performance to a certain extent.

SWAPHI-LS [22] first uses the Xeon Phis to accelerate
the alignment for long read tasks. With MPI, it can acceler-
ate the computation among multiple nodes. In each node,
SWAPHI-LS can achieve thread-level and vector-level par-
allelization. Other tools, such as XSW [23], SWIMM [49],
and MICA [50], also implement the Xeon Phis for accelera-
tion, and all achieve good throughput. However, the waste of
computing resources caused by the communication among
multiple cores and the memory required of the program are
also significant issues to be considered.

In conclusion, a general framework for parallelizing the
local alignment can be described as follows: first, distribut-
ing the sequences by their pointers to each node with MPI;
subsequently, in each node, the sequences are distributed
into multiple computing devices. For devices, such as FPAG,
GPU, etc., OpenCL is used to coordinate the tasks among
them. For devices like CPU or Xeon Phis, vector-level par-
allelization is implemented to accelerate the alignment in
each thread.

3.5 � Typical Alignment Tools

Many alignment tools have been used in real life, Table 1
lists some typical tools based on different methods.

Rognes compared STRIPED and SWIPE with the data-
base produced by the formatdb tool in 2011. The results

showed that SWIPE with the many-to-one inter-sequence
layout performs better than STRIPED with the striped intra-
sequence layout [24]. Rahn test SeqAn using the PacBio-
Real dataset. The speed of SeqAn with AVX512 reached
192.14 GCUPS. This indicates that the many-to-many layout
has a similar performance towards the many-to-one layout
[31], the main difference between them is that they apply to
different scenarios.

SWAPHI-LS and XSW are two typical alignment tools
based on Xeon Phi. The former implements the anti-diag-
onal layout, while the latter uses the many-to-one layout.
Liu et al. and Wang et al. test the SWAPHI-LS with the
NCBI Nucleotide database and XSW with the Swiss-Prot
database, respectively. The result is obvious, XSW performs
much better than SWAPHI-LS [23]. The reason is that the
anti-diagonal layout needs to add some dummy symbols to
the alignment matrix, which results in a waste of computing
resources.

CUDASW++ 3.0, OSWALD, and SWIMM are hybrid
CPU-GPU, CPU-FPGA, and CPU-Xeon Phi alignment
tools, respectively. Notably, CUDASW++ 3.0 implements
the method wavefront on GPU whose algorithm works the
same way as anti-diagonal. Rucci et al. test the performance
of the three above tools with the Swiss-Prot database in
2015. He used two different host CPUs in the test. They
also test these tools on small, medium, and large datasets
with different input sequence size [32, 44]. The results show
that parallel computing using pure CPUs has reached the
bottleneck of performance, and the integration of different
computing devices can bring further performance improve-
ment. The performance of hybrid tools varies towards differ-
ent scenarios, which can be concluded as follows:

•	 The hybrid CPU-GPU tool CUDASW++ 3.0 provides
good performance rates for large sequence size. It is
an efficient tool for large datasets and similar sequence
pairs. This is because GPU has many processing units,
which makes it more suitable for processing simple and
large amounts of data [32]. Meanwhile, GPU’s price is
relatively friendly.

•	 The hybrid CPU-FPGA tool OSWALD’s performance is
independent of sequence size and similarity. And it per-
forms good when processing small and medium datasets
[32, 44].

•	 The hybrid CPU-Xeon Phi tool SWIMM has a similar
performance towards OSWALD when using a high-per-
formance host CPU. The main advantage of SWIMM is
the good portability wihch make it more programmer-
friendly [51]. But it has poor energy efficiency due to the
communication overhead. It can be a good choice when
power is not a priority [44].

12	 Interdisciplinary Sciences: Computational Life Sciences (2022) 14:1–14

1 3

4 � Conclusion

Parallel computing is a feasible solution to the processing
of ever-growing sequence data. In this review, we revised
the existing methods of parallelizing the Smith–Waterman
algorithm. We specifically analyze the approaches of vector-
level parallelization and introduce some typical alignment
tools. This work can provide the developers of the align-
ment tool with basic technical principle support, and help
researchers in this area choose proper alignment tools for
different scenarios.

