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ABSTRACT Over the last decades, there has been a dramatic global increase in multi-
drug-resistant (MDR) pathogens particularly among Gram-negative bacteria (GNB).
Pseudomonas aeruginosa is responsible for various health care-associated infections,
while MDR P. aeruginosa causes significant morbidity and mortality. Middle East and
North Africa (MENA) represent an unexplored geographical region for the study of
drug resistance since many of these countries are at crossroads of high volume of
travel, diverse expatriate populations, as well as high antibiotic consumption despite
attempts to implement antimicrobial stewardship programs. This minireview analyzes
epidemiology, microbiological, and genomic characteristics of MDR P. aeruginosa in the
MENA region. Published data on MDR P. aeruginosa prevalence, antimicrobial resistance
patterns, and genetic profiles from studies published during the past 10 years from 19
MENA countries have been included in this minireview. There is wide variation in the
epidemiology of MDR P. aeruginosa in the MENA region in terms of prevalence, antimi-
crobial characteristics, as well as genetic profiles. Overall, there is high prevalence of
MDR P. aeruginosa seen in the majority of the countries in the MENA region with simi-
larities between neighboring countries, which might reflect comparable population and
antibiotic-prescribing cultures. Isolates from critical care units are significantly resistant
particularly from certain countries such as Saudi Arabia, Egypt, Libya, Syria, and
Lebanon with high-level resistance to cephalosporins, carbapenems, and aminoglyco-
sides. Colistin susceptibility patterns remains high apart from countries with high-level
antibiotic resistance such as Saudi Arabia, Syria, and Egypt.

KEYWORDS Pseudomonas aeruginosa, antibiotic resistance, multidrug resistance,
Middle East and North Africa region, intensive care units, urinary tract infections, MDR,
MENA

Over the past decades, there has been a remarkable global increase in antimicrobial
resistance (AMR). A report published by the Centers for Disease Control and

Prevention in 2019 stated that these pathogens are responsible for the annual infec-
tion of more than 2.8 million people and cause an estimated 35,000 deaths per year in
the United States alone (1). In the European Union, infections with AMR pathogens
cause approximately 33,000 deaths per year with an estimated annual economic loss
of 1.5 billion dollars (2). Furthermore, it has been estimated that by 2050 if no action
has been taken, mortality and morbidity from AMR will surpass any acute or chronic ill-
nesses, including heart diseases and cancer with an estimated annual mortality of 10
million cases (2, 3). The escalated challenge caused by AMR pathogens extends beyond
developing countries to include the Middle East and North Africa (MENA) region which
has not been fully explored.
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Of particular concern of the global propagation of AMR is the continuous emer-
gence of multidrug-resistant (MDR) pathogens particularly in Gram-negative bacteria
(GNB). Among GNB, members of the Enterobacteriaceae family, Pseudomonas aerugi-
nosa, and Acinetobacter baumannii are considered major health care threats due to
their vast rates of emergence, acquisition, and spread of different resistance mecha-
nisms (4). This consequently led to challenges in initiating appropriate targeted ther-
apy particularly in severe infections leading to increased morbidity and mortality as
well as prolonged hospital stays and subsequently excessive health care costs (5). To
counter these challenges, broad-spectrum antimicrobials such as advanced cephalo-
sporins and carbapenems have been overprescribed repeatedly, leading to a vicious
cycle with further accumulation of selective resistance profiles (6).

P. aeruginosa is an opportunistic GNB which was first identified in the early 1800s
(7). It thrives best in moist settings particularly suitable aquatic environments, includ-
ing health care settings (8). Despite widespread environmental spread, P. aeruginosa
rarely colonizes healthy individuals (0% to 2% skin colonization rate) (8). However, it
frequently colonizes hospitalized patients (.50% colonization rate) and is a major
cause of health care-associated infections (HCAIs) leading to life-threatening acute or
chronic infections, including recurrent exacerbations in patients with cystic fibrosis,
hospital- and ventilator-associated pneumonia, bacteremia, urinary tract, as well as
wounds and soft tissue infections (8, 9).

