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ABSTRACT The application of statistical methods to comparatively framed questions about the molecular dynamics (MD) of
proteins can potentially enable investigations of biomolecular function beyond the current sequence and structural methods in
bioinformatics. However, the chaotic behavior in single MD trajectories requires statistical inference that is derived from large
ensembles of simulations representing the comparative functional states of a protein under investigation. Meaningful interpre-
tation of such complex forms of big data poses serious challenges to users of MD. Here, we announce Detecting Relative Outlier
Impacts from Molecular Dynamic Simulation (DROIDS) 3.0, a method and software package for comparative protein dynamics
that includes maxDemon 1.0, a multimethod machine learning application that trains on large ensemble comparisons of
concerted protein motions in opposing functional states generated by DROIDS and deploys learned classifications of these
states onto newly generated MD simulations. Local canonical correlations in learning patterns generated from independent,
yet identically prepared, MD validation runs are used to identify regions of functionally conserved protein dynamics. The subse-
quent impacts of genetic and/or drug class variants on conserved dynamics can also be analyzed by deploying the classifiers on
variant MD simulations and quantifying how often these altered protein systems display opposing functional states. Here, we
present several case studies of complex changes in functional protein dynamics caused by temperature, genetic mutation,
and binding interactions with nucleic acids and small molecules. We demonstrate that our machine learning algorithm can prop-
erly identify regions of functionally conserved dynamics in ubiquitin and TATA-binding protein (TBP). We quantify the impact of
genetic variation in TBP and drug class variation targeting the ATP-binding region of Hsp90 on conserved dynamics. We identify
regions of conserved dynamics in Hsp90 that connect the ATP binding pocket to other functional regions. We also demonstrate
that dynamic impacts of various Hsp90 inhibitors rank accordingly with how closely they mimic natural ATP binding.
SIGNIFICANCE We propose a statistical method and graphically interfaced software pipeline for comparing simulations
of the complex motions of proteins (i.e., dynamics) in different functional states. We also provide both method and software
to apply artificial intelligence (i.e., machine learning methods) that enable the computer to recognize complex functional
differences in protein dynamics on new simulations and report them to the user. This method can identify conserved
dynamics important for protein function and quantify how the motions of molecular variants differ from these important
functional dynamic states. This method of analysis allows the impacts of different genetic backgrounds or drug classes to
be examined within the context of functionally conserved motions of the specific protein system under investigation.
INTRODUCTION

The physicist Richard Feynman once said, ‘‘if we were to
name the most powerful assumption of all . in an attempt
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to understand life, it is .that everything that living things
do can be understood in terms of the jigglings and wigglings
of atoms’’ (1). Restated with more precision, Feynman’s
conjecture would imply that all biological function can ulti-
mately be understood by analyzing rapid molecular motions
in biomolecular structures as they alter or shift their func-
tional state(s). Many decades later, these functional shifts
in molecular dynamics (MD) are being illuminated by struc-
tural and computational biology. Examples of functionally
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altered dynamics include the destabilization of interresidue
contacts during signal activation and disease (2–5), the sta-
bilization of interresidue contacts during protein folding and
the formation of larger complexes (6–8), and the dynamic
complexity of binding interactions of many proteins to a
variety of small molecules (9,10). And although the func-
tional role of rapid vibrations revealed by short-term MD
simulations has been debated in the past, more recent empir-
ical and computational studies have clearly demonstrated
that differences in both rapid and directed vibrations can
drive longer-term functional conformational change
(11,12). From a broader perspective, if Feynman’s conjec-
ture is true, then specific details of a given protein system’s
biomolecular dynamics will represent a potentially large
source of latent variability in our functional understanding
of the genome, a problem largely ignored by those disci-
plines currently generating the vast amount of static forms
of ‘‘omic’’-type data (i.e., DNA sequence, transcript level,
and protein structure) (13). However, in the last decade,
simultaneous advances in the development of massively par-
allelized graphics hardware and more accurate biomolecular
force fields have elevated our ability to computationally
simulate MD long enough to capture ns-to-ms timescales
for moderately sized proteins (14,15) and to accurately
simulate some of their functionally relevant motions. And
now, the application of proper statistical comparisons of
ensembles of randomly spaced, short-time-framed MD
simulation can potentially enable meaningful interpretations
of comparative questions about protein dynamics (16). But
because of the richly complex structure of data underlying
the moving images generated by MD software, functional
interpretation of modern MD simulations poses a serious
challenge to current users. This is especially problematic
with comparatively framed questions, in which large ensem-
bles of many production runs need to be generated and sub-
sequently analyzed statistically. A potential solution to this
problem exists with the application of machine learning to
the feature extraction and classification of the dynamic dif-
ferences between ensembles of MD runs. These ensembles
can be designed to represent pair-wise functional states of
biomolecular systems (e.g., before/after environmental
change, chemical mutation, or binding interaction). There-
fore, the high-performance accelerated computation used
to generate simulated protein motions for comparison can
be effectively partnered with high-performance methods
for optimally extracting and learning the underlying
dynamic feature differences that define the different func-
tional states of proteins. Although machine learning has
recently been applied to individual MD studies for a variety
of specific tasks (17–19), there is no current software
platform for the general application of machine learning
to general comparative problems in protein dynamics.

