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Abstract 
The rapid advances in sequencing technology have led to an explosion of sequence data. Sequence alignment is the central 
and fundamental problem in many sequence analysis procedure, while local alignment is often the kernel of these algorithms. 
Usually, Smith–Waterman algorithm is used to find the best subsequence match between given sequences. However, the high 
time complexity makes the algorithm time-consuming. A lot of approaches have been developed to accelerate and paral-
lelize it, such as vector-level parallelization, thread-level parallelization, process-level parallelization, and heterogeneous 
acceleration, but the current researches seem unsystematic, which hinders the further research of parallelizing the algorithm. 
In this paper, we summarize the current research status of parallel local alignments and describe the data layout in these 
work. Based on the research status, we emphasize large-scale genomic comparisons. By surveying some typical alignment 
tools’ performance, we discuss some possible directions in the future. We hope our work will provide the developers of the 
alignment tool with technical principle support, and help researchers choose proper alignment tools.
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1  Introduction

Sequence alignment is one of the most significant techniques 
in bioinformatics. The result of sequence alignment is the 
basis of many other steps. It can be used to find the differ-
ences and similarities between aligned sequences [1], which 
is the premise of biological sequence recognition, structure 
prediction, and function analysis [2]. Taking the corona-
virus (COVID-19) as an example, scientists identified its 
common features by aligning it against other viruses [3]. 
However, sequence alignment is a highly time-consuming 
task. In recent years, as the parallel alignment algorithm has 
continuously matured and optimized, the computation time 
has reduced significantly.

Depending on the alignment method used, sequence 
alignment algorithms can generally be classified into two 
main types: global alignment and local alignment [4]. In 
1970, Saul B. Needlman and Christian D. Wunsch proposed 
the Needleman–Wunsch (NW) algorithm to find the best 
match in the entire sequences [5]. Then, in 1981, based on 
the NW algorithm, Temple F. Smith and Michael S. Water-
man developed a local alignment algorithm, which was 
afterward called the Smith–Waterman (SW) algorithm, to 
find the best subsequence match between sequence pairs [6]. 
Both the NW and SW algorithms apply dynamic program-
ming [7] (DP) to compute the sequence alignment, which 
makes the two algorithms have quadratic time complexities. 
Accordingly, large-scale sequence alignment is computation-
ally demanding [4, 8]. Significant efforts have been made to 
accelerate the process. Most of these tasks are accelerated by 
parallel-computing, including vector-level, thread-level, pro-
cess-level, and heterogeneous parallelization. In this review, 
we surveyed these parallel approaches of the SW algorithms 
and the scopes of their applications. Then, we discussed the 
development trend of the alignment tools.

The rest of this paper is organized as follows. Section 2 
reviews the principle of the SW algorithm and existing 
common parallel approaches. Section 3 analyzes the paral-
lelization of the SW algorithm based on different parallel 
approaches. Section 4 presents the discussion.

2 � Preliminaries

2.1 � Smith–Waterman Procedure

For a given sequence S, define S[i] as the i-th character, 
while S[i, j] denotes the substring from position i to position 
j. St[1...m] and Sq[1...n] denote the target sequence and query 
sequence, respectively. We assume that the target sequence 
St is placed horizontally, while the query sequence Sq is 
placed vertically in the SW alignment matrix. x(1 ≤ x ≤ m) 

is the horizontal coordinate and y(1 ≤ y ≤ n) is the vertical 
coordinate.

The SW algorithm is used to find the best subsequence 
match between the sequence St and Sq . This algorithm con-
sists of two phases: matrix filling and backtracking. The first 
phase calculates the alignment matrix between sequences St 
and Sq , while the second phase searches for the best subse-
quence match.

The original SW algorithm uses linear gap costs to calcu-
late the alignment matrix. Gotoh [9] modified the SW algo-
rithm with affined gap costs. The algorithm can be defined 
as follows.

where Hi−1,j−1 +M(St[i], Sq[j]) indicates the alignment score 
of St[i] and Sq[j] . Ei,j and Fi,j denotes the influence of the 
previous column and row on the current score, respectively. 
� and � are the two symbols of the gap open and extension 
penalty, respectively. M(St[i], Sq[j]) is the scoring matrix, 
it is usually used to calculate the matching or mismatch-
ing scores between the symbols St[i] and Sq[j] . Additionally, 
define Hi,j , Ei,j and Fi,j to be equal to 0 when the index i or 
j is less than 1.

Once the computation of the alignment matrix is com-
plete, we assume that the cell ( i′ , j′ ) stores the optimal align-
ment score. The backtracking phase would start from ( i′ , j′ ) 
until it reaches a cell with a value equal to zero.

Compared with the other phase in this algorithm, the 
alignment matrix calculation is far more time-consuming. 
With the length of the target and query sequence |St| and |Sq| 
of m and n (assuming m > n ), the computational and space 
complexity of the algorithm is equal to O(mn) and O(m), 
respectively, [10].