While studying the underlying resistance mechanism of AMR, P. aeruginosa is a cor-
nerstone pathogen being highlighted among the important resistant ESKAPE bacteria
(Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter bau-
mannii, P. aeruginosa, and Enterobacter species) which are the foremost challenging
pathogens for community and hospital drug resistance (10). It is also considered a criti-
cal priority by the WHO’s ranking list of pathogens in need to develop and discover
novel therapeutic modalities (11).

The Middle East and North Africa region represents a comprehensively uncharted
geographical region for drug resistance studies, since many of these countries have
high volume of travel, diverse expatriate populations, and wide availability of over-the-
counter antibiotics despite recent attempts to control antimicrobial consumption
through antimicrobial stewardship programs (ASPs) at community and hospital levels
(12–16). Although there are published reports on the epidemiology of P. aeruginosa
from individual countries, there has been no comprehensive review covering the entire
region to the best of our knowledge. The aim of this minireview is to describe the prev-
alence of MDR P. aeruginosa, microbiological characteristics, and genomic mechanisms
of antibiotic resistance focusing mainly on carbapenem resistance in the Middle East
and North Africa region.

MECHANISMS OF ANTIMICROBIAL RESISTANCE IN GNB INCLUDING P. AERUGINOSA

There are multiple antimicrobial mechanisms that evolved in Gram-negative bacte-
ria (GNB) to become distinctively resistant. Integral to its resistance mechanisms is the
production of b -lactamases which disrupt the b -lactam rings of antibiotics that target
bacterial cell walls (4). All b -lactam antibiotics contain the 3-carbon and 1-nitrogen
ring (beta-lactam ring), which includes commonly prescribed antibiotic classes such as
penicillins, monobactams, cephalosporins, as well as carbapenems (17). According to mo-
lecular size and amino acid similarity in the active sites, b -lactamases are subdivided into
molecular classes A through D (Ambler classification), and accumulation of diverse b -lac-
tamase resistance genes manifest as highly resistant strains (18). Extended-spectrum
b -lactamases (ESBLs) (which are mainly class A b -lactamases) are the most commonly
encountered, leading to resistance to all b -lactams, except carbapenems and certain
b -lactam b -lactamase inhibitor combinations (BLBLIs) (19). Conversely, metallo-b -lacta-
mase (MBL) (zinc-based class B) cause resistance to all b -lactams, including BLBLIs except
monobactams such as aztreonam. Because metallo-b -lactamases are encoded by mobile
gene cassettes, they are often associated with other resistance genes such as
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aminoglycosides and fluoroquinolones (4). Similarly, AmpC (class C) are broad-spectrum
b -lactamases with cephalosporinase selection preference (9), while oxacillinases (class D)
are clinically relevant b -lactamases capable of hydrolyzing the potent class of carbape-
nems, raising the height of resistance profiles (4). The most common b -lactamases in
P. aeruginosa are class A (VEB, PME, BEL, GES, and PER), class B (VIM and IMP), and class D
(OXA-2 and OXA-10) b -lactamases (20).

