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Abstract

Background

The myocardial adaptive mechanism in patients with repaired tetralogy of Fallot (rTOF) is

less understood. We aimed to investigate biventricular myocardial adaptive remodeling in

rTOF patients.

Methods

We recruited 32 rTOF patients and 38 age- and sex-matched normal controls. The pulmo-

nary stenosis of rTOF patients was measured using catheterized pressure gradient between

right ventricle (RV) and pulmonary artery (PGRVPA). rTOF patients with PGRVPA < 15 mmHg

and�15 mmHg were classified as low pulmonary stenosis (rTOFlow, n = 19) and high pul-

monary stenosis (rTOFhigh, n = 13) subgroups, respectively. Magnetic resonance imaging

tissue phase mapping was employed to evaluate the voxelwise biventricular myocardial

motion in longitudinal (Vz), radial (Vr), and circumferential (Vφ) directions.

Results

The rTOFlow subgroup presented higher pulmonary regurgitation fraction than rTOFhigh sub-

group (p < 0.001). Compared with the normal group, only rTOFlow subgroup presented a

decreased RV ejection fraction (RVEF) (p < 0.05). The rTOFlow subgroup showed

decreased systolic and diastolic Vz in RV and LV, whereas rTOFhigh subgroup showed such

change only in RV. In rTOFlow subgroup, RVEF significantly correlated with RV systolic Vr (r

= 0.56, p < 0.05), whereas LVEF correlated with LV systolic Vz (r = 0.51, p = 0.02).
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Prolonged QRS correlated with RV systolic Vr (r = -0.58, p < 0.01) and LV diastolic Vr (r =

0.81, p < 0.001). No such correlations occurred in rTOFhigh subgroup.

Conclusions

The avoidance of unfavorable functional interaction in RV and LV in rTOFhigh subgroup sug-

gested that adequate pulmonary stenosis (PGRVPA� 15 mmHg in this sereis) has a protec-

tive effect against pulmonary regurgitation.

Introduction

Pulmonary regurgitation (PR) is an important problematic sequel in patients after repair of

tetralogy of Fallot (rTOF). Although PR can be tolerated for many years, chronic PR can lead

to right ventricular (RV) volume overload, hypertrophy, fibrosis, myocardial injury, and heart

failure overtime [1–4]. In addition, left ventricle (LV) remodeling is consequently affected

[3,5–9]. Therefore, surgical strategy has shifted from complete relief of pulmonary stenosis

(PS) toward restrictive enlargement of the pulmonary annulus to maintain a certain pressure

gradient between the RV and pulmonary artery (PA) trunk (PGRVPA). Studies have observed

that an adequate PGRVPA can serve as a protective factor limiting the unfavorable effect of PR

on RV function in rTOF patients [10–13].

Cardiac magnetic resonance imaging (MRI) is the standard method for comprehensive

evaluation of rTOF patients [1–3,6,14]. MRI tissue phase mapping (TPM) has been approved

for precise assessment of voxel-wise myocardial function for patients with a variety of heart

diseases [15–19], and serves as a potential new diagnostic biomarker for rTOF patients [5]. As

compared to speckle-tracking echocardiography and other MRI sequences for myocardial per-

formance, such as myocardial tagging and feature tracking [20], TPM using a 2D acquisition

has the advantages of less operator-dependence, high spatial resolution, and direct three-direc-

tional measurements of myocardial motion. Therefore, it simplifies the post-processing and

enable LV as well as RV evaluation in rTOF.

In this case–control study, the catheterization-based PGRVPA was measured to differentiate

rTOF patients with low and high PS. We aimed to investigate the biventricular myocardial

adaptive mechanisms on account of residual PS in rTOF patients using TPM from mechanistic

insights.

Methods

Study cohort

This study protocol was approved by the ethics committee at Kaohsiung Veterans General

Hospital, Kaohsiung (VGHKS14-CT1-16), Taiwan and all procedures were in accordance

with the ethical standards of the institutional and research committees. All participants pro-

vided written informed consent prior to cardiac MRI examination. The study population con-

sisted of 32 rTOF patients (age: 22.5 ± 3.8 years; male: 19) and 38 normal controls (age:

22.1 ± 1.8 years; male: 23) without known cardiovascular diseases. The rTOF patients under-

went electrocardiography (ECG), treadmill, blood sampling for brain natriuretic peptide

(BNP) measurement, and catheterization for assessment of hemodynamic status. The rTOF

patients and normal controls were subjected to cardiac MRI examination. The datasets
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generated during and/or analyzed during this study are available from the corresponding

author on reasonable request.

