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Abstract: Although it has been widely recognized that land fragmentation has increased chemical
fertilizer application, little is known about the role of technology adoption in mitigating these adverse
effects. To empirically examine the relationship between land fragmentation, technology adoption
and chemical fertilizer application, we developed a mediation model. We applied our analysis to
a survey data set encompassing 1388 farm-level samples collected in 14 Chinese provinces in 2019.
Our study demonstrated that land fragmentation can not only directly increase chemical fertilizer
application but also indirectly increase it by hindering the adoption of agricultural mechanization
technologies (AMT’s) and soil testing fertilization technologies (STFT’s). Both are recognized as potent
drivers of fertilizer use reductions. Moreover, the adoption of information and communications
technologies (ICT’s) can help mitigate the negative effects of land fragmentation on technology
adoption, thus reducing chemical fertilizer application intensity (CFAI). However, the direct effects
of land fragmentation on CAFI was unaffected by ICT’s. Our findings suggest that ICT’s have
revolutionized farmer recognition, promotion and adoption of agricultural technologies by increasing
awareness and diffusion of agricultural technology information.

Keywords: land fragmentation; agricultural mechanization; ICT’s; soil testing fertilization;
sustainable agricultural practices

1. Introduction

Chemical fertilizers are widely adopted in agricultural production and play a sig-
nificant role in increasing yields of agricultural products and ensuring food security [1].
However, the excessive use of chemical fertilizer has resulted in various problems such as
food insecurity, soil degradation and greenhouse gas emissions in developing countries,
especially in China [2]. More importantly, the overuse of chemical fertilizer in agricultural
production has become a public concern, for social well-being and ecological balance are
seriously threatened by massive chemical fertilizer use [3,4].

China’s agricultural production features small-scale farming and severe land fragmen-
tation. About 210 million rural households in China operate on cultivated land less than
10 mu (0.667 hectares) and the average farm size is only 7.46 mu (0.497 hectares) [5]. Com-
pared with other Asian countries, the farm size in China is about one-third of that in South
Korea and one-quarter of that in Japan [6]. Farm households have been the driving force of
agricultural production since the implementation of the Household Contract Responsibility
System in 1979.

Meanwhile, China is also the country with the largest amount of chemical fertilizer
application in the world in terms of overall tonnage [7]. The agricultural growth in China
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depends heavily on the use of chemical fertilizer. The total agricultural output increased
by 42.23% from 1978 to 1984, among which 45.79 percent of this output growth came from
increases in inputs, including cultivated land, labor, fertilizer and capital, and fertilizer
alone contributed 32.2% of the growth [8]. Some studies suggest that the extensive use
of chemical fertilizers and other inputs is the fundamental reason for the rapid growth of
Chinese agriculture [9]. Consequently, the development of sustainable agriculture in China
is faced with severe challenges.

The unfavorable natural resource conditions have made it essential for China to
develop intensive agriculture. However, the excessive and inefficient use of agricultural
inputs were quite commonly seen at the early stages of agricultural production so as to
ensure food security [10–14]. As a result, the extensive use of agricultural inputs has greatly
damaged the environment [15–19].

In order to reduce the use of chemical fertilizers, the Chinese government has imple-
mented a series of policies, such as the removal of subsidies for chemical fertilizers and the
promotion of soil testing technologies [20,21]. Although early studies assume that these
policies may not significantly decrease chemical fertilizer application [7], we believe that
these policies have helped reduce the amount of chemical fertilizer application. According
to the data from National Bureau of Statistics of China [22], the consumption of fertilizers
in China has seen a steady increase since 1978, reached its peak at 60.33 million tons in
2015, and started to decrease thereafter, as is shown in Figure 1.
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Figure 1. The consumption of chemical fertilizers in China from 1978 to 2020. Source of data: National
Bureau of Statistics of China, 2021.

Although there has been a slight decrease in recent years due to the policies imple-
mented, the consumption of chemical fertilizers remains large. In 2020, there were still
52.5 million tons of chemical fertilizers consumed. Moreover, the household-level survey
data from the Research Center of Rural Economy (RCRE) of the Ministry of Agriculture and
Rural Affairs of China shows a similar trend. The survey dataset with 17,000 farm-level
observations in 31 provinces of China shows that the amount of chemical fertilizers applied
by Chinese farmers basically remained at 464.18 kg/ha from 1995 to 2015 [6]. A question
arises: what are the root causes of small farmers applying such an enormous amount of
chemical fertilizer?

To answer this question, a growing body of literature has explored the drivers of
chemical fertilizer application. The results, however, are unclear and even conflicting.
While several studies suggested that farm household and farmer characteristics, including,
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farm size, cropping structure and resource endowment, have significant effects on the
amount of chemical fertilizer application [23–27], others show that the effects of individual
characteristics on fertilizer application tend to be weakened over time since smallholder
farmers are likely to imitate each other and apply the same amount of fertilizers [28–30].
Therefore, land resource conditions are still regarded as one of the key drivers for chemical
fertilizer application. In particular, China is faced with unfavorable land resource endow-
ment, such as extremely small farm size and serious land fragmentation and whether it
restricts the reduction of fertilizer application has raised a lot of concern.