In addition to b -lactamases, GNB, particularly P. aeruginosa, possess other corre-
sponding resistance mechanisms which are either intrinsically present at the chromo-
somal level or horizontally acquired through plasmids demonstrated by downregula-
tion of porin channels, upregulation of efflux pumps, antibiotic modification, as well as
target site alteration (21). In P. aeruginosa, the main chromosomally encoded intrinsic
mechanisms are inducible AmpC cephalosporinase, MexAB-OprM efflux pumps, induci-
ble MexXY efflux pump, as well as low outer membrane permeability and OXA-type
oxacillinase (20). In addition to its naturally occurring intrinsic resistance mechanisms,
P. aeruginosa is capable of accumulating resistance genes acquired via chromosomal
mutations (21). Overproduction of chromosomal AmpC cephalosporinase is likely the
most prevalent acquired b -lactam resistance mechanism, and it has been found in
over 20% of clinical isolates (20, 22–24). Structural modification of AmpC is another
potential cause of b -lactam resistance (25, 26). Inducible AmpC causes resistance to
aminopenicillins (e.g., amoxicillin and ampicillin) and a number of cephalosporins (par-
ticularly cefoxitin) (20). Overexpression of efflux pumps can also be affected by chro-
mosomal mutations. Overexpression of the MexAB-OprM efflux pump allows resistance
to most of the b -lactams (except imipenem) and fluoroquinolones, and inducible
MexXY efflux pump overexpression allows resistance to aminoglycosides, cefepime,
and chloramphenicol (20). Although less common, MexCD-OprJ and MexEF-OprN over-
expression can cause resistance to fluoroquinolones (20, 27, 28). In addition, inactiva-
tion or downregulation of the carbapenem-specific porin OprD can cause acquired
resistance to imipenem and decreased susceptibility to meropenem (22, 29). Together,
AmpC overproduction and OprD inactivation can potentially cause resistance to all an-
tipseudomonal b -lactams (20, 30). Other mutation-driven resistance mechanisms that
can be acquired are via mutations in DNA gyrases (GyrA/GyrB) and type IV topoisomer-
ases (ParC/ParE), both of which cause resistance to fluoroquinolones (8, 31).
Additionally, mutations in FusA1 can cause resistance to aminoglycosides (28, 32). Last,
among mutation-driven mechanisms, alteration, or modifications of the outer mem-
brane liposaccharide (LPS) operon might generate resistance to colistin (20, 33).

Of note, horizontally transferred resistance is yet another method of acquiring
esistance in P. aeruginosa (20). This is mostly seen in acquiring ESBLs and carbapene-
mases, specifically of class A serine carbapenemases (KPC), class B (metallo-b -lacta-
mases), and class D (OXA-40) (9). The genes encoding these b -lactamases are found
on class 1 integrons, which are inserted into mobile elements and mediate transfer
between bacteria (34, 35). Horizontally transferred plasmid-mediated colistin resistance
genes that disrupt outer LPS have been infrequently reported in P. aeruginosa (36). In
addition, the class 1 integrons also carries determinants of aminoglycoside resistance,
mainly acetyltransferases and nucleotidyltransferases (9, 37). Transferrable fluoroquino-
lone resistance has also been reported in P. aeruginosa (38).

Despite extensive regional reporting of the epidemiology and microbiological and
genomic characteristics of P. aeruginosa, including resistant strains, limited similar in-
formation is available regarding the Middle East and North Africa (MENA) region. This
minireview aims to explore available literature for the scale of the problem and report
the microbiological and genetic characteristics of dominant strains in the MENA region,
including highly resistant strains such as carbapenem-resistant P. aeruginosa.

METHODS AND DATA COLLECTION AND ANALYSIS

Four clusters of the MENA region, encompassing 19 countries, were included in this
study: the Levant region (Iraq, Syria, Lebanon, Palestine, Israel, and Jordan), Gulf
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Countries comprising the Gulf Cooperation Council (GCC) (Saudi Arabia, Kuwait, Qatar,
United Arab Emirates [UAE], Bahrain, and Oman) in addition to Yemen, northeastern
Africa (Egypt and Sudan), and northwestern Africa (Libya, Tunisia, Algeria, and
Morocco) (Fig. 1). The PubMed database was searched for studies from the MENA
region that report MDR rates in P. aeruginosa, antimicrobial susceptibility/resistance
profiles, as well as reported resistance genes in carbapenem-resistant (CR) P. aerugi-
nosa. Antibiotics and genes most reported and clinically relevant have been included
in this minireview. Studied antibiotics are BLBLI (piperacillin-tazobactam [PTZ]), third-
generation cephalosporin (ceftazidime [CTZ]), fourth-generation cephalosporin (cefe-
pime [FEP]), carbapenems (imipenem [IMP] and meropenem [MER]), aminoglycosides
(amikacin [AMK] and gentamicin [GEN]), fluoroquinolones (ciprofloxacin [CIP] and
levofloxacin [LEV]), monobactam (aztreonam [AZT]), and colistin (COL).