In 2018, we released Detecting Relative Outlier
Impacts from Molecular Dynamic Simulation (DROIDS)
v1.2 and v2.0, a GPU-accelerated software pipeline
542 Biophysical Journal 118, 541–551, February 4, 2020
designed for calculating and visualizing statistical com-
parisons of protein dynamics drawn from large repeated
ensembles of short dynamic simulations representing
two protein states (16). This application allowed simple
visual and statistical comparison of protein MD ensem-
bles set up in any way the user wanted to define them.
Here, we announce the release of DROIDS v3.0, which
now offers multiple pipelines tailored for specific func-
tional comparisons of systems made up of combinations
of proteins, nucleic acids, and small ligand molecules.
Comparisons can include different temperatures, different
protein binding states (i.e., to DNA, drugs, toxins, or nat-
ural ligands), or divergent genetic/epigenetic mutant
states. We also include a major new machine learning
tool, maxDemon v1.0, a multimachine learning postpro-
cessing application for DROIDS that trains on the data
that represent the comparatively divergent functional
dynamic states occurring in a functional binding interac-
tion (i.e., bound versus unbound protein dynamics) and
subsequently identifies these states when deployed upon
new MD simulations. This allows for the determination
of regions of functionally conserved dynamics in indepen-
dent yet identically prepared validation runs, as well as
the quantification of impacts upon dynamics in different
genetic and drug class variants. Thus, much like James
Clerk Maxwell’s mythical creature (20), maxDemon de-
rives important information from the classification of all
atom resolution observations of dynamic motion. The
three primary features/aims of our expanded software
are to 1) ease the generation of MD run ensembles for sta-
tistical comparison, 2) enable the local detection of func-
tionally conserved protein dynamics, and 3) enable the
assessment of the local dynamic impacts of both genetic
and drug class variants within the conserved functional
context of protein systems of interest. Because the ma-
chine learning model we employ is trained on MD data
that represent two contrasting functional dynamic states
of a protein, this metric of impact is highly context depen-
dent with regard to how a given mutation or drug impacts
a specific protein. Thus, it potentially gives considerably
more functional relevance to the analysis of variants
when compared with more-general database-derived
metrics of mutational tolerance (e.g., SIFT, PolyPhen2,
etc. (21,22)). In our online user manual and tutorial, we
present many examples of methodological pipelines avail-
able in DROIDS 3.0 (with maxDemon 1.0) to address
functional questions in comparative protein dynamics. In
our Results and Discussion here, we present data on three
case studies of functional protein dynamics that include
feature extraction and classification of 1) functional and
nonfunctional shifts in ubiquitin dynamics, 2) mutation-
specific impacts on functional binding of TATA-binding
protein (TBP) to DNA, and 3) comparison of binding
dynamics of drug class variants that mimic ATP binding
in Hsp90 to varying degrees.
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MATERIALS AND METHODS

Overview of comparative dynamics and
visualization with DROIDS v3.0

OurDROIDSmethod/software leverages several important key concepts when

making comparisons between MD runs. The method utilizes structural align-

ment to restrict comparison of dynamics between individual homologous

amino acids. The method also restricts dynamic comparison to non-side-chain

atoms in the protein backbone (C,N, O, andCa). Themethod also employs sta-

tistical ensembles to make a robust comparison between protein dynamics in

different functional states (16). Although this is computationally intensive, it

is necessary because of the inherent chaotic nature and unpredictability of

single protein trajectory projections. This logic likens individual MD runs to

the many storm tracks repeatedly modeled by meteorologists to gain statistical

confidence in a hurricaneweather forecast, inwhich an ensemble ofmodel runs

all with slightly different initial conditions has far more predictive power than

any single simulation. In DROIDS, the user can decide how large the MD

ensembles need to be based upon the inherent stability of the protein under

investigation. The dynamics is summarized by calculation of root mean-square

fluctuations (rmsf) over constant time intervals represented by a constant num-

ber of image frames defined by the user (allowing rmsf values to be sampled

repeatedly on an identical and comparable scale). The default numberof frames

(n) in the software for a given time slice is n¼ 50, representing 0.01 ns of simu-

lation time (pulled at a rate of 0.0002 ns/frame). Users can adjust the number of

frames for time slices at the command prompt. The rmsf value is thus

rmsf ¼ 1

4
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where v represents the set of XYZ atom coordinates for i backbone atoms