(1)

Hi,j = max

⎧
⎪⎨⎪⎩

Hi−1,j−1 +M
�
St[i], Sq[j]

�
Ei,j

Fi,j

0

Ei,j = max

�
Ei,j−1 − �

Hi,j−1 − � − �

Fi,j = max

�
Fi−1,j − �

Hi−1,j − � − �

Fig. 1   Comparison between scalar operation and vector operation
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2.2 � Parallel Technologies

Based on the vector-level, thread-level, process-level, and 
heterogeneous parallelization, existing parallel technologies 
can be classified into four categories, as outlined below.

2.2.1 � Vector‑Level

Single Instruction Multiple Data (SIMD), also known as 
vector-level parallelization, uses a controller to control mul-
tiple processors and simultaneously perform the same opera-
tion on each group of data to achieve spatial parallelism [11]. 
In short, it executes one instruction to process multiple data 
at the same time. Figure 1 illustrates the difference between 
the scalar and vector operations. The scalar operation can 
only operate one pair of data points at a time; by contrast, 
the vector addition instruction can operate eight pairs of data 
points simultaneously.

Intel was the first to introduce Multi Media Extensions 
(MMX) in 1996. MMX pioneered the SIMD instruction sets 
and can process 64 bits of data at a time. In 1999, Intel 
upgraded the MMX and introduced streaming SIMD Exten-
sions (SSE). SEE expanded the vector processing capacity 
from 64 bits to 128 bits [12]. Subsequently, Intel developed 
the SSE2 (2000), SSE3 (2004), and SSE4 (2007) instruction 
sets. In 2008, Intel developed Advanced Vector Extensions 
(AVX), which expanded the register size to 256 bits and 
increased the floating-point performance up to twice that 
of the SSE.

2.2.2 � Thread‑Level

Multiple Instructions, Multiple Data (MIMD) computers 
can be divided into the shared memory system and the dis-
tributed memory system. In the shared memory system, all 
computing units share a memory area. Figure 2A presents a 
simple model of the shared memory system.

Thread-level parallelization approaches such as POSIX 
Threads (Pthreads) are based on a shared memory archi-
tecture [13]. It contains a library that can be linked to a C 
program. Pthreads creates and controls threads through a set 
of custom APIs [13, 14]. Compared with other thread-level 
parallelization tools, such as OpenMP [13, 15, 16], Pthreads 
is a low-level API. This makes it more challenging to pro-
gram, but more efficient during execution.

2.2.3 � Process‑Level

Unlike the shared memory system, each core in this system 
can only access the memory is associated with in the distrib-
uted memory system. Figure 2B presents a simple model of 
the distributed memory system.

Message-Passing Interface (MPI) is a cross-language 
communication protocol. This is a process-level paralleli-
zation approach that is commonly used to achieve parallels 
in distributed memory systems. Message-passing refers to 
cases in which each process has an independent stack and 
code segment when executed in parallel. As independent 
programs, the information interaction between processes can 
be completed by explicitly calling communication functions 
[13]. Notably, MPI is a programming interface standard, not 
a specific programming language.

2.2.4 � Heterogeneous Parallel

Nowadays, many computer clusters contain multiple high-
performance processing units. Different processing units 
can perform different computational tasks, which provides 
the possibility for heterogeneous parallels. Compared with 
homogeneous parallels, heterogeneous parallels are focused 
more on specificity. This approach typically comprises a 
standard processing unit and a battery of specialized pro-
cessing units.

Popular heterogeneous accelerators include FPGA, GPU, 
Xeon Phi, etc. FPGA is a type of circuit that allows for pro-
gramming by users after manufacturing. It utilizes hardware 
description language (HDL) for this programming, thus 
accomplishing a specific task [17]. GPU consists of a large 
number of streaming multiprocessors (SM). An SM com-
prises multiple streaming processors (SP), along with other 
resources, such as a warp scheduler, register, and shared 
memory. More specific instructions and tasks are processed 

Fig. 2   Distributed and shared memory system model
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on the SP; as its function is similar to that of threads in the 
CPU [18], the amount of SP determines the GPU’s parallel 
processing capability [19]. Xeon Phi coprocessor [20, 21] is 
often used as a high-performance computing (HPC) accel-
erator card. It uses a set of shared-memory coprocessors to 
accomplish parallelism, which provides a solid foundation 
to parallel the Smith–Waterman algorithm [22, 23]. How-
ever, the heterogeneous parallel needs to be accommodated 
among different devices, which makes it more cumbersome 
when programming.