The examined genes of interest are as follows: class A ESBL genes (blaSHV, blaGES,
blaTEM, blaKPC, blaCTX-M, and blaVEB); class B metallo-b -lactamases (MBL) genes (Verona
integron-encoded MBL [blaVIM], imipenemase MBL [blaIMP], New-Delhi MBL [blaNDM]);
class C genes (ampC); class D oxacillinase genes (blaOXA), as well as the oprD gene and
mex efflux pump genes (mexAB-oprM, mexCD-oprJ, mexEF-oprN, and mexXY).
Overexpression of the efflux pumps MexAB, MexCD, MexEF, and MexXY was consid-
ered when transcription/protein of either components of the MexAB, MexCD, MexEF,
or MexYZ are reported to be upregulated, respectively.

For the purpose of this minireview, for each country when data are available, P. aer-
uginosa isolates have been stratified based on their source: general clinical (GC) sam-
ples (mix of samples from various clinical units), intensive care unit (ICU) samples
(reported studies primarily consisting of samples from intensive and critical care units),
and urinary tract infection (UTI) samples. For each of the stratifications used in the min-
ireview, the available most recent scientific papers from each country published within
the past 10 years were included. Data from a total of 60 research papers are included
in this minireview. The prevalence of MDR P. aeruginosa reflects reported rates of MDR
P. aeruginosa out of the total P. aeruginosa infections. When reported, the standard
definition of MDR P. aeruginosa has been generally adopted as resistance to at least
one agent from three different classes as endorsed by agreed international consensus
(39). Furthermore, this minireview describes regional variations in antibiotic suscepti-
bility and resistance as well as genomic resistance profiles. When multiple publications
are available, the most recent and up-to-date article has been selected and when

FIG 1 Google map image of the MENA region highlighting the countries included in this minireview. Imagery ©2021
TerraMetrics; map data ©2021 Mapa GISrael, Google.
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multiple publications from the same year are present, data with the most recent sam-
ple collection or bigger sample size have been analyzed.

MENA REGIONAL EPIDEMIOLOGY

Regarding the epidemiology of MDR P. aeruginosa, comparative regional data com-
prising sources of isolates, microbiological susceptibility profiles, as well as reported
mechanisms of genetic resistance, including carbapenems resistance are outlined in
Table 1.

COMPARATIVE REVIEW
Prevalence of MDR P. aeruginosa. In the MENA region, there are wide regional and