Most of the existing studies investigating the impact of natural resource endowment
on fertilizer use are mainly focused on farm size [31,32], and little is known about whether
the characteristics of farmland affect chemical fertilizer use, and the influence mechanism
remains unclear. Some studies in the literature have argued that land consolidation through
land use rights circulation contributes to the reduction of chemical fertilizer use [33].
However, land use rights trading may increase the degree of land fragmentation, which
increases the difficulty in agricultural production and farm management. It is unreasonable
to discuss farm size only and ignore the role of land fragmentation. Furthermore, the results
of the studies on the relationship between farm size and fertilizer use are unclear and even
conflicting. While some studies show that increasing farm size can reduce chemical fertilizer
application without decreasing or even increasing crop yield [7,31], others find that smaller
farm size can lead to higher fertilizer use efficiency [32]. Moreover, precious few studies
have explored the negative impact of land fragmentation on farmers’ fertilizer use efficiency
and discussed the heterogeneous effects of different contributing factors, such as farm size,
crop structure and land quality [34]. However, the influence mechanism has not yet been
fully understood.

More importantly, the existing literature has shown that land fragmentation may
hinder the adoption of modern agricultural machinery [35], increase production costs [36]
and cause the loss of technical efficiency [37] and land use efficiency [38]. Hence, land
fragmentation may also have a direct impact on farmers’ behavior regarding chemical
fertilizer application. On one hand, instead of using machinery, smallholder farmers are
likely to increase other inputs such as applying more chemical fertilizers and using more
labor since land fragmentation increases the difficulty of mechanical operation, resulting in
higher mechanical costs [39,40]. In particular, the low ratio of fixed inputs to total inputs is
the key factor leading to over-fertilization on smallholder farms because smallholders lack
fixed inputs and then compensate by over-applying fertilizer to attempt to achieve their
yield goals [41]. On the other hand, land fragmentation also makes it possible for farmers
to flexibly distribute labor and other inputs and thus improve efficiency [42,43].

Based on the above observations and previous studies, we hypothesize that land
fragmentation has a significantly positive effect on chemical fertilizer application, and
the adoption of agricultural technologies plays an important role in it. In other words,
land fragmentation exerts a significant influence on farmers’ chemical fertilizer application
via its influence on the adoption of agricultural mechanization technologies (AMTs) and
soil testing fertilization technologies (STFTs), and the information and communications
technologies (ICTs) can help mitigate these negative effects. To fill in the literature gap, in
this study, we provide a robust estimation of the effects of land fragmentation on farmers’
chemical fertilizer application as well as the role of the adoption of three technologies in
China’s maize production.

The objectives of this study are two-fold. The first is to explore how land fragmentation
and the adoption of two agricultural technologies, i.e., AMT and STFT, affect chemical
fertilizer application intensity (CFAI) in maize production through a mediation model.
The second is to investigate how ICT adoption mitigates the negative effects of land frag-
mentation on the adoption of two agricultural technologies and the reduction of chemical
fertilizer application. Our analysis reveals the mechanism by which land fragmentation
affects farmer’s chemical fertilizer application via agricultural technology adoption. Specif-
ically, land fragmentation changes the adoption of AMTs and STFTs, resulting in increasing
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farmers’ chemical fertilizer application. Moreover, the adoption of ICTs can mitigate the
process where land fragmentation negatively affects AMT and STFT adoption. To our
knowledge, this study is among the first to investigate the effects of land fragmentation on
chemical fertilizer application through the adoption of three technologies in rural China
and therefore help shed light on the issue. Our study also has important implications for
developing countries with agricultural characteristics similar to China.

The remainder of this paper is organized as follows. In Section 2 we provide the data
and estimation strategy, followed by the estimation results in Section 3. Section 4 presents
the discussion, and Section 5 concludes.

2. Methodology and Data
2.1. Empirical Model
2.1.1. Chemical Fertilizer Application Intensity

Chemical fertilizer application intensity (CFAI) is measured as the consumption of
chemical fertilizers per hectare sown area. It is a general index to reflect chemical fertilizer
use and corresponding ecological risks [44]. The CFAI can be calculated as:

CFAI =
CCF
SAC

(1)

where CCF denotes the consumption of chemical fertilizers, which refers to the total amount
of chemical fertilizers applied in maize production, including nitrogenous fertilizers, phos-
phate fertilizers, potash fertilizers and complex fertilizers. SAC denotes the total sown area
of crops, which includes the land owned by the farmers themselves and that transferred
from others.

2.1.2. Simpson’s Index of Diversity

Before the assessment, we needed an indicator containing all important factors to
measure the degree of land fragmentation. Three indicators are widely used in the existing
literature to measure the degree of land fragmentation, i.e., number of plots, average plot
size, average plot distance [31]. The Simpson Index of Diversity (SI), a general indicator to
represent land fragmentation [45,46], is defined as:

SI = 1 − ∑n
i=1 a2

i

(∑n
i=1 ai)

2 (2)

where 0 ≤ SI ≤ 1, when SI = 0, which means that the household has only one piece of
land, with a higher value of SI indicating a higher degree of land fragmentation. n is the
number of plots that the household has. ai is size of plot i.

2.1.3. Plot Distance Index

However, the Simpson index does not capture the distance of each plot [46]. Hence,
we constructed a plot distance index (PDI) which captures the spatial distribution of plots
of the farm household. The PDI is defined as:

PDI =
d1

dmax
× d2

dmax
× d3

dmax
× · · · × dn

dmax
(3)

where di denotes the distance between the farmer’s house and the plot i. dmax is the distance
of the farthest plot to farmer’s house, with a larger value of PDI indicating a higher degree
of land fragmentation.