The above parallel technologies implement parallel com-
puting of data by different means. The main advantage is 
that they can process a large number of data simultaneously, 
thus significantly reduces the running time of the program. 
Noteworthily, parallel programs have some extra overheads 
at runtimes, such as context switching, memory, and com-
munication overhead. These overheads will have some 
impact on program performance. Generally speaking, when 
processing the mass of data, the running time of these over-
heads accounts for a small proportion and has little impact 
on the results of the program. But for the situation with small 
amounts of data, the time wasted on these overheads can 
be close to or even more than the program runs. This will 
severely degrade program performance.

3 � Parallelization on Smith–Waterman 
Algorithm

3.1 � Vector‑level Parallelization

As described in Eq. 1, the calculation of Hi,j depends on the 
value of Hi−1,j−1 , Ei,j and Fi,j . Meanwhile, the calculation of 
Ei,j depends on the value of Ei,j−1 and Hi,j−1 , the calculation 
of Fi,j depends on that of Fi−1,j and Hi−1,j . By observing the 
position of the above cell, we can determine that each cell’s 
value depends on the upper-left, left and upper adjacent 
cells’ values [24]. Figure 3A presents the data dependencies 
of each cell in the Smith-Waterman algorithm.

Existing solutions aimed at eliminating data dependen-
cies can be classified into the intra-sequence alignment and 
the inter-sequence alignment [25]. In the remainder of this 
subsection, we illustrate these two solutions in detail.

3.1.1 � Intra‑sequence Parallelization

The intra-sequence alignment focuses on accelerating align-
ment of one single pair of sequences. Figure 4 presents the 
three main layouts of intra-sequence alignment: anti-diag-
onal layout [26] (A), sequential layout [24] (B), and striped 
layout [27] (C).

Anti-diagonal Layout was first introduced by Wozniak 
in 1997 [26]. Figure 3A shows the calculation of Hi,j and 
Hi−1,j+1 . By examining the data dependencies of the two 
cells, it is not difficult to discover that the calculation of 
these two cells is independent of each other which means 
that they can be executed in parallel. From the above, moreo-
ver, we can conclude that the cells that lie in the anti-diago-
nal direction are independent of these cells. This provides a 
theoretical basis for parallel computing of the SM algorithm.

For the given alignment matrix, its size is equal to m × n . 
We define d = x + y − 1(1 ≤ d ≤ m + n − 1) as the diagonal 
index. For the diagonal d, the starting row index rows and the 
ending row index rowe can be calculated as follows:

Based on Eq.  2, the starting column index cols and 
the ending column cole can be calculated as d − rows and 
d − rowe , respectively, while the number of cells Nd on 
diagonal d is rows − rowe + 1 . We need to run the for-loop d 
times in the total computation. In each for-loop, moreover, 
the Nd pieces of data need to be calculated. Due to that, Nd 
may sometimes not be divisible by the number of elements 
processed in the SIMD register, we add some dummy sym-
bols to the target and query sequence, which will not influ-
ence the final result of the alignment matrix.

(2)
rows = max(1, d − m)

rowe = min(d,m)

Fig. 3   Data dependencies in the alignment matrix

Fig. 4   Three intra-sequence alignment approaches
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When computing any cell (i, j) on the diagonal d, the 
value of Hi−1,j−1 on the diagonal d − 2 and the values of 
Ei,j−1 , Hi,j−1 , Fi−1,j and Hi−1,j on the diagonal d − 1 are 
needed. Therefore, the program allocates four intermedi-
ate buffers to store the values of H on the diagonal d − 2 , 
H, E, and F on the diagonal d − 1 , respectively, [22]. The 
advantage of this anti-diagonal layout is that it eliminates the 
data dependencies in the alignment matrix. The drawback 
here is obvious: namely, it does a large amount of useless 
computations, which results in a massive waste of comput-
ing resources.

Anti-diagonal layout implements the parallel computation 
of values in the alignment matrix. It does not change the 
computational and space complexity of SW algorithm. The 
result is proved correct by Wozniak [26].

Sequential Layout was first proposed by Rognes and See-
berg in 2000 [24]. Figure 4B presents the sketch map of the 
sequential layout.

In each for-loop of the sequential layout, one residue of the 
target sequence is aligned to a whole piece of the query 
sequence. To accelerate the process of alignment, the 
query sequence is divided into segments of equal length 
Seg, where the length of Seg is equal to the number that 
the SIMD register can process at a time. We assume that 

(3)

Seg1 = Sq[1] Sq[2] Sq[3] Sq[4]

Seg2 = Sq[5] Sq[6] Sq[7] Sq[8]

Seg3 = Sq[9] Sq[10] Sq[11] Sq[12]

⋮

Segk = Sq[4k − 3] Sq[4k − 2] Sq[4k − 1] Sq[4k]

⋮

Seg n

l

= Sq[n − 3] Sq[n − 2] Sq[n − 1] Sq[n]

the SIMD register can process r = 4 pieces of elements 
simultaneously. Thus, the length of each segment l is 4, 
and the segment’s number Nseg can be calculated as ⌈ n

l
⌉ . 