Many existing sequence alignment tools have realized
the combination of more than one parallelization method.
Future work may focus on the integration of multiple kinds
of parallelization. In view of each kind of parallelization
specialty, the sequence alignment tools need to provide a
general API for users to choose from. Another development
trend is to develop a customized SW algorithm hardware
accelerator. The hardware/algorithm co-designed accelerator
can fully utilize the computing performance of components
and saves more memory resources than existing alignment
tools, which leads to better performance, especially when
processing computational demanding tasks.

Acknowledgements  This work was funded by the National Key R&D
Program of China (Grant Nos. 2020YFA0709803, 2018YFB0204301)
and NSFC Grants (Grant Nos. 62102427, 61972408 and 61772543).

Declarations 

Conflict of interest  The authors declare that they have no conflict of
interest.

References

	 1.	 Khan MI, Kamal MS, Chowdhury L (2016) Msupda: a memory
efficient algorithm for sequence alignment. Interdiscip Sci Comput
Life Sci 8(1):84–94. https://​doi.​org/​10.​1007/​s12539-​015-​0275-8

	 2.	 Kirkness EF, Bafna V, Halpern AL, Levy S, Remington K, Rusch
DB, Delcher AL, Pop M, Wang W, Fraser CM et al (2003) The
dog genome: survey sequencing and comparative analysis. Sci-
ence 301(5641):1898–1903. https://​doi.​org/​10.​1126/​scien​ce.​
10864​32

	 3.	 Issa M, Elaziz MA (2020) Analyzing COVID-19 virus based on
enhanced fragmented biological local aligner using improved ions
motion optimization algorithm. Appl Soft Comput 96:106683.
https://​doi.​org/​10.​1016/j.​asoc.​2020.​106683

	 4.	 Liu Y, Schmidt B (2015) Gswabe: faster gpu-accelerated
sequence alignment with optimal alignment retrieval for short dna
sequences. Concurr Comput Pract Exp 27(4):958–972. https://​doi.​
org/​10.​1002/​cpe.​3371

	 5.	 Needleman SB, Wunsch CD (1970) A general method applicable
to the search for similarities in the amino acid sequence of two
proteins. J Mol Biol 48(3):443–453. https://​doi.​org/​10.​1016/​b978-
0-​12-​131200-​8.​50031-9

	 6.	 Smith TF, Waterman MS et al (1981) Identification of common
molecular subsequences. J Mol Biol 147(1):195–197. https://​doi.​
org/​10.​1016/​0022-​2836(81)​90087-5

	 7.	 Eddy SR (2004) What is dynamic programming? Nat Biotechnol
22(7):909–910. https://​doi.​org/​10.​1038/​nbt07​04-​909

	 8.	 Daily J (2016) Parasail: Simd c library for global, semi-global, and
local pairwise sequence alignments. BMC Bioinform 17(1):1–11.
https://​doi.​org/​10.​1186/​s12859-​016-​0930-z

	 9.	 Gotoh O (1982) An improved algorithm for matching biological
sequences. J Mol Biol 162(3):705–708. https://​doi.​org/​10.​1016/​
0022-​2836(82)​90398-9

	10.	 Kucherov G (2019) Evolution of biosequence search algorithms:
a brief survey. Bioinformatics 35(19):3547–3552. https://​doi.​org/​
10.​1093/​bioin​forma​tics/​btz272

	11.	 R Intel. C++ compiler 18.0 developer guide and reference, 2019
	12.	 Intel Intel. and ia-32 architectures software developer’s manual.

Volume 3A: System Programming Guide, Part 1(64):64

Table 1   Some typical alignment tools

Tool name Time Architecture Methods Hardware Speed (GCUPS)

STRIPED 2006 CPU Striped Dual Intel Xeon X5650 CPU @ 2.67 GHz 14.7
SWIPE 2011 CPU Many-to-one Dual Intel Xeon X5650 CPU @ 2.67 GHz 106.2

Intel Xeon E5-2695 v3 @2.3GHz 220.0
SeqAn 2018 CPU Many-to-many Dual Intel Xeon Gold 6148 CPU @2.4GHz 194.1
SWAPHI-LS 2014 Xeon Phi Anti-diagonal Xeon Phi 5110P @1.05GHz 29.2
XSW 2014 Xeon Phi Many-to-one Xeon Phi 3120P @1.1GHz 50.0
CUDASW++ 3.0 2013 CPU + GPU Many-to-one Xeon E5-2670 @2.6GHz + Tesla K20c 298.8