2.1.4. Mediation Model

In order to examine the mechanism of how land fragmentation affects CFAI, we em-
ployed a mediation model to explore if agricultural technology adoption mediates the effect
of land fragmentation on CFAI. Here, we categorize agricultural technology adoption into
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two types, AMT and STFT. The mediating effect mainly tests the role of agricultural tech-
nology adoption in facilitating the process through which land fragmentation affects CFAI.
The three-model system is widely used to examine the mediating effects of mediators [47],
and we set up the three-model system as follows:

CFAIi = γ0 + γ1SIi + γ2Xki + ε1i (4)

Mi = a0 + a1SIi + a2Xki + ε2i (5)

CFAIi = ρ0 + ρ1SIi + ρ2Mli + ρ3Xki + ε3i (6)

Here SIi indicates the Simpson index of farm i; Mi is the mediator, namely, AMT
adoption and STFT adoption of farm i; Xki is a vector of other variables affecting agricultural
technology adoption and CFAI, including factors such as farm household and farmer
characteristics, farmland characteristics, region characteristics, policies, etc., following the
existing studies [11,37,48]. εi is a random error term.

Specifically, we first test the direct effects of land fragmentation on CFAI without
considering technology adoption in Equation (4). Then we explore the effects of land
fragmentation on agricultural technology adoption in Equation (5). The last step is to inves-
tigate the effects of land fragmentation and technology adoption on CFAI in Equation (6).
If we find a1 equal to 0, ρ2 equal to 0, or ρ1 equal to γ1, then we cannot reject the null
hypothesis that there is not a mediating effect.

To better understand the role of ICT adoption in the relationship among land frag-
mentation, agricultural technology adoption and CFAI, we introduce a dummy variable
(whether the farm household uses smart phone or personal computer (PC) to access infor-
mation about agricultural production and selling via internet) to investigate whether ICT
adoption mitigates the negative impacts of land fragmentation on agricultural technology
adoption and CFAI. Both this dummy variable and its interaction with land fragmentation
are incorporated into the regression so that:

CFAIi = γ0 + γ1SIi + γ2Xki + γ3 ICTi + γ4SIi × ICTi + ε1i (7)

Mi = a1 + a2SIi + a3Xki + a4 ICTi + a5SIi × ICTi + ε2i (8)

CFAIi = ρ0 + ρ1SIi + ρ2Mli + ρ3Xki + ρ4 ICTi + ρ5SIi × ICTi + ε3i (9)

where the dummy variable ICTi takes a value of “1” if the farm uses smart phone or PC,
and “0” otherwise. The internet use can help reduce chemical fertilizer use [49]. Hence,
we hypothesize that ICT adoption has significant and negative coefficients, γ3, and ρ4, in
Equations (7) and (9), respectively. Additionally, ICT adoption enables farmers to access
more information about newly developed agricultural technologies and thus mitigate
the negative effects of land fragmentation on both agricultural technology adoption and
reduction of chemical fertilizer use. We therefore expect that γ4 < 0 in Equation (7); a4 > 0,
a5 > 0 in Equation (8); and ρ5 <0 in Equation (9).

2.2. Data

This study utilizes a dataset which was obtained by a face-to-face questionnaire survey
administered by the National Agricultural and Rural Development Research Institute
(NARI) of China Agricultural University (CAU) in 2019. The survey mainly focuses on
grain production. Multistage sampling was employed for data collection. First, 14 provinces
were chosen. Second, the towns were selected in each province based on the cultivated
area of grains; that is, the sample towns should produce grains. Then 1–2 villages were
randomly selected from each town. Next, 15–20 farm households were chosen from each
village. As there might be farm households that are reluctant to participate in the survey,
such a household would be replaced by another household.

From November to December of 2018, the NARI recruited students from CAU and
trained them to guarantee that these students can collect appropriate data during the
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survey. The survey was conducted from January to February in 2019 when the university
was on winter vacation. In the end, 2866 farm-level questionnaires from grain growers
were obtained, covering a total of 14 provinces. The heads of the farm households were
asked to answer the questionnaire based on their farm management in 2018. The survey
data provide information on the inputs and outputs of crop production, land, income,
expenditure and farm household characteristics.

Since our study is focused on smallholder farmers, we excluded the observations from
farm sizes more than 2 hectares, according to classification by the World Bank. Additionally,
inconsistent and incomplete questionnaires were dropped. The final dataset consists of
1388 farm households engaging in maize production, covering 144 villages from 119 coun-
ties across 14 provinces, namely Inner Mongolia, Jilin, Sichuan, Anhui, Shandong, Jiangsu,
Jiangxi, Hebei, Henan, Hubei, Hunan, Gansu, Liaoning and Heilongjiang provinces, as
shown in Figure 2.
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The distribution of the 1388 observations from the 14 provinces is shown in Table 1.
As one might want to know why there are only a few observations in Heilongjiang and
Liaoning provinces, two major grain-producing provinces in China, the main reason is
that most of the farms in these regions are larger than 2 hectares and were excluded from
our analysis.

Table 1. Distribution of observations by province/autonomous region.

Province N Percentage (%)

Inner Mongolia 82 5.91%
Jilin 69 4.97%

Sichuan 166 11.96%
Anhui 38 2.74%

Shandong 257 18.52%
Jiangsu 110 7.93%
Jiangxi 74 5.33%
Hebei 139 10.01%
Henan 200 14.41%
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Table 1. Cont.

