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Abstract
Genome-wide association studies (GWAS) have identified thousands of robust and replicable genetic associations for complex
disease. However, the identification of the causal variants that underlie these associationshas beenmore difficult. This problem
of fine-mapping association signals predates GWAS, but the last few years have seen a surge of studies aimed at pinpointing
causal variants using both statistical evidence from large association data sets and functional annotations of genetic variants.
Combining these two approaches can often determine not only the causal variant but also the target gene. Recent contributions
include analyses of custom genotyping arrays, such as the Immunochip, statistical methods to identify credible sets of causal
variants and the addition of functional genomic annotations for coding andnon-coding variation to help prioritize variants and
discern functional consequence and hence the biological basis of disease risk.

Introduction
Genome-wide association studies (GWAS) have identified thou-

sands of robust and replicable genetic associations for complex

diseases. This success was made possible by harnessing linkage
disequilibrium (LD), or pairwise correlation, between nearby gen-

etic variants. A few hundred thousand ‘tagging’ single nucleotide
polymorphisms (SNPs) efficiently capture a sufficient proportion

of the common variation in the genome to identify loci associated

with disease. The cost effectiveness of GWAS genotyping arrays
using these tagging SNPs allowed sample sizes larger than ever

before and facilitated the detection of loci with an unbiased,
hypothesis-free study design. The drawback of this design is that

most strongly associated variants are likely to be in LD with the

causal variant, rather than have a biological function themselves.
This has led to criticism that GWASneither identify causal variants

nor explain most of the genetic variation in the population (1).
Prioritization of variants within GWAS-associated regions is

an important focus of current research to enable the conversion

of statistical associations into target genes, which provide insight

into disease biology. This process can be broadly broken into two
steps. The first is to assign well-calibrated probabilities of causal-

ity to candidate variants, known as fine-mapping. The second

step is to try to connect these variants to likely genes whose per-
turbation leads to altered disease risk by functional annotation.
As the majority of associated variants do not change the protein
coding sequence of genes, there is a temptation to label the gene
nearest to the variantwith the smallest P-value (the ‘lead SNP’) as
most likely to be causal. However, the physical distance of a vari-
ant to a gene is not substantive evidence of causality. Several
research efforts are focussed on improving the functional anno-
tation of regulatory SNPs, including ENCODE, NIH Roadmap Epi-
genomics and Fantom5. These resources are complemented by
studies (such as GTeX) to identify SNPs known to affect the ex-
pression level of a particular gene in a particular tissue, known
as expression quantitative trait loci (eQTL).

In this review, we will discuss both statistical and functional
fine-mapping efforts in the post-GWAS era, especially those
using dense genotyping arrays, such as Immunochip and
iCOGS. We will illustrate statistical methods that can be applied
in a variety of circumstances and show how they can be con-
nected to the functional annotation data sets described above.
A generalized fine-mapping pipeline is depicted in Figure 1,
showing the common steps to progress from associated variant
to the identification of the potential causal gene. Box 1 sum-
marizes the tools and databases mentioned in this review.
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Principles of Fine-mapping
Fine-mapping requires three essential components: (1) all the
common SNPs in the region need to be genotyped or imputed
with high confidence, (2) very stringent quality control and
(3) large sample sizes to provide enough power to differentiate
between SNPs in high LD.

To detect a GWAS signal, just one variant in LD is sufficient,
but to accurately fine-map it requires information on all possible
causal variants. Imputation methods, such as IMPUTE2 (3),
MACH (4) and Beagle (5), together with the 1000 Genomes Project
reference panels (6), fill in the gaps for variants that were not in-
cluded on genotyping arrays. This allows the crucial assumption
when evaluating the relative evidence of each associated SNP
being causal that the true causal SNP is being considered (see
below). Strict quality control procedures are paramount to the
accuracy of imputation, to ensure that genotyping errors are
excluded prior to imputation, usually by manually checking
the intensity cluster plots for all associated variants. This is espe-
cially important in largemeta-analyseswhere cases and controls
may be genotyped in different centres and often must be
performed more than once (7,8).

To increasepower forfine-mapping, large international consor-
tia were formed that combined their data sets and collaboratively
designed custom genotyping arrays. These arrays, containing
∼200 000 variants, provide dense genotyping of previously dis-
covered GWAS regions for fine-mapping. For instance, the Meta-
bochip was designed by the Cardio-Metabochip Consortium (9)
and focussed on associated regions for phenotypes including
Type 2 diabetes (T2D), coronary artery disease and quantitative
traits such as body mass index. Similarly, the Immunochip

consisted of variants selected primarily from the GWAS-
associated regions of 12 immune-mediated phenotypes (10).
Recently, the COGS project brought together four consortia to
design the iCOGS array to investigate the genetics of breast, pros-
tate and ovarian cancers. These collaborations enabled large
meta-analyses where all samples had been genotyped on the
same chip, ideally suited for statistically fine-mapping associ-
ation signals.