Suppose that the query sequence is not divisible by l, in 
that case, some dummy symbols are added as padding, 
which will also not influence the final result. The general 
expression of the query sequence segments is as follows: 
Segk = Sq[4k − 3], Sq[4k − 2], Sq[4k − 1], Sq[4k](1 ≤ k ≤ ⌈ n

l
⌉) , 

where k is the segment index. Figure 5A and Eq. 3 present 
the query sequence segment layout when l = 4 , on the condi-
tion that n is divisible by l. Each segment in the equation is 
processed by a SIMD register.

As Fig.  3B illustrates, the red arrows show the data 
dependencies on the diagonal direction, the blue ones show 
the dependencies in the horizontal direction, and the green 
ones show it in the vertical direction. Suppose we want to 
calculate the values in Seg i

l

 for column j, which contains 
Hi−3,j , Hi−2,j , Hi−1,j and Hi,j . We require one vector to store 
the values of H for cell (i − 4, j − 1) , cell (i − 3, j − 1) , cell 
(i − 2, j − 1) and cell (i − 1, j − 1) , two vectors to store the 
values of H and E for cell (i − 3, j − 1) , cell (i − 2, j − 1) , cell 
(i − 1, j − 1) and cell (i, j − 1) , and two vectors to store the 
values of H and F for cell (i − 4, j) , cell (i − 3, j) , cell (i − 2, j) 
and cell (i − 1, j) . By observing the computational dependen-
cies, the values of the four cells in the vector of diagonal H, 
horizontal H and horizontal E can be calculated and stored 
in the intermediate buffer in advance, enabling the four cells’ 
values in the vector of current H to be calculated in parallel. 
However, in the vertical H and F, the value of each cell in 
the vector relies on the value of the upper cell.

One feasible solution is the Lazy-F evaluation [27] 
(sometimes referred to as SWAT-like optimization [25]). 
The core concept behind this approach is as follows. Equa-
tion 1 shows that the calculation of Fi,j relays on the value 
of Hi−1,j and Fi−1,j . By checking the values of Hi−1,j and 
Fi−1,j in the alignment matrix, it can be determined that 
the values of most cells are below � + � . If each value of 
the four cells in the vector is less than � + � , then Fi,j can 
be ignored when computing Hi,j , which would greatly sim-
plify the computations [24, 28]. For cases in which these 
values are above the threshold, a Lazy-F loop is added to 
go through and correct the Hi,j.

Algorithm 1 outlines the pseudocode of the sequential 
layout. The algorithm’s procedure can be divided into two 
key phases: the outer loop and the inner loop. The outer 
loop is responsible for the target sequence. All values in 
the first F vector are set to 0 on every column in the inner 
loop. Subsequently, we follow the pseudocode to calculate 
the H vector. After the calculation is complete, each ele-
ment in the H vectors is checked and the errors are cor-
rected during the Lazy-F loop.

Fig. 5   Sequential layout and striped layout
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Sequential Layout also needs to calculate the whole align-
ment matrix, so its computational complexity remains the 
same as O(mn), and the space complexity also equals O(m). 
Rognes and Seeberg verified this algorithm’s correctness 
and it has better performance than previous algorithms [25].

Striped Layout is a modified version of the sequential 
layout. In 2007, Farrar refined the sequential layout and 
developed the striped layout [27], which follows the main 
idea of the sequential layout but changes the arrangement 
of the query sequence. Figure 4C presents the basic form of 
the striped layout. For ease of comprehension, the order of 
the query sequence is rearranged in the vertical coordinate, 
as shown in Fig. 5B.

Due to the different arrangement of the query sequence, the 
notations are redefined. In the striped layout, the division of 
the query sequence follows the idea of the sequential layout. 
But each segment’s length l changes which equals to ⌈ n

r
⌉ , 

where r denotes the number of elements capable of being 
processed at one time by the SIMD register. For the query 
sequences that are not divisible by r, some dummy symbols 
are padded into them. The query segments are defined as 
Segk = Sq[(k − 1)l + 1] , Sq[(k − 1)l + 2] , Sq[(k − 1)l + 3] , ⋯ , 
Sq[kl] , where k(1 ≤ k ≤ r) represents the index of segments. 
The ⟨Hi,j⟩ vector takes in charge of the elements which have 
the same index i in segments on column j. Equation 4 out-
lines the segment layout when r = 4 ; here, elements marked 
in red are processed by the ⟨H2,j⟩ vector.

The rearrangement of the query sequence also leads to 
changes in the positions of the elements in the scoring 
matrix M. To make the general formula of vector ⟨Mi,j⟩ easier 
to understand, we use the symbol M(i, j) to represent the 
former symbol M(Sq[i], St[j]) . Accordingly, the ⟨Mi,j⟩ vec-
tor stores the values of M((k − 1)l + 1, j) , M((k − 1)l + 2, j) , 
M((k − 1)l + 3, j) , ⋯ , M(kl, j). Equation 5 shows the vectors 
of the scoring matrix M in column j when r = 4.