Province N Percentage (%)

Hubei 111 8.00%
Hunan 58 4.18%
Gansu 15 1.08%

Liaoning 39 2.81%
Heilongjiang 30 2.16%

Total 1388 100.00%

2.3. Variables and Descriptive Statistics

The dependent variable is CFAI measured as kilograms per hectare. We calculated
the CFAI using the consumption of chemical fertilizers per hectare sown area. Our core
independent variable is land fragmentation, measured as Simpson’s index. To provide
robustness check, we used plot distance index (PDI), in the estimation.

Covariates in each equation are listed and explained in Table 2. For the two types of
agricultural technology adoption, AMT is measured by a dummy variable, whether the
household used agricultural machinery, and STFT is also measured by a dummy variable,
whether the household adopted soil testing fertilization technologies. As one of our aims
is to evaluate the moderating effects of ICT adoption on the relationship among land
fragmentation, agricultural technology adoption and CFAI, we used a dummy variable,
whether the household adopted ICTs, to measure ICT in our analysis.

Table 2. List of variables and definitions.

Variable Definition and Descriptions Mean Std. Err.

Dependent Variable

CFAI Continuous variable, chemical fertilizer application intensity in maize production (kg/ha),
measured using the CCF divided by SAC, expressed as a natural log (ln) 9.82 4.81

Variables of Interest

SI Continuous variable, land fragmentation, measured as Simpson’s Index of Diversity 0.68 0.22
PDI Continuous variable, plot distance index, proxy of land fragmentation, used for robustness test 0.18 0.36

AMT
Dummy variable, agricultural mechanization technology, “1” if the farm household used
agricultural machinery during production, i.e., tillage, sowing, pest control, irrigation or

harvesting, “0” otherwise
0.71 0.35

STFT Dummy variable, soil testing fertilization technology, “1” if the farm household adopted the soil
testing fertilization technology before the application of chemical fertilizer, “0” otherwise 0.23 0.38

ICT Dummy variable, information and communication technology, “1” if the farmer used smart phone
or personal computer, “0” otherwise 0.59 0.86

Control Variables

Chemical fertilizer
price

Continuous variable, the average price of chemical fertilizer purchased by farmers in 2018
(CNY/kg), expressed as a natural log (ln) 1.66 0.27

Herbicide Continuous variable, the quantity of herbicide input in maize production per hectare in 2018
(kg/ha), expressed as a natural log (ln) 0.58 0.13

Farm size Continuous variable, measured as the operated area of maize cropland (hectare), expressed as a
natural log (ln) 2.01 1.36

Labor migration Continuous variable, measured as the percentage of farm household members employed in
non-agricultural sector 0.43 0.49

Agricultural
investment

Continuous variable, measured as the depreciation expense of fixed assets used in maize
production in 2018 (CNY), expressed as a natural log (ln) 10.65 15.38

Crop structure Continuous variable, measured as the share of sales revenue of grains in agricultural income 0.75 0.51
Sell mode Dummy variable, “1” if the sell mode is instant sale, “0” if the sale mode is contract sale 0.23 0.42

Village leader Dummy variable, “1” if the farmer is village leader, “0” otherwise 0.16 0.37
Flat land ratio Continuous variable, the percentage of flat land in the total operated land area (%) 0.64 0.33

Sloped land ratio Continuous variable, the percentage of sloped land in the total operated land area (%) 0.21 0.12
Hilly land ratio Continuous variable, the percentage of hilly land in the total operated land area (%) 0.15 0.11

Paddy land ratio Continuous variable, the percentage of paddy fields in the total operated land area (%) 0.09 0.06
Dry land ratio Continuous variable, the percentage of dry fields in the total operated land area (%) 0.91 0.77

Self-rated land quality Ordered variable, indicating the self-rated quality of the operated land, “1” if the land is barren,
“2” if low quality, “3” if medium, “4” if medium to high, and “5” if extremely fertile 3.03 0.88
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Table 2. Cont.

Variable Definition and Descriptions Mean Std. Err.

Land use rights Dummy variable, “1” if the land use rights were registered and certificated, “0” otherwise 0.92 0.98
Age Continuous variable, age of the household’s head, expressed as a natural log (ln) 3.94 0.23

Education
Ordered variable, education level of the household’s head (1–6), “1” illiterate, “2” elementary

school, “3” middle school, “4” high school or vocational high school, “5” three-year college, and
“6” college or post-graduate

2.76 0.95

Male Dummy variable, “1” male, “0” female 0.77 0.42

Social capital
Continuous variable, measured as the frequency of the farms reach out to their friends, i.e., the

number of friends or relatives the household says hi to via WeChat, phone calls or meetings during
spring festival, expressed as a natural log (ln)

4.00 4.35

Technical guidance Dummy variable, “1” if the farm household received technical guidance, “0” otherwise 0.16 0.27
Cooperative Dummy variable, “1” if the farm household is member of cooperatives, “0” otherwise 0.25 0.41
Fixed assets
investment

Continuous variable, measured as the depreciation expense of total fixed assets in 2018 (CNY),
expressed as a natural log (ln) 9.27 11.32

Hired labor ratio Continuous variable, measured as the number of work days of hired labor divided by the total
number of work days devoted to maize production in 2018 0.12 0.54

Inward land transfer Dummy variable, “1” if the farm household leased farmland from others, “0” otherwise 0.14 0.28
Outward land transfer Dummy variable, “1” if the farm household transferred land use rights to others, “0” otherwise 0.02 0.12

Producer subsidy Dummy variable, “1” if the farm household received a subsidy on maize production, “0” otherwise 0.15 0.36