Fine-mapping studies typically impute from these dense chips
to a suitably dense reference panel suchas the 1000Genomes Pro-
ject (6), then perform association analysis and stepwise condi-
tional analysis to identify independent signals within regions
(Fig. 2). This process is crucial for downstream fine-mapping, as
regions with multiple independent signals can interfere with
each other in the statistical analyses described below.

Statistical Methods for Fine-mapping
A number of different methods have been developed for the pri-
oritization of causal variants to explain association signals. They
can broadly be classified into two groups: triaging variants based
on P-values or LD to the lead SNP and Bayesian methods that
assign posterior probabilities of causality to each SNP.

A simple approach is to consider all SNPs with a P-value less
than a certain threshold (e.g. 5 × 10−8, the standard for genome-
wide significance), as candidates for causality. This is rarely sens-
ible, as P-values are influenced by study-specific factors such
as power (determined by sample size) and locus-specific
factors such as minor allele frequency and effect size. Therefore,
P-values that have been calculated in different studies with

Figure 1. An overview of procedures for fine-mapping of GWAS loci.
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different power have different implications for the plausibility of
a true association and are not necessarily comparable (11).
A slightly more sophisticated approach involves considering
all SNPs above a certain LD threshold with the lead SNP as
potentially causal. Although this is less arbitrary than P-value
thresholds, it still ignores the properties of the study or locus,
as higher power can differentiate SNPs in higher LD.

In a Bayesian framework, the evidence for association at each
variant is measured using a Bayes Factor, which, with certain as-
sumptions, can be used to calculate the posterior probability for
each variant of being causal for the association in that region
(11,12). These posterior probabilities are the ratio of evidence
for each variant versus all others, which makes it a useful com-
parator forfine-mapping purposes (12). Assuming there is exactly
one causal variant in a region, and all variants are included in the
analysis, then for any ‘credible set’ of variants, we can state that
the causal variant will be included in the set with confidence
equal to the sumof the posteriors of the SNPs in the set.Manydif-
ferent programmes for fine-mapping have been developed to
produce credible sets of causal variants (13–17) and are summar-
ized in Box 1.

Figure 3 shows a comparison of these three approaches. Some
regions can be refined to a handful of variants (or indeed just
one), whereas other credible sets will contain hundreds of var-
iants. In the latter case, although the method has not improved
the prioritization of causal variants much, there is still useful in-
formation to be gained from the proportion of posterior probabil-
ity assigned to each variant, especially if a few variants account
for a large fraction. Bayesian posteriors can be directly compared
between variants, either within the same study or across dif-
ferent studies, which can be key in the context of necessarily
large international collaborations in complex disease genetics.

Additionally, compared with approaches based on P-values, in
a Bayesian analysis, it is straightforward to weight evidence for
a given variant by incorporating prior knowledge of functional
annotation or consequence (for example fGWAS and PAINTOR,
discussed below).

The methods described above rely on raw genotype data,
which are not always available (Fig. 1). Therefore, several ap-
proaches have been developed to attempt to identify independ-
ent associations in the same region, and construct credible sets
for these associations, from summary statistics alone. This is
particularly useful for meta-analyses of separate data sets,
where genotype level datamaynot be available. A recent analysis
(18) compared BIMBAM (which can incorporate multiple causal
variants but requires genotype level data) with two methods,
CAVIARBF [amodified implementation of CAVIAR (19)] and PAIN-
TOR (14), which require only the summary test statistics and a
matrix of the pairwise correlation coefficients (r2) of the variants
in each associated region, which could be from a population
matched reference panel. Performancewasmeasured by the pro-
portion of causal SNPs identified from the results of an analysis of
100 simulated data sets from a continuous trait. Where the num-
ber of causal variants is 1, all three methods perform similarly,
suggesting that summary statistic methods are valuable for this
scenario. However, when considering simulations with two or
more causal variants, CAVIARBF outperformed the other meth-
ods. These simulationsmay bemore favourable to summary stat-
istic approaches than real applications where the reference LD
matrix does not exactly match the populations studied in the
GWAS data, and further direct comparisons will be necessary to
explore how well they can fine-map regions with multiple inde-
pendent signals. Furthermore, without full conditional analyses
from raw genotypes, a parameter must be specified for the

Box 1. A tool box with URL for methods and annotation databases and tools.