Subgrouping of rTOF patients according to residual PS

Catheterization-based cutoff value of 15 mmHg based on PR of 40% in a receiver operating

characteristic analysis was selected in this series. According to the cutoff value of PGRVPA, we

defined rTOF patients with PGRVPA< 15 mmHg as the subgroup with low PS (rTOFlow) and

rTOF patients with PGRVPA� 15 mmHg as the subgroup with high PS (rTOFhigh). The surgi-

cal procedure of transannular patch was performed on 12 of 19 and 8 of 13 patients in rTOFlow

and rTOFhigh subgroups, respectively.

Catheterization, cardiopulmonary exercise testing and laboratory testing

A 7 F Berman catheter was inserted into a femoral vein and a 5 F pig-tail catheter was inserted

into the femoral artery when rTOF patients underwent catheterization. Both catheters were

connected to pressure transducers. A Berman catheter was advanced into the right atrium,

RV, and main PA to measure pressure. The PGRVPA was also recorded. All pressures measure-

ments were taken in the supine position and at end-expiration.The normal controls did not

undergo catheterization.

The rTOF patients underwent an exercise stress test on a treadmill with the standard Bruce

protocol [21]. An exercise testing equipment, which comprised a treadmill, a flow module, a

gas analyzer, and an electrocardiographic monitor (Metamax 3B, Cortex Biophysik GmbH

Co., Germany), was used to measure the exercise capacity. Peak oxygen consumption (VO2)

was measured from the results of a graded treadmill exercise until exhaustion. Blood pressure

(BP) and heart rate (HR) were also measured during resting and peak state. HR reserve (HRR)

was defined as the HR change between 1 minute after test and peak state during test. The meta-

bolic equivalent (MET) of peak VO2 was defined as the unit of resting oxygen uptake. The

BNP level was measured using commercial ARCHITECT BNP Reagent Kits (Abbott

Laboratories).

Cardiac MRI acquisition

Images were acquired using a 3-T MR scanner (Skyra or Tim Trio, Siemens, Erlangen, Ger-

many). A retrospective ECG-gating approach was used to acquire two-dimensional breath-

hold steady-state free precession based cine images in short-axis view with 30 time frames per

cardiac cycle. The protocol parameters were as follows: TR/TE = 3.1/1.6ms, pixel

size = 1.17 × 1.17 mm2, slice thickness = 6 mm, interslice gap = 4mm, and flip angle = 50˚.

Consecutive 10–12 short-axis views covering the entire LV and RV enabled determination of

the cardiac function, including the volumetric indices, mass, and ejection fraction (EF).

The two-dimensional phase-contrast MRI in this study was performed with retrospective

ECG triggering and free breathing to calculate the PR fraction, which was defined as backward

flow volume divided by forward flow volume. The scanning parameters were as follows: TR/

TE = 9.9/2.7 ms, flip angle = 30˚, matrix size = 192 × 174 (interpolated into 256 × 256), field of

view = 24–32 cm, slice thickness = 6 mm, views per segment = 2, and average = 2. Forty phases

per cardiac cycle were reconstructed. Velocity encoding was initially set at 150 cm/s and

increased by 100 cm/s if an aliasing artifact was present. The main PA was targeted at its mid-

point between the pulmonary valve and bifurcation. The imaging planes were prescribed as

strictly perpendicular to the vessels by using the double-oblique technique.

A two-dimensional dark-blood fast low-angle shot sequence was performed to acquire

TPM. Images were prescribed in consecutive three short-axis slices (base, mid, and apex). The
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basal slice was prescribed at 1cm beneath the mitral valve level at end-systole, followed consec-

utively by middle and apical slices. Prospective ECG-triggering was performed for synchroni-

zation with the cardiac motions. Navigator-echo monitoring was performed to trace the

location of the right hemidiaphragm. Velocity encoding was set to 15 and 25 cm/s for in-plane

and through-plane motions, respectively. The protocol parameters were as follows: TR/

TE = 6.5/4.2 ms, pixel size = 1.17×1.17 mm2, slice thickness = 6 mm, flip angle = 7˚, accelera-

tion factor = 5 with the PEAK-GRAPPA accelerating technique [22], and temporal resolu-

tion = 26 ms. The total scanning time was approximately 6 minutes for the three slices.