Xeon E5-2695 v3 @2.3GHz + Tesla K20c 206.2
OSWALD 2015 CPU + FPGA Many-to-one Xeon E5-2670 @2.6GHz + Altera Stratix V 178.9

Xeon E5-2695 v3 @2.3GHz + Altera Stratix V 401.1
SWIMM 2015 CPU + Xeon Phi Many-to-one Xeon E5-2670 @2.6GHz 127.5

Xeon E5-2695 v3 @2.3GHz 354.8
Xeon E5-2670 @2.6GHz + Xeon Phi 3120P @1.1GHz 165.5
Xeon E5-2695 v3 @2.3GHz + Xeon Phi 3120P @1.1GHz 450.5

https://doi.org/10.1007/s12539-015-0275-8
https://doi.org/10.1126/science.1086432
https://doi.org/10.1126/science.1086432
https://doi.org/10.1016/j.asoc.2020.106683
https://doi.org/10.1002/cpe.3371
https://doi.org/10.1002/cpe.3371
https://doi.org/10.1016/b978-0-12-131200-8.50031-9
https://doi.org/10.1016/b978-0-12-131200-8.50031-9
https://doi.org/10.1016/0022-2836(81)90087-5
https://doi.org/10.1016/0022-2836(81)90087-5
https://doi.org/10.1038/nbt0704-909
https://doi.org/10.1186/s12859-016-0930-z
https://doi.org/10.1016/0022-2836(82)90398-9
https://doi.org/10.1016/0022-2836(82)90398-9
https://doi.org/10.1093/bioinformatics/btz272
https://doi.org/10.1093/bioinformatics/btz272

13Interdisciplinary Sciences: Computational Life Sciences (2022) 14:1–14	

1 3

	13.	 Hennessy JL, Patterson DA (2011) Computer architecture: a quan-
titative approach. Elsevier, Amsterdam. https://​doi.​org/​10.​1016/​
0026-​2692(93)​90111-q

	14.	 Butenhof DR (1997) Programming with POSIX threads. Addison-
Wesley Professional, Boston

	15.	 Dagum L, Menon R (1998) Openmp: an industry standard api for
shared-memory programming. IEEE Comput Sci Eng 5(1):46–55.
https://​doi.​org/​10.​1109/​99.​660313

	16.	 Pacheco P (2011) An introduction to parallel programming. Else-
vier, Amsterdam. https://​doi.​org/​10.​1016/​C2009-0-​18471-4

	17.	 Oliver T, Schmidt B, Nathan D, Clemens R, Maskell D (2005)
Using reconfigurable hardware to accelerate multiple sequence
alignment with clustalw. Bioinformatics 21(16):3431–3432.
https://​doi.​org/​10.​1093/​bioin​forma​tics/​bti508

	18.	 Khajeh-Saeed A, Poole S, Perot JB (2010) Acceleration of the
smith-waterman algorithm using single and multiple graphics pro-
cessors. J Comput Phys 11:4247–4258. https://​doi.​org/​10.​1016/j.​
jcp.​2010.​02.​009

	19.	 Manavski SA, Valle G (2008) Cuda compatible gpu cards as
efficient hardware accelerators for smith-waterman sequence
alignment. BMC Bioinform 9(2):1–9. https://​doi.​org/​10.​1186/​
1471-​2105-9-​s2-​s10

	20.	 Zhao M, Lee W-P, Garrison EP, Marth GT (2013) Ssw library: an
simd smith-waterman c/c++ library for use in genomic applica-
tions. PLoS One 8(12):e82138. https://​doi.​org/​10.​1371/​journ​al.​
pone.​00821​38

	21.	 Cui Y, Liao X, Zhu X, Wang B, Peng S (2014) mbwa: A massively
parallel sequence reads aligner. In: 8th International Conference
on Practical Applications of Computational Biology & Bioinfor-
matics (PACBB 2014). Springer, pp 113–120. https://​doi.​org/​10.​
1007/​978-3-​319-​07581-5_​14

	22.	 Y Liu, T-T Tran, F Lauenroth, B Schmidt (2014) Swaphi-ls:
Smith-waterman algorithm on xeon phi coprocessors for long dna
sequences. In: 2014 IEEE International Conference on Cluster
Computing (CLUSTER). IEEE, pp 257–265. https://​doi.​org/​10.​
1109/​clust​er.​2014.​69687​72