(C, N, O, and C ) for a given amino acid residue over j time points, and w
a

represents the average coordinate structure for each MD production run for

a given ensemble (using the ‘‘atomicfluct’’ function from cpptraj software

(23)). Therefore, rmsf values as defined here represent MD at the resolution

of a single amino acid backbone segment and the same resolution at which

fine-scale protein-level molecular evolution operates via amino acid

replacement, insertion, and deletion. Two ensembles of rmsf values (a query

set and a reference set) are compared to calculate average delta rmsf

(dRMSF). The user can choose to see the average angstrom difference be-

tween sets of values, or more preferably, the user can calculate the symmet-

ric Kullback-Leibler (KL) divergence (24) (i.e., relative entropy) between

the two empirical statistical distributions of rmsf. The KL divergence gener-

ally provides a richer, more informative view of dynamic differences with

less loss of information than simple averaging. Thus, dRMSF comparing

rmsf values for two ensembles of size m for a given amino acid is

dRMSFavg ¼
 Xm
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The resulting dRMSF or ‘‘dFLUX’’ values are color mapped to either still

structures or movie images of the dynamics according to either a ‘‘temper-

ature’’ scale in which (þ) dRMSF ¼ amplified vibration is red and (�)

dRMSF ¼ dampened vibration is blue. A ‘‘stoplight’’ scale in which (þ)

dRMSF is green and (�) dRMSF is red is also available. On both scales,

neutral values are shaded toward white.
Functional classification of new MD simulation
with maxDemon v1.0

Although users can easily employ DROIDS 3.0 to examine ensemble differ-

ences between functional genetic or binding states, the application of this

knowledge to new MD simulation is nearly impossible because of the

inherent complexity of the moving protein behavior. Our new postprocess-

ing software, maxDemon 1.0, uses machine learning to label or classify the

differences learned by a previous DROIDS query/reference state compari-

son when subsequently applied to one or more newMD runs. The machine-

learning-based detection of variant impacts on functional protein dynamics

presented here is outlined schematically in Fig. 1. Similar to the statistics

for comparative dynamics, the learning algorithms are also applied individ-

ually to each amino acid backbone’s ensemble of rmsf values. This allows

for similar single-residue resolution in the results. Learners are also applied

within the same user-defined time slices of rmsf, allowing for visualization

of time resolution of the classification of functional dynamic behaviors as

well. The learning performance is summarized by tallying the average clas-

sification over all time slices for each amino acid. Individual classifications

are either 0 or 1; therefore, an average performance of 0.5 would indicate

that the learners are not finding the functional states defined by and trained

by the initial DROIDS comparative analysis. Local canonical correlations

in the positional performance plots are then used in detecting sequence-en-

coded functionally conserved dynamics regions, as well as genetic and drug

class variant impacts to these functional regions. This is described with

more formality below.
Machine learning training and validation

The feature vectors (X) for machine learning are collections of rmsf values

(xi) that represent amino acid backbone atoms C, N, O, and Ca, which are

labeled according to a query (q) and reference state (r) that are defined by

the DROIDS MD comparison (i.e., where labels yi are q ¼ 1 and r ¼ 0).

X ¼ fðxi; yiÞgNi¼ 1 (4)

The length of the vector (N) is defined by the length of the MD production

run chosen by the user and the size of the ensemble of MD production runs

taken. Thus, if the user chooses an ensemble of 200 MD production runs

each at a time length of 0.5 ns (¼2500 frames) and uses the default time

interval of 50 frames to calculate any given interval of rmsf, then the result-

ing feature vector will contain 20,000 data values for training (i.e., 10,000

values each for q and r).

MaxDemon creates a ‘‘stacked model’’ or metamodel containing up to

seven different machine learning classification algorithms, including

K-nearest neighbors (KNN), naı̈ve Bayes, linear discriminant analysis,

quadratic discriminant analysis, random forest, adaptive boosting, and sup-

port vector machine (with kernel options including parameter tuned linear,

polynomial, laplace, and radial basis functions). R packages employed

here areKNN,MASS, kernlab, randomForest, and ada (25,26).We restricted

machine learning to ‘‘shallow’’ learning methods because of the relatively

small data sets created when resolving dynamics of protein systems to short

slices of time over single amino acids and also because of the robustness of

the R packages when applied sequentially over large amounts of total time

and large amounts of structural space. Therefore, we do not yet support im-

plementation of deep-learning neural networks. Formethodologically robust

results on small proteins, we generally recommend users select all seven
Biophysical Journal 118, 541–551, February 4, 2020 543
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available methods. As real features of dynamics should be detectable by any

method of learning, the agreement of classification obtained by the creation

of a stacked model utilizing different learning methods makes the learning

less sensitive to methodological artifacts. Depending on system resources,

users can choose to include or omit methods from four categories of learning

(i.e., instance-based ¼ K-nearest neighbors (KNN), probabilistic ¼ naive

Bayes (NB)/linear discriminant analysis (LDA)/quadratic discriminant anal-

ysis (QDA), black box ¼ supportive vector machine (SVM), and ensemble

learning ¼ random forest/adaptive boosting). Users will want to use as

many models as their system resources can handle; however, for faster pro-

cessing, a minimum of three of the seven learning methods can be chosen.