interregional variations in the reported prevalence of MDR P. aeruginosa from general
clinical samples with the highest prevalence in Egypt (75.6%) and lowest prevalence in
Morocco (0%), with modest prevalence in Saudi Arabia (7.3%) and Qatar (8.1%) (Fig. 2a).
The Levant countries (Iraq, Lebanon, Palestine, Israel, and Jordan) were similarly variable
with high-level resistance in Lebanon (64.5%), Jordan (52.5%), Palestine (47.6%), and
Israel (30%) compared to Iraq (12.4%). This might reflect comparable regional culture of
liberal antibiotic prescribing or nonuniform ASPs. It is worth mentioning that it is vital to
interpret reported data cautiously to avoid selection biases since it might reflect different
study methods or source locations. For example, the high rates of multidrug resistance
(86%) reported from Bahrain stems from preexisting observed selection of high-level
ciprofloxacin resistance (100%) from collected samples of ciprofloxacin-resistant P. aeru-
ginosa (Table 1) (40). Of interest is the fact that reported ciprofloxacin high-level resist-
ance is associated with concordant high-level resistance to broad-spectrum antipseudo-
monal agents such as piperacillin-tazobactam (90%) and carbapenems (88 to 90%),
supporting observations that it is associated with other resistance mechanisms in MDR
P. aeruginosa such as overproduction of efflux pumps (41). It is also interesting to note
that in the Kingdom of Bahrain, carbapenem-resistant MDR P. aeruginosa isolates have
been demonstrated to be mainly derived by blaVIM as in neighboring countries but
uniquely differ in harboring blaNDM, which is rare or absent in the region except for Saudi
Arabia, Iraq, and Egypt (41–45). Comparative neighboring countries with similar popula-
tion demographics such as Saudi Arabia and Qatar have similar prevalence of MDR
P. aeruginosa (7.3% and 8.1%, respectively), which might reflect similar structured health
care systems as well as antibiotic-prescribing culture compared to other GCC countries.
It is needless to say that infection control and prevention together with effective antimi-
crobial stewardship programs (ASPs) are crucial concepts against the fight to control the
spread of AMR, including P. aeruginosa (46).

While analyzing isolated samples of MDR P. aeruginosa in the region, it is important
to pay attention to variations in the community or hospital settings as well as collected
sample locations. The prevalence of MDR P. aeruginosa from ICU samples varied widely
between the MENA region countries (Fig. 2b) with a discrepant opposite trend to that
of general clinical samples. The highest rates were seen in Saudi Arabia (61%) and Syria
(54%) compared to Egypt (22.5%), Libya (36.4%), Lebanon (33.3%), and Morocco
(28.5%). Again, this probably reflects embedded culture of high antibiotic prescribing
at critical care units or raises valid questions of efficiency of infection control and
prevention measures as observed in multicenter studies from the region as well as
potential possibilities of circulating or endemic high resistant clones (42, 47, 48). To
emphasize the importance of sample diversity, out of the four countries for which
urinary tract infection data are available, there was high-level resistance in Iraq (100%),
Egypt (100%), and Saudi Arabia (88.9%,) demonstrating difficulties in managing UTIs
secondary to MDR P. aeruginosa (Fig. 2c) (49). In contrast, Lebanon had a much lower
rate of MDR P. aeruginosa at 30% (Fig. 2c).

While highlighting the epidemiology of MDR P. aeruginosa in the region, it is worth
signifying the role of ASPs in directing appropriate and judicious prescribing of antibi-
otics particularly in secondary care. The concept is relatively new in many MENA
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countries with plans to roll it out both at primary and secondary care levels. A study
from Qatar demonstrated that the introduction of an effective ASP in 2015 managed
to steadily reduce the prevalence of MDR P. aeruginosa from 9% to 5.46% over a 3-year
period (16).

Antibiotic resistance patterns. When comparing general clinical samples, the
overall antipseudomonal drug resistance of the ciprofloxacin-resistant Pseudomonas
strains from Bahrain is high, ranging between 72 and 100% for third-generation cepha-
losporins, carbapenems, aminoglycosides, fluoroquinolones, and piperacillin-tazobac-
tam combinations (Fig. 3). Resistance to piperacillin-tazobactam is moderate in Iraq
(42.3%), Jordan (37.8%), Libya (37%), and Lebanon (22%), while it was low in Israel

FIG 2 MDR P. aeruginosa prevalence rates in the MENA region. The various countries are shown on
the x axis. The y axis shows the prevalence percentage of MDR P. aeruginosa among total P.
aeruginosa infections in general clinical (GC) samples (a), intensive care unit (ICU) samples (b), and
urinary tract infection (UTI) samples (c).
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(19.6%), Saudi Arabia (17.2%), and Oman (7%) (Fig. 3a). As for antimicrobial susceptibil-
ity for third- and fourth-generation antipseudomonal cephalosporins, they are charac-
teristically high, demonstrating low-level resistance, but exceptionally high resistance
is seen in Qatar (96.6%), Bahrain (86%), Tunisia (70%), Egypt (68%), Libya (66%), Yemen
(47.1%), and Iraq (41.2%) (Table 1 and Fig. 3b). In most countries, prevalent resistance
rates for both ceftazidime and cefepime are similar. In Jordan, P. aeruginosa isolates
showed low-level resistance to ceftazidime and cefepime (18% each) but mid-range
resistance to aminoglycosides and fluoroquinolones (50.9 to 62.3% and 50.9%,