Cardiac MRI analysis

The myocardial motion was calculated using aninstitute-developed analysis tool written in

MATLAB (Mathworks). After regions of interest had been determined manually on the mag-

nitude images of each cardiac phase and each slice, the LV was divided into 16 segments

according to American Heart Association recommendations [23], whereas the RV was divided

into 10 segments for comprehension ofits regional motion [24]. We evaluated the peak myo-

cardial motion in the systolic and diastolic phases in the longitudinal (Vz), radial (Vr), and cir-

cumferential (Vφ) directions as the quantitative indices of segmental and the global

myocardial motion of the RV and LV. The diastolic Vφ referred to the second circumferential

peak velocity during systolic period, as defined by Menza et al [24].

Statistical analysis

The statistical significance of the difference between groups was assessed using ANOVA analy-

sis or Fisher exact test when appropriate. The Pearson correlation coefficient was calculated

for the relationship between any two interested parameters. Multiple comparisons using Bon-

ferroni correction for the LV 16-segment and RV 10-segment model were performed to exam-

ine the significance of the altered myocardial motion. Receiver operating characteristic

analysis was used to seek the cut-off value of the PGRVPA for the classification of rTOF patients

into rTOFlow and rTOFhigh subgroups. Intra-observer and inter-observer variability was

assessed in 10 rTOF patients and 10 normal controls. Inter-observer and intra-observer vari-

ability of TPM parameters was evaluated using the intraclass correlation coefficient (ICC).

P< 0.05 was considered statistically significant.

Results

Demographic characteristics

Table 1 summarizes the demographic characteristics of the normal group, the rTOF group and

the two rTOF subgroups. Both patient subgroups showed a lower peak VO2 than the regular

standards reported by a previous study [8]. The other important data of rTOF patients during

the exercise testing were as follows: resting systolic BP 124 ± 13 mmHg, resting diastolic BP

75 ± 7 mmHg, resting HR 81 ± 9 beats per minute, peak systolic BP 167 ± 20 mmHg, peak dia-

stolic BP 82 ± 13 mmHg, peak HR 174 ± 14 beats per minute, and HRR 21 ± 7. All pressure

indices of RV and PA in both rTOFlow and rTOFhigh subgroups were substantially higher than

the reported regular standards [25].

Global function of RV and LV

Table 2 outlines the cardiac magnetic resonance imaging measurements of the LV, RV, and PA.

For the PA, both rTOFlow and rTOFhigh subgroups presented significantly higher PR fractions

than normal group (both p< 0.001). Moreover, PR fraction in rTOFlow subgroup was higher than
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that in rTOFhigh subgroup (p< 0.001). Compared with normal controls, rTOFlow subgroup exhib-

ited increases in most RV volumetric indices (all p< 0.001) and significant decreases in RVEF

(p< 0.01). For the LV, the volumetric indices were similar in all groups, whereas the LV end sys-

tolic volume index decreased and LVEF increased only in rTOFhigh subgroup (both p< 0.05).

Myocardial motion of RV and LV

Fig 1 shows the segmental distribution of myocardial motion measured using TPM. Table 3

summarizes the global peak Vz, Vr, and Vφ of the 16 LV segments and 10 RV segments in

each group. Compared with the normal group, the rTOF group showed significantly decreased

RV systolic Vz (−4.0 ± 1.7 vs −6.0 ± 1.6 cm/s, p< 0.001), particularly in the basal and middle

slices (Fig 1). The rTOF group also showed lower RV diastolic Vz in almost all RV segments

(4.5 ± 1.4 vs 7.4 ± 1.5 cm/s, p< 0.001) and lower LV diastolic Vz (7.9 ± 1.8 vs 9.2 ± 2.0 cm/s,

p< 0.05). Regarding the radial myocardial motion, only the RV diastolic Vr in the rTOF

group was higher than that in the normal group (−5.7 ± 1.0 vs −4.9 ± 0.8 cm/s, p< 0.01).

Decreased systolic and diastolic Vφ (i.e. the second peak during systole) were noted only in the

LV of rTOF patients (p< 0.001). All the aforementioned indices did not differ significantly

between rTOFlow and rTOFhigh subgroups.