Function Tool URL

Functional annotation of genetic variation VEP www.ensembl.org/info/docs/tools/vep/index.html
ANNOVAR http://annovar.openbioinformatics.org/en/latest/

Reference panels for imputation and LD estimation 1000 Genomes Project http://www.1000genomes.org
Bayesian method to identify credible sets using
genotype level data

BIMBAM http://stephenslab.uchicago.edu/software.html#bimbam

Bayesian method optimized for trans-ethnic
meta-analysis

MANTRA Available by request from author (2)

Bayesian methods using summary statistics CAVIARBF https://bitbucket.org/Wenan/caviarbf
PAINTOR https://github.com/gkichaev/PAINTOR_FineMapping/

Bayesian methods including functional annotation fGWAS https://github.com/joepickrell/fgwas
PICS www.broadinstitute.org/pubs/finemapping/?q=home

Non-coding genome annotation projects ENCODE www.encodeproject.org
Roadmap www.roadmapepigenomics.org
Fantom5 http://fantom.gsc.riken.jp

Databases using regulatory information to
infer function

RegulomeDB http://regulomedb.org
HaploREG www.broadinstitute.org/mammals/haploreg/haploreg.php

eQTLs GTeX www.gtexportal.org/home/
Enrichment analysis Goshifter www.broadinstitute.org/mpg/goshifter/
Drug target databases ChEMBL www.ebi.ac.uk/chembl/

Drugbank www.drugbank.ca
Therapeutic target

database
http://bidd.nus.edu.sg/group/cjttd/

Pubmed text mining of literature GRAIL https://www.broadinstitute.org/mpg/grail/
Protein–protein interactions DAPPLE http://www.broadinstitute.org/mpg/dapple/dapple.php
Pathway prioritization protocol MEAGA http://genome.sph.umich.edu/wiki/MEAGA
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number of causal variants, and it has been demonstrated that
setting this value to 1 can impair the performance for cases
where there are multiple causal variants (14).

The Prioritization of Variants Using Functional
Annotations
The availability of tools to easily annotate genetic variants by
genomic location and potential functional consequence has
greatly aided causal inference for variants identified in GWAS
and fine-mapping studies. These approaches complement the
statistical techniques described above, as they bring independent
sources of information aboutwhat each variant is likely to do bio-
logically, rather than how strongly the genetic evidence supports
it. The Ensembl variant effect predictor (VEP) (20), which has a
web interface and stand-alone functionality, and ANNOVAR (21)
can both be easily incorporated into analysis pipelines. These
tools have the ability to incorporate variant annotations from
various databases and resources, including coding and regula-
tory regions. Scores to predict the deleteriousness of the variants
can also be included such as polyphen2, SIFT (for coding vari-
ation) and CADD (which includes all variants) (see Fig. 4).

Although protein coding variants are easiest to build a case
for prioritization and to design experiments to assay functional
consequence, they account for a small fraction of GWAS hits
(22). Projects focussed on understanding the function of the
non-coding genome started primarily with the Encyclopedia of
DNA Elements (ENCODE) project, which sought to describe the

functional elements of the human genome (23). ENCODE con-
tains information aboutmethylation and chemicalmodifications
to histones and the binding activity of transcription factors
(TFs) and theDNA elements that regulate genes. Two subsequent
consortia, functional annotation of the mammalian genome
(FANTOM) and the NIH Roadmap Epigenomics Consortium (24),
have sought to extend this work and assign further functional an-
notations to the genome. FANTOM5 expands the original mouse
FANTOMproject (25) to buildmodels of the transcriptional regula-
tion across all cell types in the human body using Cap Analysis of
Gene Expression, which assays RNA expression. This work pro-
vided maps of transcripts, TFs, promoters and enhancers that
were active across the different cell types (26,27). The NIH Road-
map Epigenomics Consortium (24) focussed on the mapping of
DNA methylation, histone modifications and chromatin accessi-
bility using cell lines andprimaryhuman tissues. The dataprovide
information on the regulatory elements controlling gene expres-
sion in 127 tissues and cell types, including healthy and disease
affected samples. Modified histone residues are markers of chro-
matin structure and function, which are associated with regula-
tion of transcription (24). The locations of these modifications
can be used to indicate whether a genetic variant is affecting
this process in some way and is thus useful in determining the
functional importance of associated variants. Changes in the
higher level structure of chromatin can also affect gene expres-
sion. Experimental methods, such as chromosome conformation
capture (3C) (28), and various protocols of HiC [which offers higher
resolution and increased scale of interaction testing (29)] can infer
this 3D structure of chromatin. These methods can be used to

Figure 2. Illustration of conditional association analysis conditioning on the lead SNP, indicated by the orange circles (the SNPwith the lowest P-value in the GWAS) using

genotype level data for (A) one independent signal and (B) two independent signals. The top plots show the results of the association analysis and the bottom plots the

result after conditioning on the lead SNP.
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determine the presence of physical interactions between promo-
ters and possible enhancer sequences (30). Some fine-mapping
studies have used 3C-based methods to confirm the evidence
from enhancer mapping to identify likely target genes (31,32).