FIG 3 Antibiotic resistance profile of P. aeruginosa in the MENA region. The various countries are shown on the x axis. The y axis
represents the resistance percentage in general clinical (GC) samples (a to f) and ICU samples (g) to piperacillin-tazobactam (PTZ)
(a), ceftazidime (CTZ) (b), imipenem (IMP) and meropenem (MER) (c), amikacin (AMK) and gentamicin (GEN) (d), ciprofloxacin (CIP)
(e), aztreonam (AZT) (f), and imipenem (IMP) and meropenem (MER) (g). (h) Genetic profiles of carbapenem-resistant P. aeruginosa
from general clinical samples. Countries for which no value is shown have no reported data for the respective antibiotic.
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respectively) (Fig. 3b, d, and e). Similar to the high prevalence of cephalosporin resist-
ance, high carbapenem resistance has been observed in Qatar (90.2%), Bahrain (88 to
90%), Egypt (62%), Sudan (61.1%), Libya (79 to 87%), and Tunisia (74%) (Fig. 3c, d, and
e) along with high-level resistance to aminoglycosides and fluoroquinolones, except
for Sudan for which these data were not available. Even though P. aeruginosa reported
from Saudi Arabia and Oman has low-level resistance to cephalosporin, these isolates
had higher carbapenem resistance rates of 26.3 to 30.7% and 42%, respectively
(Fig. 3c). Resistance to aztreonam was high in all countries where data were available,
with Palestine showing absolute resistance in all tested isolates. Algeria was an excep-
tion to this with none of the isolates showing resistance to monobactams (Fig. 3f),
which raises potential possibilities of interregional variations of underlying resistance
mechanisms such as class A ESBL which limits aztreonam activity as opposed to class B
b -lactamases which aztreonam is capable to overcome (50).

Worryingly, the rising trends of rates of resistance to carbapenems in most coun-
tries in the region are alarming, since it has been the forefront class to combat AMR
particularly in Enterobacteriaceae as well as P. aeruginosa, thus limiting available treat-
ment options. In contrast, among general clinical samples, colistin remains highly
active, approaching 100% in most regions, including GCC, although developing resist-
ance is being seen in some countries like Qatar (3.4%) (51). Novel antibiotics such as
ceftazidime-avibactam and ceftolozane-tazobactam demonstrated good antimicrobial
susceptibilities in Gulf countries, but it is less compared to other regions probably
because of high regional resistance such as in Qatar where 31.2% and 37.1% of the
MDR strains showed resistance to ceftazidime-avibactam and ceftolozane-tazobactam,
respectively, even before their introduction into clinical practice (52, 53). Such observa-
tion of lower susceptibility profiles for potent novel antibiotics not previously used in the
region is worrisome, since it reflects significant embedded resistance (52). Despite its
wide mechanism of action against multidrug-resistant organisms such as MDR P. aerugi-
nosa, both ceftazidime-avibactam and ceftolozane-tazobactam remain vulnerable when
encountering class B MBL-producing b-lactamases (54). That might explain some of the
observed lower antimicrobial susceptibilities for the drugs in the region (52).