Table 1. Demographic characteristics and catheterization-based pressure measurements.

Normal (n = 38) rTOF (n = 32) rTOFlow (n = 19) rTOFhigh (n = 13) ANOVA p value rTOFlow vs rTOFhigh p value

Age (years) 22.1 ± 1.8 22.5 ± 3.8 22.4 ± 4.4 22.6 ± 2.9 0.77 0.88

Sex (male/female) 23/15 19/13 10/9 9/4 NA NA

Height (cm) 169.1 ± 8.5 166.1 ± 9.0 165.3 ± 9.9 167.2 ± 7.8 0.30 0.57

Weight (kg) 61.7 ± 13.3 60.0 ± 12.5 58.4 ± 13.8 62.5 ± 10.5 0.60 0.37

BSA (m2) 1.7 ± 0.2 1.6 ± 0.2 1.6 ± 0.1 1.6 ± 0.1 0.32 0.37

BMI (kg/m2) 21.4 ± 3.7 21.7 ± 3.9 21.3 ± 4.6 22.2 ± 2.9 0.78 0.53

Systolic pressure (mmHg) 118.4 ± 11.4 118.8 ± 11.6 115.3 ± 9.7 124.7 ± 7.5 < 0.05 < 0.05

Diastolic pressure (mmHg) 72.4 ± 5.7 72.8 ± 6.2 71.2 ± 6.3 75.0 ± 5.6 0.20 0.23

HR (bpm) 74.2 ± 14.2 70.1 ± 7.9 66.4 ± 5.9 70.8 ± 11.1 0.43 0.27

QRS duration (ms) 82 ± 9† 142.8 ± 29.5 144.9 ± 33.3 139.6 ± 23.7 NA 0.62

Age at repair (years) NA 3.0 ± 1.9 2.9 ± 2.2 2.4 ± 1.6 NA NA

Transannular patch 0 20 12 8 NA NA

NYHA I/II/III (a.u.) 38/0/0 14/18/0 8/11/0 6/7/0 NA NA

Peak VO2 (MET) 9.9 ± 1.6† 8.0 ± 1.5 8.2 ± 1.4 7.7 ± 1.7 NA 0.24

BNP (pg/ml) 14.1 ± 12.4† 27.9 ± 17.5 30.7 ± 18.8 21.8 ± 13.3 NA 0.39

Pressure index (mmHg)

RV sys. P < 25‡ 54.4 ± 20.7 46.7 ± 7.9 67.8 ± 28.9 0.01 0.01

RV dia. P < 5‡ 6.6 ± 4.2 6.8 ± 4.5 6.1 ± 3.8 0.72 0.71

RV mean P 5‡ 15.1 ± 4.9 15.5 ± 5.4 14.3 ± 3.9 0.56 0.55

PA sys. P < 25‡ 39.0 ± 8.9 41.7 ± 8.8 33.2 ± 6.3 0.04 0.04

PA dia. P < 5‡ 13.7 ± 4.6 13.3 ± 5.3 14.5 ± 1.8 0.61 0.61

PA mean P < 15‡ 21.8 ± 5.2 22.6 ± 5.9 19.8 ± 2.7 0.25 0.25

PGRVPA <5‡ 17.5 ± 21.4 6.8 ± 5.3 33.1 ± 26.3 < 0.001 < 0.001

BSA: body surface area, BMI: body mass index, HR: heart rate, NYHA: New York Heart Association functional class, VO2: maximal oxygen consumption, BNP: brain

natriuretic peptide. PGRVPA, pressure gradient between RV and pulmonary artery. rTOFlow and rTOFhigh indicated rTOF subgroup with PGRVPA< 15 mmHg and� 15

mmHg, respectively.
†Normal values from 8.

‡Normal standard from25. The p values in the far right column indicate the level of statistical significance between rTOFlow and rTOFhigh subgroups.

https://doi.org/10.1371/journal.pone.0237193.t001
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Effect of PR on RV pressure and biventricular function in rTOF subgroups

In rTOFlow subgroup, the PR fraction showed significantly negative correlations with PGRVPA

(r = −0.53, p< 0.05; Fig 2A) and RV systolic pressure (r = −0.21, p< 0.01; Fig 2B). Moreover,

the PR fraction negatively correlated with the RVEF (r = −0.67, p< 0.01; Fig 2C) and LVEF

(r = −0.48, p< 0.05; Fig 2D) only in rTOFlow subgroup.