Here, the calculation of ⟨Hi,j⟩ is the sum of ⟨Hi−1,j−1⟩ and 
⟨Mi,j⟩ on column j. To simplify the calculation process, the 
program preallocates two buffers to store the intermediate 

(4)

Seg1 = Sq[1] Sq[2] Sq[3] ⋯ Sq[l]

Seg2 = Sq[l + 1] Sq[l + 2] Sq[l + 3] ⋯ Sq[2l]

Seg3 = Sq[2l + 1] Sq[2l + 2] Sq[2l + 3] ⋯ Sq[3l]

Seg4 = Sq[3l + 1] Sq[3l + 2] Sq[3l + 3] ⋯ Sq[4l]

(5)

⟨
M1,j

⟩
= {M(1, j), M(l + 1, j), ⋯ M(3l + 1, j)}⟨

M2,j

⟩
= {M(2, j), M(l + 2, j), ⋯ M(3l + 2, j)}⟨

M3,j

⟩
= {M(3, j), M(l + 3, j), ⋯ M(3l + 3, j)}

⋮⟨
Mk,j

⟩
= {M(k, j), M(l + k, j), ⋯ M(3l + k, j)}

⋮⟨
Ml,j

⟩
= {M(l, j), M(2l, j), ⋯ M(4l, j)}
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H vectors [27]. We use the notations buf1 and buf2 to repre-
sent the two buffers. They are used to store the previous and 
current column’s H vectors, respectively. Once on a loop, 
buf1 stores the previous column’s H vectors, and buf2 stores 
the current ones. Then, on the next loop, they swapped the 
values between each other. Now buf1 stores the current col-
umn’s H vectors, and buf2 is ready to store the next column’s 
H vectors. The remaining loops can be constructed in the 
same manner.

Figure 6A presents the data dependencies of the H vec-
tors, except for the first one, on the adjacent columns. Each 
element in the ⟨Hi,j⟩ vector depends on the value of the same 
position in the ⟨Hi−1,j−1⟩ vector. Figure 6B presents the ele-
ments’ data dependencies in the last H vector of each col-
umn. To align the values between the two vectors, the values 
are needed to shift to the left in the last H vector of the previ-
ous column. Figure 7 illustrates the left shifting operation of 
the last H vector on column j − 1 . The left figure presents the 
dependencies of each value before shifting, while the right 
figure presents the situation after shifting.

Figure 6C illustrates the dependencies of each vector in 
matrix E. Values of the elements in each vector in the cur-
rent column rely on that of the same position in the previous 
column. Therefore, we simply need to load the result of E 
vectors in the previous column when calculating the E vec-
tors in the current column.

Figure 8A presents the data dependencies between the 
adjacent F vectors on the same column, while Fig. 8B 
shows the same dependencies between the first and the 
last. To align the last F vector to the first, its values are 
shifted to the left (the same operation as that in the last 
H vector). The operation of shifting values in the last F 
vector is illustrated in Fig. 8C. By observing the cells in 
the matrix, it can be found that most values of F remain 
at zero, while H is less than the threshold � + � [27, 28]. 
Therefore, Lazy-F evaluation is implemented to eliminate 
the data dependencies between the F vectors.

Based on the discussion above, the striped layout is a 
modification of the sequential layout. Algorithm 2 presents 
the pseudocode of the striped layout. It can be divided 
into three phases: processing the target sequence, process-
ing the query sequence, and correcting the values in H, 
respectively.

By comparing the striped layout with the sequential lay-
out, it can be determined that the procedure of the sequen-
tial layout consists of two key phases: the outer loop and 
the inner loop. Moreover, the Lazy-F loop is nested in 
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the inner loop. The inner loop first initializes the F vec-
tor to zero in the sequential layout and computes the H 
vector. Subsequently, in each iteration of the inner loop, 
the Lazy-F loop corrects the values after computing the 
F vector. The striped layout modifies the procedure; spe-
cifically, it takes the Lazy-F loop as a separate loop [27, 
29]. Therefore, the Lazy-F loop corrects the errors after 
the inner loop is finished. The separation of the Lazy-F 

Fig. 8   Data dependencies of the F vectors on each column

Fig. 7   Data dependencies of the first and last H vectors between the 
adjacent columns

Fig. 6   Data dependencies of matrix H and E in striped layout
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loop relieves the computation pressure of the iterations in 
the inner loop. And it also improves the efficiency of the 
Lazy-F loop.

Due to that striped layout implements a similar comput-
ing process as the sequential layout, its computational and 
space complexity remains the same as O(mn) and O(m). The 
experiment done by Farrar showed that striped layout also 
does not change the SW algorithm’s correctness [27].