Currently, all algorithms except KNN are programmed to use all available

CPU cores found on the system. SVM and adaptive boosting are sometimes

the slower methods for larger protein systems and can be omitted first when

more than 500 residues are present in the protein simulation. However, these
FIGURE 1 Figure360 Schematic overview of DROIDS 3.0 þ maxDemon 1.0

tionally conserved protein dynamics. The pipeline starts with (A) generation of tw

functional comparison of protein states (e.g., mutation, binding, or environme

comparatively analyzed/visualized (i.e., using DROIDS) and are also later u

maxDemon). Note: the pictured DROIDS analysis of nucleosome shows overa

the histone tails cross the DNA helix. (B) New MD simulations are generated o

of functional variants, and (C) up to seven machine learning methods are emp

the functional comparison defined by the initial training step. (D) The perform

over 50 frame time slices for each amino acid position, and regions of function

lations in this learning efficiency (i.e., Wilk’s lambda) in self-similar MD valid

genetic/drug class variant MD compared with the MD in the self-similar runs (
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methods are better at classifying complex differences in dynamic behavior

and should be retained whenever possible.

After learners are trained on the query and reference ensembles, they are

validated on two new MD runs that match the state of the reference MD

runs during training. For example, when analyzing a binding interaction

in which the reference ensemble of training runs are conducted in the un-

bound protein state, a new run will be conducted in the unbound state,

and a line plot of the machine learning performance (i.e., precision, recall,

and accuracy) will be generated for all positions on the protein. It would be

expected that if comparative differences in dynamics observed in the

training set have a genuine relation to function(s) defined during training,

they will display repeated behavior in the new reference run and be identi-

fied by the stacked learning model, which generates local peaks in learning

performance (i.e., accuracy) at functional regions (Fig. 1 D). Learner

performance for a given machine learning method is defined as
software for machine-learning-based detection of variant impacts on func-

o large ensembles of molecular dynamic (MD) simulations that represent a

ntal change). The rmsf of protein backbone atoms in these ensembles are

sed as preclassified training data sets for machine learning (i.e., using

ll dampening of rmsf in the histone core with maximal dampening where

n two structures self-similar to the query state of training as well as a list

loyed to classify the MD in the self-similar and variant runs according to

ance of learning is defined by average value of classification (i.e., 0 or 1)

ally conserved dynamics are later identified by significant canonical corre-

ation runs. The impacts of variants are later defined by relative entropy of

data not shown). To see this figure in color, go online.
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performance ¼ TPþ TN

TPþ TN þ FPþ FN

¼ TPþ 0

TPþ 0þ FPþ 0
;

(5)

where TP, TN, FP, and FN are true positive, true negative, false positive, and

false negative classifications, respectively. The zero value terms arise

because the validation is conducted on simulations representing just the

reference state of the DROIDS comparison (where yi ¼ 0). Therefore,

accuracy and precision are algebraically collapsed to a single equivalent

performance metric, whereas recall is always equal to 1.
Identifying regions of conserved dynamics

Functionally conserved dynamics are defined as repeated (i.e., self-similar)

local sequence-dependent dynamics discovered after training machine

learners on the functional state ensembles derived with DROIDS.

Conserved dynamics are detected via significant canonical correlations in

position-specific learning performance patterns after the deployment of

learners on the two new MD simulation runs that were set up identically

to the reference dynamic state defined by the MD ensemble training set.

We expect that functionally conserved dynamics will be sequence encoded

and therefore should display a repeated position-dependent signature in our

learned pattern profiles whenever MD runs are set up identically to MD

upon which learners were trained. Therefore, a significant local canonical

correlation (i.e., Wilk’s lambda (27)) between learning performance profiles

of self-similar MD runs can be used to detect local regions of conserved

protein dynamics.

To detect functionally conserved dynamics after training, two additional

MD runs matching the functional reference state are created. The learning

performance of these runs are compared using a canonical correlation anal-

ysis conducted using all selected learners (i.e., the stacked model) across

both space and time (i.e., fluctuations of backbone atoms of individual

amino acids over subdivided time intervals). Any sequence-dependent or

‘‘functionally conserved’’ dynamics can be recognized through a significant

canonical correlation in the profile of the overall learning performance

along the amino acid positions for the two similar state runs. In effect,

this metric defines dynamics that are functionally conserved by capturing

a signal of significant self-similarity in dynamics that colocalizes to a

specific part of the protein backbone.

conserveddynamics ¼ significant
�
CCself

�
(6)

Significantly conserved regions calculated within a user-defined sliding

window (default value ¼ 20 residues with cutoff of p < 0.01) are plotted

upon the positional local correlational value profile (i.e., R value) and

also mapped to the reference structure of the protein, colored in dark

gray on a light background.
Variant impact assessment

By extension, mutational impacts of genetic or drug class variants on the

functionally conserved dynamics can be quantified by their effects that

range significantly beyond those observed in the self-similar validation

runs that identify functionally conserved dynamic regions. Thus, when

canonical correlations of variants differ significantly from the self-corre-

lation observed in functionally conserved regions, we can plot the

magnitude of impact defining how the variant’s dynamics differs from

the routine self-similar dynamics of the normally functioning protein.