Differential relationship of myocardial motion and electromechanical

adaption in RV and LV

In rTOFlow subgroup, RVEF had a significant positive correlation with RV systolic Vr

(r = 0.56, p< 0.05; Fig 3A), whereas LVEF had a significant positive correlation with LV sys-

tolic Vz (r = 0.51, p = 0.02; Fig 3B).

Table 2. Cardiac magnetic resonance imaging measurements of both ventricles and the PA.

Parameter Normal (n = 38) rTOF (n = 32) rTOFlow (n = 19) rTOFhigh (n = 13) ANOVA p value rTOFlow vs rTOFhigh p value

LV

LVESV (cm3) 30.1 ± 10.0 27.1 ± 10.8 29.1 ± 12.9 24.0 ± 5.4 0.21 0.55

LVEDV (cm3) 102.5 ± 22.1 96.3 ± 16.5 97.0 ± 18.6 95.2 ± 13.5 0.45 1.00

LVSV (cm3) 72.4 ± 14.1 70.6 ± 12.3 70.2 ± 14.4 71.1 ± 9.0 0.86 1.00

LVCI (L/min/m2) 2950.1 ± 545.1 3086.2 ± 835.4 3158.1 ± 932.1 2972.3 ± 677.2 0.57 1.00

LVM (g) 95.8 ± 23.9 89.0 ± 22.8 90.3 ± 23.7 86.8 ± 22.3 0.47 1.00

LVESVI (cm3/m2) 17.6 ± 5.5 16.3 ± 6.1 17.7 ± 7.1 14.1 ± 3.1� 0.17 0.29

LVEDVI (cm3/m2) 59.7 ± 10.7 58.4 ± 9.5 60.0 ± 11.1 56.1 ± 6.3 0.53 0.95

LVSVI (cm3/m2) 42.1 ± 5.9 42.8 ± 6.8 43.4 ± 8.3 41.9 ± 3.6 0.75 1.00

LVMI (g/m2) 55.6 ± 11.3 57.6 ± 14.8 54.8 ± 10.3 50.7 ± 9.6 0.41 0.93

LVEF (%) 70.9 ± 4.5 73.1 ± 5.4� 72.0 ± 6.3 74.9 ± 2.9� 0.06 0.32

LVPER (EDV/s) -3.8 ± 0.9 -3.4 ± 0.5� -3.3 ± 0.5 -3.6 ± 0.4 0.09 0.89

LVPFR (EDV/s) 5.3 ± 1.1 5.6 ± 1.3 5.6 ± 1.5 5.6 ± 1.0 0.53 1.00

RV

RVESV (cm3) 57.9 ± 14.9 99.3 ± 57.0��� 109.8 ± 65.3��� 81.1 ± 34.2 < 0.001 0.16

RVEDV (cm3) 130.9 ± 28.7 195.4 ± 82.8��� 210.4 ± 96.1��� 169.6 ± 45.8 < 0.001 0.20

RVSV (cm3) 73.0 ± 16.6 96.1 ± 30.6��� 100.5 ± 35.8��� 88.5 ± 17.4 < 0.001 0.55

RVESVI (cm3/m2) 34.0 ± 7.5 60.2 ± 31.4��� 67.2 ± 35.4��� 48.2 ± 18.8� < 0.001 0.06

RVEDVI (cm3/m2) 77.0 ± 13.5 119.0 ± 44.7��� 129.1 ± 50.7��� 101.6 ± 25.2 < 0.001 0.06

RVSVI (cm3/m2) 43.0 ± 8.1 58.7 ± 16.7��� 61.9 ± 18.9��� 53.5 ± 9.0� < 0.001 0.21

RVEF (%) 55.9 ± 4.8 50.9 ± 9.5�� 49.4 ± 9.7�� 53.5 ± 9.0 < 0.01 0.41

PA

PA max. area (mm2) 664.5 ± 92.6 981.2 ± 328.6��� 1154.5 ± 309.4�� 857.6 ± 335.7� < 0.01 1.00