In general, antimicrobial susceptibility data for the ICU isolates were available for
fewer countries (see Fig. S1 in the supplemental material). Out of the countries that
reported antimicrobial susceptibility data from ICUs, Qatar is the only country that
showed low-level resistance to all tested antibiotics with rates not exceeding 15.4% for
any antibiotic and absolute sensitivity to colistin (Fig. 3g and Fig. S1). Saudi Arabia,
Egypt, Syria, Libya, and Lebanon consistently showed high resistance levels for pipera-
cillin-tazobactam, cephalosporins, carbapenems, monobactams, aminoglycosides, and
fluoroquinolones except Egypt where data were not available for monobactams
(Fig. 3g and Fig. S1). Additionally, from available reports for Saudi Arabia, Egypt, and
Syria, the prevalent isolates from ICU in these regions are also showing increasing re-
sistance to colistin (10.9 to 30%) (Fig. S1). Despite showing very high rates of resistance
to all other tested antibiotics, isolates in Libya showed absolute susceptibility to coli-
stin (Fig. S1e). Tunisia demonstrated a little different trend with high resistance to cef-
tazidime and carbapenems but no resistance to piperacillin-tazobactam, ciprofloxacin,
and aminoglycosides (0%) (Fig. S1 and Fig. 3g). All countries with available data
showed high resistance to aztreonam (Fig. S1).

Data were available for few select countries in the MENA region for UTI infections,
and the available resistance patterns were very variable among UTI samples from dif-
ferent countries. Uropathogenic P. aeruginosa isolates from Saudi Arabia consistently
showed high rates of resistance to all tested antibiotics: piperacillin-tazobactam, ceph-
alosporins, carbapenems, fluoroquinolones, and aminoglycosides (Fig. S2). Out of three
countries (Saudi Arabia, Egypt, and Libya) that reported data on piperacillin-tazobac-
tam resistance, Saudi Arabia had the highest resistance rates (100%), followed by Egypt
(36%), and Libya reported no resistance (Fig. S2a). For cephalosporins, Saudi Arabia
(100%, 75%), Egypt (100%, 74%), and Iraq (50% and not available) showed highest rates
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of resistance to ceftazidime and cefepime, respectively (Fig. S2b). Interestingly, from coun-
tries that reported carbapenem resistance data for UTI samples, only Saudi Arabia and
Libya reported high rates of resistance to meropenem (50% and 22.2%, respectively)
(Fig. S2c) compared to Egypt (10%), Libya (11.1%), Iraq and Jordan (0% each), all reporting
low or no resistance to imipenem (Fig. S2c). Resistance to aminoglycosides (0 to 6%) and
fluoroquinolones (8 to 11.1%) was also low in both Egypt and Libya (Fig. S2d and e).
Saudi Arabia, Iraq, and Israel showed high resistance to aminoglycosides (25%, 27.7 to
38.7% and 33.3%, respectively) as well as fluoroquinolones (50%, 38.7%, and 44.4%,
respectively) (Fig. S2d and e).

Genetic profiles. Although genomic studies are vital in understanding the epidemi-
ology of AMR, including MDR P. aeruginosa, genetic data on MDR P. aeruginosa is not
widely available in the MENA region with few studies exploring the concept. The more
developed countries have more available data compared to the rest particularly
among highly carbapenem-resistant P. aeruginosa (Fig. 3h and Fig. S3). For example,
there was little data regarding ESBL production but there was an overall predominance
of blaGES and blaVEB b -lactamase genes in MDR P. aeruginosa in the region (55, 56). In
the general clinical samples, the main reported ESBL genes were blaGES-1,4,6 (8.8%) and
blaVEB (47.1%) in Saudi Arabia, blaGES-5,9 (5.41%) in UAE, blaVEB (25.3%) in Qatar, as well
as blaSHV (100%) in Algeria (Table 1) (55–58). Noteworthy, there are variations reported
in blaGES when examined through molecular/genomic testing methods (59–61). While
blaGES-1,7,19 are ESBLs, some others like blaGES-5,16,20, have carbapenemase activity and as
the gene is not always sequenced in many studies, this limits the discrimination of the
variant.