Machinery subsidy Dummy variable, “1” if the farm household received a subsidy on the purchase of agricultural
machinery, “0” otherwise 0.05 0.22

East Dummy variable, “1” if farm household is located in eastern region, “0” otherwise 0.34 0.47
Central Dummy variable, “1” if farm household is located in central region, “0” otherwise 0.53 0.50

West Dummy variable, “1” if farm household is located in western region, “0” otherwise 0.13 0.33
Notes: 1. The sum of flat land ratio, sloped land ratio and hilly land ratio equals 1. 2. Land use rights refers to
the registration and certification of farmland. In particular, the rural land registration and certification program
started since the No. 1 central document in 2013 was issued. It is the confirmation of land ownership, land tenure
(land use rights) and other rights. The rights of each parcel must be subject to land registration procedures such as
land registration application, cadastral investigation, verification of affiliation, registration and issuance of land
certificates. 3. We categorize the 14 provinces into three regions according to the geographic location. Eastern
region includes Hebei, Liaoning, Jiangsu, Shandong. Central region includes Inner Mongolia, Jilin, Heilongjiang,
Anhui, Henan, Hubei, Hunan, Jiangxi. Western region includes Sichuan and Gansu.

In the mediation model, we control for farm household and farmer characteristics,
such as age, gender, education, social capital, technical guidance, fixed assets investment
and region characteristics, following the existing literature [6,32,50]. Characteristics of
farmland, such as the terrain and structure of cropland (evaluated by flat land ratio, sloped
land ratio, hilly land ratio, paddy land ratio, and dry land ratio), are also included as
they are considered as crucial factors affecting household decisions regarding farming
techniques [48,51–53]. Self-rated quality of cropland may also affect farmers’ production
decisions due to the endowment effects. Therefore, a variable for self-rated quality of
cropland is included in the model. Moreover, since tenure security contributes to the
reduction of chemical fertilizer use [54,55], a variable for land use rights certification
is included in the CFAI equation. In addition, the rural–urban migration experience is
conducive to reducing fertilizer use [56], so we control for the labor migration variable.
Agricultural subsidies also reduced fertilizer use by promoting the adoption of agricultural
techniques, a variable that indicates whether the farm received maize producer subsidy is
included in the mediation model [57].

A statistical description of variables is presented in Table 2. The average CFAI is
335.89 kg/ha, which is very large compared with some developed countries such as the
United States and Japan. Moreover, the average SI is 0.68 and the average PDI is 0.18, which
means that land fragmentation is severe in China. In addition, more than half of the farms
have adopted AMTs and ICTs, accounting for 71% and 58.8% of the total farms, respectively.
However, only 23% of the farms have adopted STFTs, implying that the advantages of
sustainable agricultural technologies have not yet been fully recognized.

3. Estimation Results
3.1. Baseline Regression

Based on our observation and previous studies, we establish a conceptual framework,
considering the role of AMT, STFT and ICT adoption on the effects of land fragmentation
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on CFAI. A possible mechanism is shown in Figure 3, and we examine it using the survey
data.
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Figure 3. Influence mechanism of technology adoption on land fragmentation and CFAI.

Table 3 reports the mediating effect of STFT and AMT adoption on the relationship be-
tween land fragmentation and CFAI. It shows that the coefficient of SI on CFAI is significant
and positive in columns (1), (3) and (5), implying that land fragmentation has a significantly
positive effect on CFAI. Additionally, the coefficient of land fragmentation on STFT and
AMT adoption is significant and negative, in columns (2) and (4), respectively, which means
that land fragmentation has a negative impact on the adoption of these two agricultural
technologies. Moreover, the coefficient of STFT and AMT adoption on CFAI is significantly
negative in columns (3) and (5), respectively, meaning that the adoption of agricultural
technologies has significantly decreased the CFAI. The results suggest the existence of the
mediating effect of adopting two agricultural technologies, and the total effect mediated
by the adoption of STFTs and AMTs are 11% and 29% respectively. As expected, land
fragmentation can not only directly increase the CFAI, but it also indirectly increases the
CFAI by decreasing the probability of farmers adopting agricultural technologies.

Table 3. Mediating effects of STFT and AMT adoption on the impact of SI on CFAI.

Variable
(1) (2) (3) (4) (5)

CFAI STFT CFAI AMT CFAI

STFT
−0.121 **

(0.052)
AMT −0.238 ***

(0.067)
SI 0.289 *** −0.268 * 0.254 *** −0.352 *** 0.205 ***

(0.051) (0.162) (0.056) (0.039) (0.047)

Control Yes Yes Yes Yes Yes

_cons 3.565 *** 0.233 *** 3.112 *** 0.558 *** 3.223 ***
(1.100) (0.089) (0.655) (0.110) (0.724)

Obs. 1388 1388 1388 1388 1388
R-sqr 0.238 0.117 0.236 0.121 0.241

Sobel tests
0.0019 * 0.0022 ***
(0.0010) (0.0006)

Total effect mediated 11% 29%
Notes: Robust errors are in parenthesis, *** p < 0.01, ** p < 0.05, * p < 0.1. CFAI refers to chemical fertilizer appli-
cation intensity, SI refers to Simpson’s Index of Diversity, AMT refers to agricultural mechanization technology
adoption, STFT refers to soil testing fertilization technology adoption.

To examine the impact of ICT adoption on the relationship between land fragmentation
and agricultural technology adoption, we apply OLS regression to Equations (5) and (7).
The results are shown in Table 4.
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Table 4. Effect of ICTs on the relationship between land fragmentation and STFT adoption.