PA distensibility (a.u.) 0.5 ± 0.3 0.4 ± 0.2 0.4 ± 0.2 0.3 ± 0.1 0.16 0.85

PA net flow (L/cycle) 0.07 ± 0.01 0.06 ± 0.02 0.06 ± 0.02 0.06 ± 0.03 0.09 1.00

PR fraction (%) 1.7 ± 1.5 36.6 ± 17.1��� 44.6 ± 11.9��� 25.6 ± 17.5��� < 0.001 < 0.001

LVESVI/LVEDVI: left ventricular end-systole/end-diastolic volume index, LVSVI: LV stroke volume index, LVCI: LV cardiac index, LVMI: LV mass index, LVEF: LV

ejection fraction, LVPER: LV peak ejection rate, LVPFR: LV peak filling rate, RVESV/RVEDV: right ventricular end-systole/end-diastolic volume, RVSVI: RV stroke

volume index, RVEF: RV ejection fraction, PA: pulmonary artery, PR: pulmonary regurgitation.

�p< 0.05

��p< 0.01, and

���p< 0.001 indicate levels of statistical significance between the normal group and rTOF group/subgroups. The p values in the far right column indicate the level of

statistical significance between rTOFlow and rTOFhigh subgroups.

https://doi.org/10.1371/journal.pone.0237193.t002
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Compared with reference values in Table 1, QRS durations in both rTOFlow and rTOFhigh

subgroups were substantially prolonged. There was no significant difference between rTOFlow

and rTOFhigh subgroups in terms of QRS duration (144.9 ± 33.3 vs 139.6 ± 23.7 ms, p = 0.62).

Fig 1. (a-d) The systolic and diastolic segmental myocardial motion in longitudinal (Vz) and (e–h) radial (Vr) directions in the

normal controls (left panel) and patients with rTOF (right panel). �p< 0.05, ��p< 0.01, and ���p< 0.001.

https://doi.org/10.1371/journal.pone.0237193.g001
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However, only QRS duration in rTOFlow subgroup was significantly negatively correlated with

RV systolic Vr (r = −0.58, p< 0.01; Fig 3C) and positively correlated with LV diastolic Vr

(r = 0.81, p< 0.001; Fig 3D). No other significant findings or correlations were observed in

rTOFhigh subgroup or normal group.

Interventricular correlation between RV and LV functions

The RVEF and LVEF were significantly correlated only in the rTOFlow subgroup (Fig 4A).

However, myocardial motion of systolic Vz between RV and LV was significantly correlated in

rTOFlow subgroup, rTOFhigh subgroup, and normal group (all p� 0.01; Fig 4B).

Inter-observer and intra-observer variability of TPM parameters

The inter-observer ICC for TPM parameters was 96%, while the intra-observer ICC for TPM

parameters was 95%.

Discussion

In this study, we employed TPM and catheterization-based PGRVPA to elucidate the biventri-

cular adaptive mechanism in rTOF patients. Our study demonstrated that PR fraction plays a

key role in the adaptive remodeling of RV and LV in rTOF patients. Our application of TPM

also revealed that the adaption of differential myocardial motions correlated with the electro-

mechanical remodeling of both RV and LV. Notably, these findings were almost observed

solely in the rTOFlow subgroup. Avoidance of interconnected relationships among PR and

biventricular myocardial function was found in rTOFhigh subgroup, and this suggests that

Table 3. Mean TPM derived measurements of global intramural motion in both ventricles.

Normal (n = 38) rTOF (n = 32) rTOFlow (n = 19) rTOFhigh (n = 13) rTOFlow vs rTOFhigh p value