	23.	 L Wang, Y Chan, X Duan, H Lan, X Meng, W Liu (2014) Xsw:
Accelerating biological database search on xeon phi. In: 2014
IEEE International Parallel & Distributed Processing Symposium
Workshops. IEEE, pp 950–957. https://​doi.​org/​10.​1109/​ipdpsw.​
2014.​108

	24.	 Rognes T, Seeberg E (2000) Six-fold speed-up of smith-waterman
sequence database searches using parallel processing on common
microprocessors. Bioinformatics 16(8):699–706. https://​doi.​org/​
10.​1093/​bioin​forma​tics/​16.8.​699

	25.	 Rognes T (2011) Faster smith-waterman database searches with
inter-sequence simd parallelisation. BMC Bioinform 12(1):1–11.
https://​doi.​org/​10.​1186/​1471-​2105-​12-​221

	26.	 Wozniak A (1997) Using video-oriented instructions to speed up
sequence comparison. Bioinformatics 13(2):145–150. https://​doi.​
org/​10.​1093/​bioin​forma​tics/​13.2.​145

	27.	 Farrar M (2007) Striped smith-waterman speeds database searches
six times over other simd implementations. Bioinformatics
23(2):156–161. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btl582

	28.	 Snytsar R (2019) De (con) struction of the lazy-f loop: improving
performance of smith waterman alignment. In: 2019 IEEE 19th
International Conference on Bioinformatics and Bioengineering
(BIBE). IEEE, pp 7–10. https://​doi.​org/​10.​1109/​bibe.​2019.​00011

	29.	 Glenn H, Dave S, Mike U, Darrell B et al (2001) The microarchi-
tecture of the pentium® 4 processor. In: Intel technology journal,
Citeseer

	30.	 Alpern B, Carter L, Gatlin KS (1995) Microparallelism and high-
performance protein matching. In: Supercomputing’95: Proceed-
ings of the 1995 ACM/IEEE Conference on Supercomputing.
IEEE, p 24. https://​doi.​org/​10.​1145/​224170.​224222

	31.	 Rahn R, Budach S, Costanza P, Ehrhardt M, Hancox J, Reinert
K (2018) Generic accelerated sequence alignment in seqan using
vectorization and multi-threading. Bioinformatics 34(20):3437–
3445. https://​doi.​org/​10.​1093/​bioin​forma​tics/​bty380

	32.	 Rucci E, Garcia C, Botella G, De Giusti A, Naiouf M, Prieto-
Matias M (2018) Swifold: Smith-waterman implementation
on fpga with opencl for long dna sequences. BMC Syst Biol
12(5):43–53. https://​doi.​org/​10.​1186/​s12918-​018-​0614-6

	33.	 Li H (2018) Minimap2: pairwise alignment for nucleotide
sequences. Bioinformatics 34(18):3094–3100. https://​doi.​org/​
10.​1093/​bioin​forma​tics/​bty191

	34.	 Suzuki H, Kasahara M (2018) Introducing difference recurrence
relations for faster semi-global alignment of long sequences.
BMC Bioinform 19(1):33–47. https://​doi.​org/​10.​1186/​
s12859-​018-​2014-8

	35.	 Szalkowski A, Ledergerber C, Krähenbühl P, Dessimoz C (2008)
Swps3-fast multi-threaded vectorized smith-waterman for ibm
cell/be and× 86/sse2. BMC Res Notes 1(1):1–4. https://​doi.​org/​
10.​1186/​1756-​0500-1-​107

	36.	 Peters D, Luo X, Qiu K, Liang P (2012) Speeding up large-scale
next generation sequencing data analysis with pbwa. J Appl Bio-
inform Comput Biol 1(1):1–6. https://​doi.​org/​10.​4172/​2329-​9533.​
10001​01

	37.	 Liu Y, Wirawan A, Schmidt B (2013) Cudasw++ 3.0: accelerating
smith-waterman protein database search by coupling cpu and gpu
simd instructions. BMC Bioinform 14(1):1–10. https://​doi.​org/​10.​
1186/​1471-​2105-​14-​117