Farrar compared the performance of anti-diagonal layout, 
sequential layout, and striped layout in 2006, by testing these 
three layouts on the same computer configuration with scor-
ing matrices BLOSUM62 and BLOSUM50. When using 
the same � and � , the anti-diagonal, sequential, and striped 
layout complete the search with an average of 352 MCUPS 
(million cell updates per second), 816 MCUPS, and 2553 
MCUPS separately on the scoring matrices BLOSUM62. 
And on the scoring matrices BLOSUM50, the speed of 
their average search is 351 MCUPS, 374 MCUPS, and 1817 
MCUPS separately [27]. The results show that despite the 
influence of the scoring matrix, the striped layout performs 
best among the three intra-sequence alignment layouts. The 
sequential layout’s performance is far behind the striped lay-
out but still better than the anti-diagonal layout.

3.1.2 � Inter‑sequence Parallelization

The intra-sequence alignment is typically used to acceler-
ate the alignment between one pair of the target and query 
sequences. In the actual scenario, multiple target sequences 
are sometimes aligned to one or many query sequences. 
The inter-sequence alignment is proposed to handle these 
two cases. To facilitate better comprehension of the inter-
sequence alignment, we first define two notations Nt and Nq , 
which represent the number of target and query sequences, 
respectively.

Many-to-one Layout was first proposed by Alpern et al. in 
1995 [30]. It is applied to the case in which multiple target 
sequences are aligned to one target sequence [30]; in other 
words, the target and query sequence satisfy the condition 
where Nt ≥ 2 and Nq = 1.

Figure 9A illustrates the case of the many-to-one layout 
where Nt = 4 and Nq = 1 . In this figure, there are four align-
ment matrices, each of which have the same query sequence 
but different target sequences. We assume that each vec-
tor stores four values. The values of the same position in 
the alignment matrices are stored in a vector [25]; thus, the 
red, orange, blue and green cells in the figure are processed 
simultaneously.

Due to that, the target sequence file may have multiple 
sequences. The target sequence is usually read in the order 
it is presented in the original file. Figure 10 illustrates how 
the many-to-one layout processes the target sequence in 
parallel. Each vector processes the residues of the same 

position in the four target sequences. The first four vectors 
processed are depicted in red, orange, blue, and green in 
this figure. Each target sequence is partitioned into blocks 
of equal length. Four blocks in the vertical direction are 
processed as a group. For the target sequences that are not 
an integer multiple of four, padding is added in the form 
of dummy symbols, which are revealed as dashes on a grey 
background. The black triangle indicates the start of new 
target sequences [25].

Many-to-many Layout is a modification of the many-to-
one layout [31]. It is applied to the case in which multiple 
target sequences are aligned to multiple query sequences. 
The target and query sequences satisfy the condition in 
which Nt ≥ 2 and Nq ≥ 2.

Figure 9B illustrates the differences between the two 
inter-sequence layouts. In the many-to-many layout, each 
target sequence is aligned to one query sequence. In this 
figure, four target sequences are aligned to four query 
sequences, respectively. Each pair of target and query 
sequences has an alignment matrix [31]. The values of 
the same position in the alignment matrix are stored in a 
SIMD vector. Therefore, this approach enables four pairs 
of target and query sequences to be aligned in parallel.

Compared with the many-to-one layout, the many-to-
many layout is more significant in practical scenarios. 
There are two major reasons for this. First, many sequence 
alignments are among the multiple target and query 
sequences. Second, some sequence alignment tools align 
multiple target sequences to certain candidate positions of 
the query sequences.

The two inter-sequence alignment layouts both facili-
tate the alignment of multiple pairs of sequences in paral-
lel. They have different application scenarios depending on 
their underlying principle. The main advantage of the inter-
sequence alignment is that it eliminates all data dependen-
cies between the sequences to be aligned. These two layouts 
realized the parallel processing of data, so the computa-
tional and space complexity of them does not change as 
well. Rognes and Rahn verified the correctness of these two 
layouts, respectively, with the alignment tool SWIPE and 
SeqAn [31, 32].

SWIPE implements the many-to-one inter-sequence lay-
out. The experiments done by Rognes show that SWIPE is 
more than twice as fast as the striped layout on the same 
computer configuration. Furthermore, its performance is less 
affected by the scoring matrix and query length [32]. SeqAn 
is a frequently used many-to-many inter-sequence layout. 
Its performance is very close to SWIPE when choosing 
the same instruction set [31]. Although the inter-sequence 
alignment may have a faster speed compared with the intra-
sequence alignment, they can not accelerate the align-
ment between one pair of the query and target sequence. 
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Therefore, the choice of specific layouts depends on the 
actual scenario.