LV

sys. Vz (cm/s) -5.6 ± 1.7 -4.6 ± 1.5�� -4.2 ± 1.6�� -5.0 ± 1.2 0.16

dia. Vz (cm/s) 9.2 ± 2.0 7.9 ± 1.8� 7.6 ± 1.7�� 8.5 ± 2.0 0.24

sys. Vr (cm/s) 2.9 ± 0.4 2.8 ± 0.4 2.7 ± 0.4 2.9 ± 0.2 0.37

dia. Vr (cm/s) -5.1 ± 0.6 -5.4 ± 0.6 -5.4 ± 0.7 -5.4 ± 0.6 0.77

sys. Vφ (cm/s) -3.4 ± 1.3 -2.0 ± 1.1��� -1.7 ± 1.1��� -2.0 ± 1.1��� 0.13

dia. Vφ (cm/s) 1.8 ± 0.8 0.9 ± 0.5��� 0.8 ± 0.5��� 0.9 ± 0.5��� 0.11

RV

sys. Vz (cm/s) -6.0 ± 1.6 -4.0 ± 1.7��� -3.6 ± 1.7��� -4.8 ± 1.7� 0.08

dia. Vz (cm/s) 7.4 ± 1.5 4.5 ± 1.4��� 4.2 ± 1.4��� 5.0 ± 1.3��� 0.12

sys. Vr (cm/s) 3.1 ± 0.8 3.0 ± 0.6 2.9 ± 0.5 3.1 ± 0.8 0.85

dia. Vr (cm/s) -4.9 ± 0.8 -5.7 ± 1.0�� -5.6 ± 0.7�� -5.7 ± 1.4� 0.80

sys. Vφ (cm/s) -3.3 ± 1.3 -3.0 ± 1.3 -3.1 ± 1.5 -2.9 ± 1.1 0.45

dia. Vφ (cm/s) 2.7 ± 1.3 1.9 ± 0.8 2.0 ± 0.9 1.8 ± 0.8 0.53

Dia.: diastolic; LV: left ventricle; RV: right ventricle; sys.: systolic; TPM: tissue phase mapping. The value of these indices were averaged from 16 segments in the LV or

10 segments in the RV. The diastolic Vφ was the second circumferential velocity peak during systolic period, as defined in reference [25]. rTOFlow and rTOFhigh

indicated rTOF subgroup with PGRVPA < 15 mmHg and� 15 mmHg, respectively.

�p< 0.05

��p< 0.01, and

���p< 0.001 indicate levels of statistical significance between the normal group and rTOF group/subgroups. The p values in the far right column indicate the level of

statistical significance between the two rTOF subgroups.

https://doi.org/10.1371/journal.pone.0237193.t003
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adequate residual PS may have a protective effect against PR related biventricular dysfunction

in rTOF patients.

Significant negative correlations between PR fraction and RVEF (or LVEF) were observed

solely in rTOFlow subgroup. Such adverse effects of PR on RVEF and LVEF were not seen in

rTOFhigh subgroup, suggesting that an adequate PGRVPA may be beneficial for attenuating the

vicious cycle triggered by PR in rTOF. Our findings are in line with the concept that adequate

residual PS might be a suitable surgical strategy for treating TOF [10–13] and resulted in better

biventricular remodeling.

Valente et al previously reported that PR and RV volume were not related to early death or

ventricular tachycardia in rTOF patients [26]. However, their study group [26] included 36%

patients with pulmonary valve replacement and 14% with RV-PA conduit whose results

should not be generalized to rTOF patients with native PR in the current study. Compared to

the possible pressure overestimation of previous echocardiography-derived cutoff values vary-

ing from 20 to 30 mmHg [10–13], catheterization-based cutoff value of 15 mmHg based on PR

of 40% in a receiver operating characteristic analysis was objectively selected in this series. On

the other hand, although our results demonstrated the potential association between PS and

Fig 2. Scatterplots of PR fraction vs. PGRVPA (a), RV systolic pressure (b), RVEF (c), and LVEF (d). Significant correlations existed

only in rTOF with low pulmonary stenosis.

https://doi.org/10.1371/journal.pone.0237193.g002
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Fig 3. Scatterplots of RVEF vs. RV systolic Vr (a), LVEF vs. LV systolic Vz (b), QRS vs. RV systolic Vr (c) and QRS vs. LV diastolic Vr

(d). Significant correlations existed only in rTOF with low pulmonary stenosis.

https://doi.org/10.1371/journal.pone.0237193.g003

Fig 4. Correlation between RV and LV in (a) EF and (b) systolic longitudinal motion (sys. Vz).

https://doi.org/10.1371/journal.pone.0237193.g004
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myocardial adaptation in young adult rTOF patients in a relatively early stage without showing

clinical adverse outcomes, the potential harm of PS on ventricular function can not be

neglected according to Valente et al’s study [26]. The appropriate PS in rTOF patients with

various clinical conditions requires further investigations in a large cohort.