The impacts of dissimilar states caused by altered amino acid sequence

or different binding partners are assessed through their local effect on the

same canonical correlation identifying conserved dynamics. We intro-

duce a metric of relative entropy relating the canonical correlations in
both the self-similar and altered variant state. In essence, this is a metric

of the ‘‘impact’’ of a given genetic or drug class variant within the

context of normal functioning dynamics. For example, when trained

on a natural binding interaction (e.g., DROIDS analysis comparing a

DNA binding protein in its bound and unbound states), novel MD simu-

lations with a variety of amino acid replacements can be deployed to see

whether the learners can still recognize the functional dynamics in the

mutant forms. In this case, functionally tolerated mutations will result

in functionally conserved dynamics that do not vary outside of 53 stan-

dard deviation bounds of the self-similar validation runs, whereas func-

tionally intolerant mutations will result in significant deviations from

self-similarity of motion. An overall impact of a genetic and/or

drug class binding variant on the conserved dynamic regions is

calculated by

variantimpact ¼ CCself � log CCvariant

CCself

(7)

Comparative plots of local variant impacts outside of the 3 standard

deviation bound determined by the validation run are generated within

a user-defined sliding window. Thus, this variant impact metric is

designed to identify variant regions with dynamics that potentially

alter conserved dynamic features of the normally functioning protein

system.
Three example applications (case studies)

To demonstrate the performance and utility of DROIDS 3.0 with

maxDemon 1.0, we ran the following three comparative case studies using

the Protein Data Bank (PDB) identifiers mentioned below. Bound and un-

bound files were created by deleting binding partners in UCSF Chimera

(28) and resaving PDBs (e.g., 3t0z_bound.pdb, 3t0z_unbound, and

3t0z_ligand). Each MD run ensemble consisted of 200 production runs

at 0.5 ns explicitly solvated in a 12-nm octahedral water box using

TIP3P solvent model (29) with constant temperature under an Anderson

thermostat (30) using particle mesh Ewald summation implemented on

pmemd.cuda (15). The models were charge neutralized with both Naþ

and Cl� ions. The heating and equilibration runs before production

were 0.3 and 10 ns, respectively. Before heating, 2000 steps of energy

minimization were also performed. All seven available machine learning

classifiers were trained on the functional MD ensembles and deployed

upon new 5-ns production runs for each variant analyzed. The force fields

applied were ff14SB (31), DNA.OL15 (32), and GAFF2 (33), when

appropriate.

Case study 1 (Figs. 2 and 3; PDB: 1ubq and 2oob)—to analyze self-

stability, effect of temperature shift in ubiquitin, and functional binding

of ubiquitin to ubiquitin ligase.

Case study 2 (Fig. 4; PDB: 1cdw) —to analyze functional binding of

TBA to DNA and the impacts of several genetic variants.

Case study 3 (Fig. 5; PDB: 3t0z plus six variants (Fig. S2)) —to analyze

functional ATP binding in Hsp90 and subsequent impacts of six Hsp90-in-

hibitor drug variants.
Improvements and upgrades over previous
versions

A complete list of improved features and upgrades can be found on page 2

of the DROIDS 3.0 user manual. General advice for implementation can

also be found here. A 22-page, step-by-step, illustrated tutorial is also

available (DROIDS þ maxDemonTUTORIAL.pdf) on our website and

GitHub repository below. At GitHub, please follow the link to ‘‘Releases’’

and download the latest release as a .tar.gz or .zip file. This software is

distributed under open source GPL v3 license. See COPYING.txt in the

GitHub repo for more details (https://github.com/gbabbitt/DROIDS-3.
Biophysical Journal 118, 541–551, February 4, 2020 545
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FIGURE 2 Analysis of environmental temperature change on nonfunctional ubiquitin dynamics (PDB: 1ubq). Shown are DROIDS image and analysis of

random ubiquitin dynamics compared at the same (A, B, and E) and different (C, D, and F) temperatures. Note: inset images (A and C) show the KL diver-

gence in dynamics (B and D), with blue color indicating damped atom fluctuation (decreased rmsf) at temperatures lowered by 50 K. Note that machine

learning performance is much higher when a temperature difference is modeled (E and F); however, as expected, neither comparison offers the machine

learners a sequence-dependent profile correlation by which to establish a signal of conserved dynamics. To see this figure in color, go online.

Babbitt et al.
0-comparative-protein-dynamics; https://doi.org/10.5281/zenodo.3358976

concurrent with this publication; https://zenodo.org/record/3567555#.