3.2 � Thread‑Level Parallelization

In an attempt to further improve the parallel degree of the 
sequence alignment tools, many of them have implemented 
thread-level parallelization (e.g. KSW, KSW2 [33, 34], 
libssa [25], SeqAn [31], SWIPE [25], SWPS3 [35], etc). 
Modern processors typically have multiple computing cores. 
Moreover, with hyper-threading (HT) technology, a proces-
sor may have more logical cores than its physical cores. A 
sequence alignment tool usually obtains optimal perfor-
mance when the number of threads is equal to the number 
of logical cores.

Thread-level parallelization consists of two main 
schemes. The first of these follows the concept of the inter-
sequence alignment. In this scheme, multiple pairs of the 
target and query sequences are aligned simultaneously. The 
set of these pairs are divided into many subsets; here, the 
number of subsets usually equals the number of threads. 
Each thread is responsible for the sequences it allocated. 
Therefore, the distribution of the sequences should be con-
sidered to ensure load balancing.

The second scheme focuses on speeding up the alignment 
between one pair of target and query sequences, in a way that 
more closely resembles the intra-sequence alignment. This 
scheme partitions the alignment matrix into a lot of tiles, and 
each thread processes a tile. The tiled scheme processes 

these tiles in the anti-diagonal direction [4] to eliminate the 
data dependencies. Each tile has the size � × � , while the 
number of the tile Nt is equal to ⌈m

�
⌉ × ⌈ n

�
⌉ . In each tile, 

vector-level parallelization is deployed to speed up the com-
putation. However, this scheme has to add some dummy 
symbol padding into the target and query sequence to ensure 
the alignment matrix is divisible by the tile, which will lead 
to a waste of computing resources.

3.3 � Process‑Level Parallelization

Process-level parallelization can solve the single-node per-
formance bottleneck problem. The implementation of MPI 
enables the task to be distributed to multiple nodes, which 
significantly reduces the workload of a single node. The first 
mode works to distribute the sequences into different nodes. 
Each node is responsible for the computation of alignment 
matrices it distributed. The second mode follows the idea of 
the tiled scheme in the thread-level parallelization.

Generally speaking, there are two possible approaches to 
sequence distribution [36]. The first of these approaches is 
by number. The sequence file consists of many pieces of 
sequences. We assume that the number of the sequences 
equals seqNum. Each node processes seqNum

p
 pieces of 

sequences in this approach (where p is the number of nodes). 
However, each sequence’s length in the source file is typi-
cally unequal, which leads to load imbalance. One feasible 
solution is to distribute the sequences by their pointers. In 
this approach, the fileSize

p
 of residues are aligned in each node, 

where fileSize is the sequence file’s data size. The drawback 
of this approach is that it requires redirecting the pointer of 
each node to the head of a sequence after distribution. Com-
pared with the first approach, this approach runs faster and 
more efficiently.

The second mode is also developed with the goal of 
accelerating the computation in one alignment matrix. Based 
on the tiled scheme, it assembles multiple tiles into a block 
with a size equal to A × B . An alignment matrix is then 
divided into ⌈m

A
⌉ × ⌈ n

B
⌉ blocks, after which each block is fur-

ther partitioned into A
�
×

B

�
 tiles. Each node is responsible for 

the computation of a block. In each block, the computation 
follows the concept of the tiled scheme in thread-level paral-
lelization. For cases in which the alignment matrix is not 
divisible by a block, some dummy symbol padding are 
added, which will lead to a waste of computing resources. 
Moreover, the communication among the nodes will also 
slow down the performance.

3.4 � Heterogeneous Parallelization

The sequence alignment tool comprises multiple phases. 
In other phases, due to the complexity of the operations 

Fig. 9   Inter-sequence alignment

Fig. 10   Blocks of target sequence computed simultaneously
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involved, CPU is usually utilized for processing. While the 
local alignment phase is typically the most time-consuming 
but relatively simple. We could also use other devices, such 
as GPU, FPGA, and Xeon Phi, etc.

CUDASW++ [37], CUDAlign 3.0 [38], manymap [39], 
ADEPT [40], etc. combine the CPU and GPU to accelerate 
the alignment. Due to the fact that GPU has multiple SPs, 
and with the implementation on GPU clusters [41], it can 
achieve more parallel capability than CPU [42]. GPU is an 
efficient platform for long-read alignment tasks, but it does 
not perform very well when processing short-read alignment 
tasks. Moreover, the memory access between the CPU and 
GPU is a key link in this heterogeneous architecture. An 
unreasonable level of memory access will lead to perfor-
mance degradation [43].

SWIFOLD [32] and OSWALD [44] implement FPGA 
with OpenCL to reduce the computational times of the SW 
algorithm. Due to FPGA’s strong computational capability 
[45], both of the alignment tools can be used for short-read 
alignment tasks. Compared with the CPU and GPU plat-
form, the FPGA platform typically achieves better perfor-
mance per watt [46]. With the help of OpenCL [47], they 
have better portability and lower programming cost than the 
traditional FPGA alignment tools. However, good versatil-
ity and large memory requirements [48] also come at the 
expense of performance to a certain extent.