Variable (1) (2)

ICT
0.644 ***
(0.163)

SI × ICT
0.141 ***
(0.043)

SI
−0.268 *** −0.286 ***

(0.162) (0.096)
Control Yes Yes

_cons 0.233 *** 0.226 ***
(0.089) (0.077)

Obs. 1388 1388
R-sqr 0.117 0.285

Notes: Robust errors are in parenthesis, *** p < 0.01. The dependent variable is soil testing fertilization technology
(STFT) adoption. SI refers to Simpson’s Index of Diversity. ICT refers to information and communications
technology adoption.

As previously analyzed, without considering the role of ICT adoption, land fragmen-
tation has a significantly negative effect on STFT adoption, as shown in column (1). After
ICT and the interaction term of ICT adoption and land fragmentation were introduced into
the regression, we can see from column (2) that both ICT and the interaction term have
significant and positive coefficients, implying that ICT adoption can significantly increase
the probability of STFT adoption and mitigate the negative effects of land fragmentation on
STFT adoption.

To sum up, the adoption of ICTs significantly affects the effect of land fragmentation
on STFT adoption, which can be explained by the typical characteristics of farmers using
the internet in rural areas. Based on our field research experience, for the vast majority of
farmers who obtain agricultural service information through the internet, they use instant
messaging software called WeChat (Shenzhen, China). WeChat has revolutionized farmers’
technology adoption behaviors. On one hand, it pushes agricultural service information
in real time. A large number of surveyed farmers subscribe to information services to
receive the latest agricultural extension information and technical guidance. Internet use
has significantly improved the availability of agricultural information. On the other hand,
WeChat has significantly improved the intensity of farmers’ social networks. For farmers,
the impact of internet use on social network intensity is mutual. Farmers with strong social
networks are more inclined to use the internet, and internet use further increases the social
network intensity of farmers.

This interaction has a specific impact on the adoption of STFTs by farmers. They
can share the obtained agricultural technology information through instant messaging
tools such as WeChat and further exchange information, which significantly enhances the
dissemination of technology adoption experience. Farmers who have adopted the STFTs
can share the relevant experience and effectiveness of technology adoption with other
farmers who use WeChat, which significantly affects other farmers’ decisions regarding
agricultural technology adoption. On the contrary, farmers who do not use WeChat have
lower frequency and efficiency in agricultural technology information exchange. A field
survey based on 1710 farmers in Hubei Province also confirmed that land fragmentation
has a significant negative impact on the adoption of STFT by farmers with weak social
networks [58].

Table 5 reports the effects of ICT adoption on the relationship between land fragmenta-
tion and AMT adoption. Without considering the role of ICT adoption, land fragmentation
has a significantly negative effect on AMT adoption, as shown in column (1), which is
consistent with the existing studies. After ICT and the interaction term of ICT adoption
and land fragmentation were introduced into the regression, we can see from column (2)
that both ICT and the interaction term have significant and positive coefficient, implying
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that ICT adoption can significantly increase the probability of AMT adoption and mitigate
the negative effects of land fragmentation on AMT adoption.

Table 5. Effect of ICTs on the relationship between land fragmentation and AMT adoption.

Variable (1) (2)

ICT
0.552 ***

(0.201)

SI × ICT
0.123 ***
(0.031)

SI
−0.315 *** −0.321 ***

(0.072) (0.058)
Control Yes Yes

_cons 0.245 *** 0.211 ***
(0.051) (0.063)

Obs. 1388 1388
R-squared 0.298 0.208

Notes: Robust errors are in parenthesis, *** p < 0.01. The dependent variable is agricultural mechanization technol-
ogy (AMT) adoption. SI refers to Simpson’s Index of Diversity. ICT refers to information and communications
technology adoption.

3.2. Robustness Check

To provide a robustness check, we use the plot distance index (PDI) as an alternative
variable of land fragmentation, following the existing studies [45,59]. As shown in Table 6,
when PDI was used to replace SI as the independent variable, the results are completely
consistent with the benchmark regression results, and land fragmentation significantly
increases CFAI. In terms of the influence mechanism, land fragmentation has a significantly
negative effect on the adoption of agricultural technologies and thus increases the CFAI.

Table 6. Effects of PDI on CFAI mediated by STFT and AMT adoption.

Variable
(1) (2) (3) (4) (5)

CFAI STFT CFAI AMT CFAI

STFT −0.163 ***
(0.031)

AMT −0.240 ***
(0.076)

PDI 0.339 *** −0.342 ** 0.283 *** −0.440 ** 0.233 ***
(0.128) (0.144) (0.050) (0.191) (0.068)

Control Yes Yes Yes Yes Yes

_cons 3.441 *** 0.258 *** 3.625 *** 0.571 *** 3.145 ***
(0.586) (0.044) (0.829) (0.010) (0.603)

Obs. 1388 1388 1388 1388 1388
R-sqr 0.366 0.185 0.268 0.167 0.308

Sobel Mediation Tests
0.0008 *** 0.0015 ***
(0.0002) (0.0000)

Total effect mediated 16% 32%
Notes: Robust errors are in parenthesis, *** p < 0.01, ** p < 0.05. CFAI refers to chemical fertilizer application
intensity, PDI refers to plot distance index, AMT refers to agricultural mechanization technology adoption, STFT
refers to soil testing fertilization technology adoption.