TPM has the advantages of high spatial resolution and direct three-directional measure-

ments of myocardial motion. This technique has been used to demonstrate that rTOF patients

may exhibit RV myocardial motion abnormality owing to excess stress in response to volume

overload [1,6,14]. We found that most myocardial motion in rTOFlow subgroup decreased in

both RV and LV, whereas myocardial motion in rTOFhigh subgroup decreased in RV and was

normal in LV. This may suggest that LV adaption was secondary to RV changes with the pro-

gression of RV dysfunction.

We found that differential myocardial motion adaption underlined RV and LV remodeling

in rTOFlow subgroup. RVEF closely correlated with RV systolic Vr, whereas LVEF closely cor-

related with LV systolic Vz. The discrepancy between RV and LV adaption may be partially

explained by the different inherent but integrative myofiber architectures in the two ventricles

and also by a substantial adaptive increased thickness of the circumferential layer found histo-

pathologically in the RV of rTOF patients [27,28]. In addition, RV diastolic Vr paradoxically

increased in rTOF group, which may reflect a compensatory radial motion accelerated pre-

dominantly in the diastolic phase of overloaded RV [7].

We found prolonged QRS durations in both rTOF subgroups. Electromechanical interac-

tion with prolonged QRS duration has been described as a predictor of ventricular arrhythmias

in rTOF patients [4,29,30]. However, QRS prolongation was positively correlated with LV dia-

stolic Vr and inversely with RV systolic Vr only in the rTOFlow subgroup. These findings sug-

gested that altered myocardial radial motion, either in RV or LV, may underscore the adverse

effect of QRS prolongation in rTOF patients without protection from adequate residual PS

[4,9,31].

In a scintigraphy study of 152 patients, Movahed et al demonstrated that there was a strong

significant correlation between LVEF and RVEF in patients with decreased EF, but no correla-

tion was found in patients with normal EF [32]. This phenomenon was replicated in our

results. In normal subjects and rTOFhigh patients, RVEF and LVEF are both preload- and after-

load-dependent, and thus are not tied physiologically. The presence of biventricular EF corre-

lation in rTOFlow subgroup may imply an unfavorable effect of RV on LV, and thus may also

reflect the deteriorated cardiac function in rTOF patients without adequate PS. The myocar-

dial longitudinal motion of RV and LV was disclosed to be significantly correlated in all sub-

jects, independent of the rTOF status. The role of myocardial longitudinal motion correlation

between RV and LV requires future investigation.

Although we showed the decreased LV Vφ during systole in rTOF patients compared with

that of normal controls, it should be noted that the assessment of circumferential myocardial

motion was more difficult to identify compared with longitudinal and radial motion [5,24].

Further, because of the complicated and low diastolic myocardial motion velocity in rTOF

patients, a simple measurement of Vφ might not be able to illustrate the difference between

the groups. A previous study calculated the twist function by systolic peak-to-peak Vφ and

reported the difference of LV circumferential motion between normal and rTOF groups [5].

However, the twist function of RV is more complicated and required designation of a novel

and accurate approach. We were unable to report RV twist function because of the limited

scale in this study.

In conclusion, this study explored the adaptation of biventricular function and the differen-

tial myocardial motion components in rTOF patients in response to residual PS. From a mech-

anistic insight of myocardial motion adaptation, avoidance of unfavorable functional
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interaction in RV and LV in rTOFhigh subgroup suggested that adequate PS (PGRVPA� 15

mmHg in this series) has a protective effect against PR in the ventricular remodeling of rTOF.

Our findings shed light on the mechanical and electrical adaptation in both RV and LV of

rTOF patients and potentially provide helpful information for surgical strategy in treating

patients with TOF. A larger and longer cohort study is required to investigate the prognostic

value of our findings in evaluation of rTOF patients.

Limitations

This study had some limitations. First, the thin wall of RV may have rendered the reliability of

RV delineation in the TPM images. However, we acquired TPM images with a pixel size of

1.17 × 1.17 mm2, which was consistent with the spatial resolution of a highly ranked previous

study on TPM of RV [33]. Second, RV twist function was not calculated and we may have

oversimplified the complex biventricular adaptive mechanism in rTOF patients. Third, this

cross-sectional study involved a relatively low sample size, a short postoperative period, and a

lack of events such as pulmonary valve replacement and pacemaker implantation. Fourth,

there is no T1 mapping data to evaluate cardiac fibrosis. A larger cohort and longer follow-up

may further elucidate and validate the role of PR and PS on account of myocardial motion

adaption in the prognosis of rTOF.
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