Xe4MJ5NKiiQ).
FIGURE 3 Analysis of mutational impact and tolerance on functional ubiqui

ubiquitin bound to the UBA of ubiquitin ligase. Note: blue color quantifies damp

on same range scale in (C)) and also by the (B) respective rmsf profiles of boun

colored by residue. Arrows indicate the most prominent dampening of rmsf nea

dynamics, determined via significant local canonical correlation, are shown in da

image. (F) Local learning performance of each machine learning method in sel

bound to ubiquitin ligase (PDB: 2oob). Note the two prominent local regions of c

of functionally conserved dynamics. To see this figure in color, go online.
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The software is also hosted at our laboratory’s website, https://people.rit.

edu/gabsbi, along with a short video description; information regarding its

utility, system requirements, and implementation; and a step-by-step
tin dynamics (PDB: 2oob). (A) Shown are DROIDS image and analysis of

ened atom fluctuation (rmsf) at the binding interface (i.e., negative dFLUX

d and unbound training states and (C) the KL divergence or dFLUX profile

r loops at Thr9, Ala46, and C-terminus. Regions of functionally conserved

rk gray in both (D) traditional N- to C-terminal plot as well as (E) structural

f-similar testing runs is shown color coded by validation runs on ubiquitin

orrelated (and sequence-dependent) learning performance used as indicators

https://github.com/gbabbitt/DROIDS-3.0-comparative-protein-dynamics
https://doi.org/10.5281/zenodo.3358976
https://zenodo.org/record/3567555#.Xe4MJ5NKiiQ
https://zenodo.org/record/3567555#.Xe4MJ5NKiiQ
https://people.rit.edu/gabsbi
https://people.rit.edu/gabsbi


FIGURE 4 Analysis of mutational impact and tolerance on DNA binding in TBP (PDB: 1cdw). Shown are DROIDS image and analysis of TBP in DNA-

bound and -unbound states showing (A) KL divergence colored TBP structure, (B) respective rmsf profiles, and (C) KL divergence (dFLUX) plot. Note:

arrows indicate functional binding loops in the DNA minor groove, and red color indicates dampened rmsf. Shown is the maxDemon analysis (D and E)

identifying conserved dynamics supporting both minor groove binding loops and connecting them through the central region of the b-sheet in the main

body of TBP closest to the DNA. To see this figure in color, go online.
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tutorial for new users. Bugs can be reported to the to the corresponding

author of this paper.

We also periodically post examples using DROIDS, video tutorials, and

ongoing student projects here to https://www.youtube.com/channel/

UCJTBqGq01pBCMDQikn566Kw.

Major dependencies are as follows: Amber 16/18, Ambertools (cpptraj),

CUDA 9.0, UCSF Chimera, and R software. Note that there are more minor

package dependencies from Debian, perl, python, and R, so please use the

installer perl script DROIDS þ AMBERinstaller.pl included in the down-

load. Command prompts allow users to skip over the UCSF Chimera,

Amber, Ambertools, CUDA, and base R installations if the system already

has these in place. Building from a fresh Linux Mint install might work best

for most users who are experienced with building Linux-based Amber sys-

tems. We are currently working on a Docker container and virtual machine

environment for DROIDS to allow for high-performance installations on

GPU-enabled servers and GPU-enabled cloud services.
RESULTS AND DISCUSSION

To demonstrate the variety of comparative analyses that can
be addressed with the new release of DROIDS 3.0 and max-
Demon 1.0, we chose three different case studies of compar-
ative protein dynamics. These included 1) an analysis of
self-stability and temperature effects in single ubiquitin
structure and a subsequent analysis of ubiquitin and ubiqui-
tin ligase binding interaction, 2) a functional genetic variant
analysis of DNA binding in TBA, and 3) a drug class variant
analysis of compounds targeting the ATP-binding region of
the Hsp90 heat shock protein.
Machine learning analysis of functional and
nonfunctional dynamics of ubiquitin

We first simulated a null comparison as a ‘‘sanity check’’ by
running a query and reference ubiquitin (34) MD at the same
temperatures (both 300 K) and same solvent conditions
(PDB: 1ubq). The DROIDS analysis (Fig. 2, A and B)
showed identical atom fluctuation profiles along the back-
bone and a random dFLUX profile indicative of nonsignifi-
cant differences due to small random local thermal
differences in the training sets. The machine learning classi-
fication plots on new MD runs vary randomly around 0.5,
reflecting the fact that the learning algorithms effectively
had no features to train on (Fig. 2 E). By contrast, a protein
dynamic comparison run with a 50 K temperature difference
(Fig. 2, C and D) shows a much higher machine learner per-
formance upon deployment (i.e., 70–80% successful classi-
fication; Fig. 2 F). Because environmental temperature
shifts are not expected to reflect evolutionarily conserved
dynamics and are not position dependent in their effect,
they subsequently do not result in significant canonical cor-
relations in the learning profiles (data not shown). Represen-
tative time slices of the positional classifications in each of
these experiments indicate that our machine learning is
capable of extracting and identifying simple differences in
dynamics due to temperature. Another interesting observa-
tion here was the slightly higher learning performance of
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FIGURE 5 Analysis of drug class variant binding in the ATP-binding domain of Hsp90 (PDB: 1yet, 2fwy, 2h55, 3t0z (ATP), 3mnr, 4egk, 4hy6). Shown are