In general, for clinical samples from all countries where data were available, blaVIM is
the most prevalent MBL, followed by blaIMP/blaNDM. For instance, in Iraq, blaIMP is the
second most prevalent, whereas in Saudi Arabia, blaNDM is the second most prevalent
(Fig. 3h). For P. aeruginosa isolates from ICU samples in the MENA region, extremely
limited data on MBL genes were available. Among the four countries that reported
MBL data and like general clinical samples from the region, blaVIM was mostly the most
prevalent MBL gene (Fig. S3c) among the MDR P. aeruginosa ICU isolates. In contrast to
other regions, blaNDM is rare in MDR P. aeruginosa ICU isolates in the MENA region, as it
was identified in ICU isolates from only two countries: Saudi Arabia (30.8%) and Egypt
(27.3%) (Fig. S3c) (44, 45, 47).

Mutations of the oprD gene were also prevalent in several countries, with the highest
rates reported in Lebanon and Libya, where all carbapenem-resistant P. aeruginosa strains
contained oprD mutations (Fig. S3a). None of the carbapenem-resistant strains in Egypt
contained a mutation in the oprD gene (Fig. S3a). Among countries that reported MexAB
efflux pump dysregulation, UAE showed the highest (75.6%) rate (Fig. S3b). MexXY efflux
pump was highly prevalent in Lebanon (68.6%) and Egypt (62%) (Fig. S3b).

CONCLUSION

The MENA region is geographically close but with diverse economic, social, and cul-
tural differences which are reflected in health care and resources, including liberal or
limited antibiotic prescribing and consumption. There is an observed diversity in the
epidemiology of MDR P. aeruginosa across the region in terms of antimicrobial resist-
ance and genetic profiles. The overall paucity of published literature on AMR in the
MENA region is concerning, in conjunction with unmatched studies in terms of sam-
pling or methodology. Nevertheless, the observed variations could also be because of
differences in the structure of health systems with variable settings between high- and
low-income countries, variations in population demographics or differences in antibi-
otic prescribing across health care sectors, or inadequate implementation of infection
control and prevention measures. Understanding these differences is crucial to allow
for accurate identification, followed by appropriate interventions.

This minireview also highlights the alarming situation of AMR in the MENA region
with significant resistance profile for MDR P. aeruginosa limiting treatment options
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with all its deleterious consequences. It is imperative to obtain comprehensive col-
lected data toward the control of AMR, which should be encouraged to limit its propa-
gation in the MENA region. Although many countries in the region have implemented
ASPs to support existing infection control practitioners, there is a clear need for
regional cooperation to share challenges and experience. Last, such surveillance
should be brought to the attention of policy and health care decision makers since it
will have direct impact on health outcomes as well as on health care expenditure. It
should also encourage creation of regional surveillance programs to monitor AMR as
advocated by the WHO and leading infection bodies (62).

Despite this minireview covering an important aspect of AMR in a previously unex-
plored region, there are several study limitations. As highlighted, there is an absence
of uniform comprehensive data and AMR reporting mechanisms from the MENA
region. Also, there are no data from many countries in the region, which reflects a fun-
damental problem in published research from the region. Therefore, selecting individ-
ual non-national studies might certainly generate inaccurate reporting bias for preva-
lence rates, microbiological characteristics, or mechanisms of genetic resistance. Of
note, when comparing antimicrobial susceptibility data from different studies region-
ally or globally, it is also important to keep in mind the differences between studies
and the percentages of resistance reported by different studies because these studies
are not directly comparable as they vary in selection criteria and period of time and
often employ different antimicrobial susceptibility methodologies and interpretative
criteria. For example, a previous study reporting colistin resistance (63) utilized disk dif-
fusion methods which are less reliable compared to the current recommended practice
of broth microdilution (64). Nevertheless, this minireview fills an important void in the
literature and highlights that there are close similarities between neighboring coun-
tries, which supports that projected observations are interregionally reliable.
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