3.3. Further Comparison

To further examine the role of technology adoption on the relationship between land
fragmentation and CFAI, as shown in Figure 4, we introduced the interaction term of SI
and the adoption of the three technologies into the regression. The estimation results are
shown in Table 7.
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Table 7. Effects of technology adoption.

Variable (1) (2) (3) (4)

SI
0.289 *** 0.278 *** 0.285 *** 0.281 ***
(0.096) (0.086) (0.070) (0.091)

SI × ICT
−0.215
(0.187)

SI × AMT
−0.176 ***

(0.049)

SI × STFT
−0.121 **

(0.056)

Control Yes Yes Yes Yes

cons 3.565 *** 3.178 *** 3.456 *** 3.923 ***
(1.100) (0.739) (1.197) (0.713)

Obs. 1388 1388 1388 1388
R-sqr 0.238 0.222 0.233 0.235

Notes: Robust errors are in parenthesis, *** p < 0.01, ** p < 0.05. The dependent variable is chemical fertilizer
application intensity (CFAI). SI refers to Simpson’s Index of Diversity, AMT refers to agricultural mechanization
technology adoption, STFT refers to soil testing fertilization technology adoption, STFT refers to soil testing
fertilization technology adoption, ICT refers to information and communications technology adoption.

The results show that SI has significant and positive coefficients in column (1)–(4),
implying that land fragmentation has increased CFAI. The coefficient of the interaction
term of SI and AMT is significant and negative in column (3), which means that AMT
adoption can mitigate the positive impact of land fragmentation on CFAI. Additionally, the
results of column (4) suggest that STFT adoption can mitigate the positive impact of land
fragmentation on CFAI. More importantly, the coefficient of the interaction term of SI and
ICT is not statistically significant, and ICT has no significant effect on the direct effect of
land fragmentation on CFAI, as shown in column (2).

Obviously, the use of agricultural machinery and the progress of agricultural tech-
nology are effective measures to reduce the intensity of chemical fertilizer use. When we
examine the moderating effects of ICT on the direct effects of land fragmentation on CFAI
alone, the role of information publicity and promotion brought with ICTs is limited. The
unfavorable land resource endowment has restricted the adoption of advanced agricultural
technologies and machinery. Therefore, even if farmers recognized the negative effects
of excessive application of chemical fertilizer, they would increase the input of chemical
fertilizer to ensure income and output. More importantly, the influence mechanism shown
in Figure 3 confirmed that the rapid development of information technology has signifi-
cantly increased the probability of farmers adopting AMTs and STFTs and thus leads to the
reduction of CFAI.

4. Discussion
4.1. Role of AMT Adoption

According to the baseline regression results, the impact of agricultural mechanization
exceeded our research expectations, which may be related to the stage of agricultural
development in China. The issue of land fragmentation in China can be traced back to
the implementation of the household contract responsibility system in the late 1980s. The
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arrangement of land property right system has led to the problem of land fragmentation to
a certain extent [36]. However, there was no better choice for China back then. Moreover,
land fragmentation did not have a negative impact on China’s agricultural production
and even dispersed agricultural risks and improved the utilization efficiency of the labor
force [60–62]. However, with the rise of labor costs and popularization of agricultural
machinery, land fragmentation has increased the commuting time between plots, which
limits the application of large-scale agricultural machinery. It is rather difficult for small
farms to adapt to the development of modern agriculture in China. Furthermore, compared
with the adoption of STFTs, whether farmers use formula fertilizer and the proportion of
formula fertilizer also have significant effects on CFAI. However, due to data availability,
we cannot further verify the effect of actual use of formula fertilizer on CFAI in this study.

In fact, the application of chemical fertilizer by small farmers usually remains stable in
the long run [6] since it is greatly affected by previous experience. It seems like another
reasonable explanation for the effects of the adoption of agricultural technology. Before
the promotion and popularization of chemical fertilizer, based on the fact that the soil
nutrients of cultivated land were low, China carried out chemical fertilizer efficiency tests
at the national level for several years and formulated the standards for the application
amounts of chemical fertilizer to grain crops according to the test results. However, farmers’
fertilization behavior is inertial and has a cumulative effect on fertilizer application. When
there is no external change, such as the application of advanced technology, farmers are
likely to overuse chemical fertilizer according to their experience and fertilization habits.

From the perspective of costs and benefits, from 1978 to 2014, the average annual
growth rate of China’s agricultural means of production prices was 5.4%, while it was 6.4%
for agricultural producer prices. It is thus profitable for farmers to increase inputs [63].
However, China’s unique urban and rural dual system and land system has diminished the
advantages of China in competition with other countries with similar resource endowment
conditions. The most predominant impact is the rise of agricultural labor costs and land
rents. Moreover, with the continuous rise of the price of agricultural production inputs
such as chemical fertilizer, the growth of marginal output and marginal income brought by
increasing inputs has decreased significantly. Therefore, under the given cost constraints,
it is feasible to reduce the input of other factors by increasing the use of agricultural
machinery, which is reflected not only in the substitution of labor but also in the reduction
of the input of means of production such as chemical fertilizer.

Based on the above analysis, taking into account the land management rights and other
issues, land circulation and scale management aiming to improve the degree of mechanized
operation are effective ways to reduce the intensity of chemical fertilizer application.