DROIDS image and analysis of Hsp90 in ATP-bound and -unbound states showing (A) KL divergence colored Hsp90 structure. Note: arrows and green color

indicate regions where rmsf is amplified in response to ATP binding. Shown is a maxDemon analysis identifying conserved dynamics connecting the ATP-

binding pocket and region of amplified rmsf (B and C); mutational impacts of six drug class variants targeting the ATP-binding pocket of Hsp90 are plotted

locally as line graphs and in total as a bar chart. Note how geldanamycin (1yet), which mimics the ATP in its binding contacts, has overall dynamic impact

very similar to that of ATP (3t0z). See Fig. S3 for more details regarding drug class variant contacts to the ATP-binding pocket. To see this figure in color,

go online.

Babbitt et al.
the simpler machine learning methods QDA and LDA over
others at all sites in the temperature-shifted example. We
interpret this to be related to the fact that underlying rmsf
distributions are probably Gaussian, a critical assumption
of these two models, with unequal variances caused by
steric hindrances on the backbone. This would predict that
QDA might outperform other learners in this situation,
and it appears that it does. We note that when more complex
functional dynamics are concerned, the more sophisticated
learning methods, such as support vector machine and ada-
boost, often perform slightly better than others. However,
we also note that these performance differences are usually
quite small and that all learning methods generally come to
similar local conclusions about functional dynamics.

We now move on to examine machine learning perfor-
mance regarding more functional binding dynamics in
ubiquitin. To examine functional dynamics in ubiquitin,
we conducted a DROIDS analysis comparing its two func-
tional states, bound and unbound, to the ubiquitin-associ-
ated binding (UBA) domain of ubiquitin ligase (Fig. 3 A;
(35)). This binding domain is highly conserved among the
many other proteins that interact directly with ubiquitin.
The binding interaction greatly reduces the atom fluctuation
in ubiquitin at three characteristic positions involving two
548 Biophysical Journal 118, 541–551, February 4, 2020
loop structures centered at Leu8 and Ala46 and a portion
of b-sheet at the C-terminus (Fig. 3, B and C). These three
regions also drive significant differences in dynamics across
the whole protein. In novel self-similar MD validation runs
on the bound state, we successfully detect significant canon-
ical correlations, determined by Wilk’s lambda, and indicate
functionally conserved dynamics in these three regions
covering a broad expanse of the known conserved regions
across the UBA domain (Fig. 3, D and E). These regions
correspond to prominent local peaks in the machine learning
performance after training upon the bound and unbound
dynamics (Fig. 3 F).
Machine learning analysis of impacts of genetic
variants on DNA binding interaction

TBP is a general transcription factor that binds DNA
upstream in most highly regulated eukaryotic gene promoter
regions (36). Although relatively small, it is a mechanically
dynamic protein with a C-clamp-like structure that highly
distorts the rigid DNA double helix by inserting four
phenylalanine side chains between basepairs. It is thought
that this bending allows TBP to be more rapidly released
from the TATA element, as opposed to TATA-less
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promoters, subsequently allowing more highly controlled
regulatory responses in TATA box genes (37). Because of
its obvious symmetry and ability to impart large forces dur-
ing binding, we thought that it would represent a good
candidate for comparison of its dynamics during its binding
interaction with DNA. We conducted a DROIDS analysis
comparing human TBP (38) in its functionally bound and
unbound states (Fig. 4, A and C). TBP exhibits a character-
istically large signature of dampening of atom fluctuation
throughout its entire structure, with most pronounced effects
in two loop regions that interact with the minor groove of
DNA (arrows in Fig. 4, A and C). Canonical correlations
in new self-similar MD runs marking increased performance
in classification were observed in these regions (Fig. 4 D)
along with corresponding regions of conserved dynamics
identified by significant Wilk’s lambda (Fig. 4 E).
Conserved dynamics from these loop areas are connected
through the chains in the b-sheet region of TBP spanning
the DNA major groove contact. Mutational impacts of
four variants affecting the binding loop most proximal to
the C-terminal exhibited followed our expectation of
increasing impact ordering from R192Q, R192K,
R192polyD, and R192polyW (Fig. S1). The polyD and
polyW mutations incorporated five sequential Asp or Trp
residues centered at R192, both causing the loop region to
become more rigid (causing increased negative dFLUX).
We expected that the strong functional binding effect
observed across nearly all residues in this system would
make it relatively highly tolerant to single amino acid sub-
stitutions, even when located in the most functional binding
loop. In accordance with our expectations, we found the
most impactful multiple mutation (i.e., R192polyW) signif-
icantly affected the dynamics of nearly six times more
local residues than the least impactful single substitution
(i.e., R192Q).
Machine learning analysis of impacts of drug
class variants targeting the ATP-binding region of
Hsp90