	38.	 de Edans FO, Miranda G, de Melo ACMA, Martorell X, Ayguadé
E (2014) Cudalign 3.0: Parallel biological sequence comparison in
large gpu clusters. In: 2014 14th IEEE/ACM International Sympo-
sium on Cluster, Cloud and Grid Computing. IEEE, pp 160–169.
doi: https://​doi.​org/​10.​1109/​ccgrid.​2014.​18

	39.	 Feng Z, Qiu S, Wang L, Luo Q (2019) Accelerating long read
alignment on three processors. In: Proceedings of the 48th Inter-
national Conference on Parallel Processing, pp 1–10. https://​doi.​
org/​10.​1145/​33378​21.​33379​18

	40.	 Awan MG, Deslippe J, Buluc A, Selvitopi O, Hofmeyr S, Oliker
L, Yelick K (2020) Adept: a domain independent sequence align-
ment strategy for gpu architectures. BMC Bioinform 21(1):1–29.
https://​doi.​org/​10.​1186/​s12859-​020-​03720-1

	41.	 Okada D, Ino F, Hagihara K (2015) Accelerating the smith-
waterman algorithm with interpair pruning and band optimization
for the all-pairs comparison of base sequences. BMC Bioinform
16(1):1–15. https://​doi.​org/​10.​1186/​s12859-​015-​0744-4

	42.	 Payne JL, Sinnott-Armstrong NA, Moore JH (2010) Exploiting
graphics processing units for computational biology and bioinfor-
matics. Interdiscip Sci Comput Life Sci 2(3):213–220. https://​doi.​
org/​10.​1007/​s12539-​010-​0002-4

	43.	 Pirkelbauer P, Lin P-H, Vanderbruggen T, Liao C (2020) Xplacer:
Automatic analysis of data access patterns on heterogeneous cpu/
gpu systems. In: 2020 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). IEEE, pp 997–1007. https://​doi.​
org/​10.​1109/​ipdps​47924.​2020.​00106

	44.	 Rucci E, Garcia C, Botella G, De Giusti AE, Naiouf M, Prieto-
Matias M (2018) Oswald: O pencl smith-waterman on a ltera’s
fpga for large protein databases. Int J High Perform Comput Appl
32(3):337–350. https://​doi.​org/​10.​1177/​10943​42016​654215

	45.	 Chen B, Xu Y, Yang J, Jiang H (2010) A new parallel method
of smith-waterman algorithm on a heterogeneous platform. In:
International Conference on Algorithms and Architectures for
Parallel Processing. Springer, pp 79–90. doi: https://​doi.​org/​10.​
1007/​978-3-​642-​13119-6_7

	46.	 Fei X, Dan Z, Lina L, Xin M, Chunlei Z (2018) Fpgasw: accel-
erating large-scale smith-waterman sequence alignment applica-
tion with backtracking on fpga linear systolic array. Interdiscip

https://doi.org/10.1016/0026-2692(93)90111-q
https://doi.org/10.1016/0026-2692(93)90111-q
https://doi.org/10.1109/99.660313
https://doi.org/10.1016/C2009-0-18471-4
https://doi.org/10.1093/bioinformatics/bti508
https://doi.org/10.1016/j.jcp.2010.02.009
https://doi.org/10.1016/j.jcp.2010.02.009
https://doi.org/10.1186/1471-2105-9-s2-s10
https://doi.org/10.1186/1471-2105-9-s2-s10
https://doi.org/10.1371/journal.pone.0082138
https://doi.org/10.1371/journal.pone.0082138
https://doi.org/10.1007/978-3-319-07581-5_14
https://doi.org/10.1007/978-3-319-07581-5_14
https://doi.org/10.1109/cluster.2014.6968772
https://doi.org/10.1109/cluster.2014.6968772
https://doi.org/10.1109/ipdpsw.2014.108
https://doi.org/10.1109/ipdpsw.2014.108
https://doi.org/10.1093/bioinformatics/16.8.699
https://doi.org/10.1093/bioinformatics/16.8.699
https://doi.org/10.1186/1471-2105-12-221
https://doi.org/10.1093/bioinformatics/13.2.145
https://doi.org/10.1093/bioinformatics/13.2.145
https://doi.org/10.1093/bioinformatics/btl582
https://doi.org/10.1109/bibe.2019.00011
https://doi.org/10.1145/224170.224222
https://doi.org/10.1093/bioinformatics/bty380
https://doi.org/10.1186/s12918-018-0614-6
https://doi.org/10.1093/bioinformatics/bty191
https://doi.org/10.1093/bioinformatics/bty191
https://doi.org/10.1186/s12859-018-2014-8
https://doi.org/10.1186/s12859-018-2014-8
https://doi.org/10.1186/1756-0500-1-107
https://doi.org/10.1186/1756-0500-1-107
https://doi.org/10.4172/2329-9533.1000101
https://doi.org/10.4172/2329-9533.1000101
https://doi.org/10.1186/1471-2105-14-117
https://doi.org/10.1186/1471-2105-14-117
https://doi.org/10.1109/ccgrid.2014.18
https://doi.org/10.1145/3337821.3337918
https://doi.org/10.1145/3337821.3337918
https://doi.org/10.1186/s12859-020-03720-1
https://doi.org/10.1186/s12859-015-0744-4
https://doi.org/10.1007/s12539-010-0002-4
https://doi.org/10.1007/s12539-010-0002-4
https://doi.org/10.1109/ipdps47924.2020.00106
https://doi.org/10.1109/ipdps47924.2020.00106
https://doi.org/10.1177/1094342016654215
https://doi.org/10.1007/978-3-642-13119-6_7
https://doi.org/10.1007/978-3-642-13119-6_7