SWAPHI-LS [22] first uses the Xeon Phis to accelerate 
the alignment for long read tasks. With MPI, it can acceler-
ate the computation among multiple nodes. In each node, 
SWAPHI-LS can achieve thread-level and vector-level par-
allelization. Other tools, such as XSW [23], SWIMM [49], 
and MICA [50], also implement the Xeon Phis for accelera-
tion, and all achieve good throughput. However, the waste of 
computing resources caused by the communication among 
multiple cores and the memory required of the program are 
also significant issues to be considered.

In conclusion, a general framework for parallelizing the 
local alignment can be described as follows: first, distribut-
ing the sequences by their pointers to each node with MPI; 
subsequently, in each node, the sequences are distributed 
into multiple computing devices. For devices, such as FPAG, 
GPU, etc., OpenCL is used to coordinate the tasks among 
them. For devices like CPU or Xeon Phis, vector-level par-
allelization is implemented to accelerate the alignment in 
each thread.

3.5 � Typical Alignment Tools

Many alignment tools have been used in real life, Table 1 
lists some typical tools based on different methods.

Rognes compared STRIPED and SWIPE with the data-
base produced by the formatdb tool in 2011. The results 

showed that SWIPE with the many-to-one inter-sequence 
layout performs better than STRIPED with the striped intra-
sequence layout [24]. Rahn test SeqAn using the PacBio-
Real dataset. The speed of SeqAn with AVX512 reached 
192.14 GCUPS. This indicates that the many-to-many layout 
has a similar performance towards the many-to-one layout 
[31], the main difference between them is that they apply to 
different scenarios.

SWAPHI-LS and XSW are two typical alignment tools 
based on Xeon Phi. The former implements the anti-diag-
onal layout, while the latter uses the many-to-one layout. 
Liu et al. and Wang et al. test the SWAPHI-LS with the 
NCBI Nucleotide database and XSW with the Swiss-Prot 
database, respectively. The result is obvious, XSW performs 
much better than SWAPHI-LS [23]. The reason is that the 
anti-diagonal layout needs to add some dummy symbols to 
the alignment matrix, which results in a waste of computing 
resources.

CUDASW++ 3.0, OSWALD, and SWIMM are hybrid 
CPU-GPU, CPU-FPGA, and CPU-Xeon Phi alignment 
tools, respectively. Notably, CUDASW++ 3.0 implements 
the method wavefront on GPU whose algorithm works the 
same way as anti-diagonal. Rucci et al. test the performance 
of the three above tools with the Swiss-Prot database in 
2015. He used two different host CPUs in the test. They 
also test these tools on small, medium, and large datasets 
with different input sequence size [32, 44]. The results show 
that parallel computing using pure CPUs has reached the 
bottleneck of performance, and the integration of different 
computing devices can bring further performance improve-
ment. The performance of hybrid tools varies towards differ-
ent scenarios, which can be concluded as follows:

•	 The hybrid CPU-GPU tool CUDASW++ 3.0 provides 
good performance rates for large sequence size. It is 
an efficient tool for large datasets and similar sequence 
pairs. This is because GPU has many processing units, 
which makes it more suitable for processing simple and 
large amounts of data [32]. Meanwhile, GPU’s price is 
relatively friendly.

•	 The hybrid CPU-FPGA tool OSWALD’s performance is 
independent of sequence size and similarity. And it per-
forms good when processing small and medium datasets 
[32, 44].

•	 The hybrid CPU-Xeon Phi tool SWIMM has a similar 
performance towards OSWALD when using a high-per-
formance host CPU. The main advantage of SWIMM is 
the good portability wihch make it more programmer-
friendly [51]. But it has poor energy efficiency due to the 
communication overhead. It can be a good choice when 
power is not a priority [44].
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4 � Conclusion

Parallel computing is a feasible solution to the processing 
of ever-growing sequence data. In this review, we revised 
the existing methods of parallelizing the Smith–Waterman 
algorithm. We specifically analyze the approaches of vector-
level parallelization and introduce some typical alignment 
tools. This work can provide the developers of the align-
ment tool with basic technical principle support, and help 
researchers in this area choose proper alignment tools for 
different scenarios.

Many existing sequence alignment tools have realized 
the combination of more than one parallelization method. 
Future work may focus on the integration of multiple kinds 
of parallelization. In view of each kind of parallelization 
specialty, the sequence alignment tools need to provide a 
general API for users to choose from. Another development 
trend is to develop a customized SW algorithm hardware 
accelerator. The hardware/algorithm co-designed accelerator 
can fully utilize the computing performance of components 
and saves more memory resources than existing alignment 
tools, which leads to better performance, especially when 
processing computational demanding tasks.
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