4.2. Role of STFT Adoption

The Chinese government began to implement policies to promote STFT adoption
in 2005. After the implementation of the policy, the utilization rate of nitrogen fertilizer,
phosphorus fertilizer and fertilizer addition in rice, wheat and corn was 33%, 24% and 42%,
respectively, which increased by 5%, 12% and 10%, respectively. The effect of STFT adoption
on improving the utilization rate of chemical fertilizer is obvious. However, our study
shows that compared with AMT adoption, STFT adoption has a weaker influence on the
effect of land fragmentation on CFAI. On one hand, the price of formula fertilizer is higher
than that of chemical fertilizer. Although many farmers adopted STFTs because of policy
incentives and financial subsidies, they did not use formula fertilizer. On the other hand,
the effect of land fragmentation on AMT adoption is larger than that on STFT adoption.

Therefore, the popularization of STFTs can effectively promote the reduction of chem-
ical fertilizer. Firstly, improve the market competitiveness of chemical fertilizers and
pesticides use to produce agricultural products in accordance with scientific and reasonable
methods. Secondly, increase the availability of professional production services for farmers,
strengthen the promotion of soil testing fertilization and other technologies and increase
the corresponding financial subsidies. Thirdly, reduce or even gradually abolish the prefer-
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ential tax policies for chemical fertilizer production, strengthen the market supervision of
excessive use of chemical fertilizer production products and improve the regulations on
illegal production.

4.3. Role of ICT Adoption

In this study, we focus on internet use since smart phones and computers are quite
powerful and play an increasingly important role in agricultural production. Based on
our observation during field surveys, farmers can easily connect with the researchers
from local agricultural research institutions by WeChat. For example, the National Green
Manure Industry Technology System in China regularly records videos on the application of
chemical fertilizer and green manure and provides corresponding information and technical
services for farmers in rural areas through influential WeChat video subscription services.

Moreover, in recent years, Tik Tok is getting more and more popular and gaining
wider influence. Considering that the education level of most of the farmers in rural China
is relatively low, video is an efficient way to for them to access information. Tik Tok is
quite significant because it has a large number of users in China. When we use agricultural
planting technology as a keyword to search in Tik Tok, we can immediately get massive
intuitive video information. It is noteworthy that these video providers do not rely on
government support, and they are independent media practitioners. To our knowledge,
there are millions of similar video providers who have created Tik Tok accounts China. At
the same time, farmers can also communicate with these technical information providers
through the comment function.

Our analysis shows that ICTs play the role of catalyst; that is, ICT adoption can slow
down the positive effects of land fragmentation on CFAI by mitigating the negative impact
of land fragmentation on the adoption of AMT and STFT. Apparently, ICT can also directly
affect the fertilizer application intensity of farmers. According to our theoretical analysis
and interviews with typical farmers, farmers are unlikely to change their decisions when
they are faced with the pressure of crop yield and agricultural income, even if they fully
understand the negative impact of excessive application of chemical fertilizer through
ICT. Our results show the significant difference between ICT and typical agricultural
technologies such as AMT and STFT. Most importantly, our study provides theoretical
support for the Chinese government to formulate industrial policies to reduce the use of
chemical fertilizer.

Based on the above analysis, we understand the mechanism of how ICTs affect the
impact of land fragmentation on CFAI. It is noteworthy that it is not enough to rely
merely on ICTs for policy encouragement and publicity without satisfying the demands
of farmers through the application of agricultural technologies. The policies should be
focused on supporting the development of agricultural technologies, give full consideration
to the advantages of ICTs, and propagandize the important role of agricultural technology
adoption in increasing productivity and efficiency so as to reduce the intensity of chemical
fertilizer application.

5. Conclusions

In this study, we examined the relationship between land fragmentation and CFAI,
and further explored the mediating effect of AMT and STFT adoption in China’s maize
production. We developed a mediation model to explore the influence mechanism of land
fragmentation on CFAI through AMT and STFT adoption. Considering the important role
of ICTs played in agricultural production, we explored the impact of the ICT adoption on
the relationship between land fragmentation, agricultural technology adoption and CFAI
and conducted an empirical analysis on a farm level survey data with 1388 observations.

Our results clearly indicate that land fragmentation has a positive impact on CFAI,
and the adoption of both AMTs and STFTs has a significant negative effect on CFAI; land
fragmentation reduced the probability of farmers adopting these technologies. Moreover,
the adoption of ICTs can significantly reduce the negative effect of land fragmentation



Int. J. Environ. Res. Public Health 2022, 19, 8147 15 of 17

on the adoption of AMTs and STFTs, but it did not directly affect the process of land
fragmentation decreasing the CFAI.

This study contributes to a better understanding of the relationship between land
fragmentation and chemical fertilizer use in China’s maize production. Moreover, the
mediating effects of the adoption of AMTs and STFTs on the relationship between land frag-
mentation and chemical fertilizer use can provide insights on the influencing mechanism of
land fragmentation, which is especially crucial to provinces suffering high chemical fertil-
izer application intensity. More importantly the adoption of ICTs can mitigate the negative
impact of land fragmentation on technology adoption, which helps shed light on the issue
of the low adoption rate of agricultural technologies in rural China. Therefore, policies
should be carried out to continue to strengthen the extension, promotion and adoption
of agricultural technologies such as AMTs and STFTs. In addition, it is of significance to
give full consideration to the role of information technologies and to promote technology
adoption in rural China.

The generalization of the findings of this study is subject to certain limitations. For
example, the study was limited to maize production in 14 provinces in China. The results
may not be able to be applied to other areas of grain production in the whole nation. China
is a diverse country in terms of varying crop varieties and economic development across
regions. Studies on other crops and other regions can be conducted to enrich the study in
this field.
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