14	 Interdisciplinary Sciences: Computational Life Sciences (2022) 14:1–14

1 3

Sci Comput Life Sci 10(1):176–188. https://​doi.​org/​10.​1007/​
s12539-​017-​0225-8

	47.	 Stone JE, Gohara D, Shi G (2010) Opencl: a parallel programming
standard for heterogeneous computing systems. Comput Sci Eng
12(3):66. https://​doi.​org/​10.​1109/​mcse.​2010.​69

	48.	 Chen Y-L, Chang B-Y, Yang C-H, Chiueh T-D (2021) A high-
throughput fpga accelerator for short-read mapping of the whole
human genome. IEEE Trans Parallel Distrib Syst 32(6):1465–
1478. https://​doi.​org/​10.​1109/​tpds.​2021.​30510​11

	49.	 Rucci E, García C, Botella G, De Giusti A, Naiouf M, Prieto-
Matías M (2015) An energy-aware performance analysis of

swimm: smith-waterman implementation on intel’s multicore and
manycore architectures. Concurr Comput Pract Exp 27(18):5517–
5537. https://​doi.​org/​10.​1002/​cpe.​3598

	50.	 Luo R, Cheung J, Edward W, Wang H, Chan S-H, Law W-C, He
G, Chang Y, Liu C-M, Zhou D et al (2015) Mica: a fast short-read
aligner that takes full advantage of many integrated core architec-
ture (mic). BMC Bioinform 16(7):1–8. https://​doi.​org/​10.​1186/​
1471-​2105-​16-​s7-​s10

	51.	 Zou Y, Zhu Y, Li Y, Fang-Xiang W, Wang J (2021) Parallel com-
puting for genome sequence processing. Brief Bioinform. https://​
doi.​org/​10.​1093/​bib/​bbab0​70

https://doi.org/10.1007/s12539-017-0225-8
https://doi.org/10.1007/s12539-017-0225-8
https://doi.org/10.1109/mcse.2010.69
https://doi.org/10.1109/tpds.2021.3051011
https://doi.org/10.1002/cpe.3598
https://doi.org/10.1186/1471-2105-16-s7-s10
https://doi.org/10.1186/1471-2105-16-s7-s10
https://doi.org/10.1093/bib/bbab070
https://doi.org/10.1093/bib/bbab070

	A Review of Parallel Implementations for the Smith–Waterman Algorithm
	Abstract
	Graphic abstract
	1 Introduction
	2 Preliminaries
	2.1 Smith–Waterman Procedure
	2.2 Parallel Technologies
	2.2.1 Vector-Level
	2.2.2 Thread-Level
	2.2.3 Process-Level
	2.2.4 Heterogeneous Parallel

	3 Parallelization on Smith–Waterman Algorithm
	3.1 Vector-level Parallelization
	3.1.1 Intra-sequence Parallelization
	3.1.2 Inter-sequence Parallelization

	3.2 Thread-Level Parallelization
	3.3 Process-Level Parallelization
	3.4 Heterogeneous Parallelization
	3.5 Typical Alignment Tools

	4 Conclusion
	Acknowledgements
	References