In contrast to TBP binding to DNA, we wanted to use our
method to examine a small-molecule binding interaction
in a protein with potentially more complex impacts on
MD. Hsp90 is a well-known chaperone protein that assists
the folding of many proteins, thereby mitigating many envi-
ronmental stresses in the cell. Hsp90 also capacitates the
evolutionary process by allowing potential phenotypic vari-
ation exhibited under stress to be hidden from natural selec-
tion until needed in response to environmental change (39).
Hsp90 contains a highly conserved N-terminal domain in
which ATP binding and activation occur (i.e., the Bergerat
fold). The binding of ATP physically changes motions in
this region, creating a ‘‘lid’’ that is closed during ATP bind-
ing and open when conversion to ADP occurs. Dimerization
of two N-terminal domains occurs as part of the ATPase
cycle. Because of the role of Hsp90 in stress mitigation in
most tumors, it is a common drug target for ATP inhibitors
in many cancer therapies (40,41). The amino acid residues
that interact with ATP in this region are well-known, and
the inhibitor geldanamycin is known to mimic nearly all
the local ATP contacts as well (42). Other more modern in-
hibitors interact with the ATP-binding pocket quite differ-
ently (41,43,44), so we hypothesized that this system
would be a good candidate for comparative analysis of
drug class variants with our software.

We conducted a DROIDS analysis comparing the dy-
namics of this ATP-binding N-terminal domain of Hsp90,
a common drug target for inhibitors in many cancer thera-
pies, in both its ATP-bound and -unbound states. The bind-
ing of ATP was discovered to significantly destabilize three
colocalized a-helical regions of the protein adjacent to and
extending from the ATP-binding site (Fig. 5 A), possibly
functioning to unbalance solvent interactions on the struc-
ture and subsequently enhance the dimer formation between
adjacent N-terminal domains. MaxDemon analysis
confirmed the dynamics of this region to be highly
conserved in new MD runs (Fig. 5, B and C). We also
analyzed the impacts of the six drug class variants targeting
the ATP site (42–46) but interacting differently with resi-
dues in this region (Fig. 5, D–F). The contacts in the
ATP-binding site are listed in Fig. S2 A. Although the local-
ized patterns of impacts of the drug variants were all quite
similar to ATP (Fig. S2 B), the drug variants that most
closely mimicked the contacts of ATP (i.e., geldanamycin,
PDB: 1yet) had far less impact on conserved dynamics
than variants that interacted very differently with the bind-
ing pocket (i.e., benzamide SNX1321 and inhibitor FJ1
(PDB: 3mnr and 4hy6). See Fig. 5 F. We feel that this
finding not only demonstrates the potential utility of our
method quite well but also suggests that although it is
important to be able to target a druggable protein binding
site (47), researchers should also consider how these various
small molecules might alter, or fail to alter, the natural dy-
namics of the ligand binding in the target protein. For situ-
ations in which a drug might too closely mimic the dynamic
effects of a natural activator like ATP, a hyperactivation
response of phosphorylation signaling in pathways might
occur (48–50). Alternatively, other situations may require
drug targeting that does not alter the natural dynamic
behavior too much, potentially activating proteolytic sys-
tems in the cell. Our software allows more detailed investi-
gations of these potential dynamic impacts of drug class
variants.
CONCLUSION

We provide a valid method and well-documented, user-
friendly software pipeline for conducting statistically
sound comparative studies of large ensembles of compara-
tive protein dynamics. The method/software provides
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machine-learning-based quantification of effects on novel
MD simulations that represent various functional variants
of interest to the user. Although there are currently several
other software packages allowing users to connect
sequence-based evolutionary metrics to protein dynamics
(51–53), our method/software is unique in that regions of
functional conservation are identified by analyzing self-
similar features of dynamics themselves rather than relying
upon linking analysis of dynamics to traditional, static,
sequence-based approaches to molecular evolutionary
inference, which do not necessarily assume that a
conserved function region has a strong dynamic compo-
nent. By providing a systematic way of comparing protein
dynamics at single-residue resolution, our method/soft-
ware provides an important step beyond traditional
sequence-based bioinformatics, allowing investigators
another valuable method by which to gain a more bio-
physically grounded view of functional and evolutionary
change (52–54). Another advantage to our method/soft-
ware is that our functional impacts (i.e., mutational toler-
ance) are defined solely within the context of a protein
dynamic system simulation. This provides a much deeper
look into protein-specific function than current genomic
and proteomic database methods of predicting mutational
tolerance (21,22) currently allow. Although MD analysis
is currently often limited by molecular system size and
timescale, as off-the-shelf GPU technology for both IT
servers and the PC gaming community continues to
advance at a rapid pace over the next few years, our
method/software may have future potential applications
to the development of precision and personalized medi-
cine. This is especially true when detailed understanding
of the interactions between genetic and drug class variants
are needed within the context of the dynamics of specific
disease-related protein systems.
SUPPORTING MATERIAL

Supporting Material can be found online at https://doi.org/10.1016/j.bpj.

2019.12.008.
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