The information provided by these projects link associated
variants to a phenotype via an understanding of the biological
basis of these associations in terms of disease pathology and ul-
timately identify causal genes. These data can be combined with
statistical fine-mapping in multiple ways. Several approaches,
such as fGWAS (16), use functional annotations as priors for po-
tential causal variants. The PAINTOR method (14) described
above can perform similar re-weighting in analysis of summary
statistics. This approach can also determine which annotations
are most informative and identify associations that do not
meet stringent significance levels based on genetic data alone.

Enrichment analyses are used to determine whether the identi-
fied variants, or subsets of variants, are significantly enriched
for overlaps with regulatory regions of the genome. Programmes,
such as Goshifter (33), have been developed to test the signifi-
cance of these enrichments while controlling for confounding
effects of correlated annotations and LD.

Bringing Together Statistical and Functional
Fine-mapping
Many studies are now successfully applying the entire workflow
shown in Figure 1 to go from associated locus to implicated gene
(Table 1). For instance, Farh et al. (15) applied a method called
probabilistic identification of causal SNPs (PICS) to disease-

Figure 3. Fine-mapping frommany variants in an associated region to a credible set of most likely causal variants. The plots illustrate the associated variants under two

potential GWAS association peaks, with −log10 P-value plotted against the chromosome position. The grey lines indicate the position of genome-wide significance at

5 × 10−8, showing the number of variants that would be prioritized by P-value alone. The points plotted in yellow are the variants in high LD (r2) with the lead variant.

The points coloured in orange are the variants included in the 95% credible set for the most likely causal variants.
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associated loci from 21 autoimmune diseases. They combined
these data with an improved epigenetic map of cis-regulatory
elements for immune cell (34). The variants from the credible
sets were mapped to this epigenetic map and revealed that 60%
of the most likely causal variants mapped to enhancer elements,
especially those activated in stimulated CD4+ T cells. There was
also enrichment for coding variation (14% of predicted causal
variants), DNase hypersensitivity sites and TF-binding sites
from ENCODE (23), including NF-Kβ and IRF4. Specific examples
of fine-mapped signals include a Crohn’s disease risk variant
located in the intron of SMAD3 (rs17293632, C>T) that prevents
the robust binding of AP-1, which in turn disrupts AP-1 regulation
of TGF-β–SMAD3 pathway and highlights a potential mode of
action to increase disease risk. An eQTL analysis refined variants
within the IKZF3 locus in multiple sclerosis to two variants with
independent effects on the expression of IKZF3. One decreased
expression and increased risk of MS, rs12946510, and the other,
rs907091, increased expression had no effect on risk of MS. The
mechanism by which rs12946510 decreased expression of IKZF3
was unclear from the sequence alone and this example serves
to illustrate that the effect of expression changes on disease
risk is context dependent and not always straightforward to
interpret.

A recent Type 1 diabetes (T1D) study (31) refined 50 suscepti-
bility regions using a combination of Bayesian methods (12) to
identify 99% credible sets and functional enrichment analysis
using data from the ENCODE (23) and NIH Roadmap Epigenomics
projects (24). The results showed significant enrichment of
credible set SNPs in enhancer chromatin states in the thymus,
CD4+ and CD8+ T cells, B cells and CD34+ cells. The results sug-
gest that variation in enhancer sequences is relevant to T1D
risk. Focussing on the credible set SNPs that were annotated as

functional (missense, from VEP, or that were located within
enhancer regions), the authors highlighted 29 SNPs in 12 loci
with small credible sets (<5 variants) that improved evidence
for several candidate genes (PTPN22, IFIH1, CTSH, TYK2 and
FUT2). The combination of small credible sets with improved
annotation of non-coding consequences substantially reduces
the size of the associated region and number of plausible target
genes.

In breast, ovarian and prostate cancers, multiple independ-
ently associated variants in the TERT locus were identified,
using the iCOGS array (41,42), including evidence of an associ-
ation between rs10069690 and two tumour methylation probes
that are less methylated with the cancer risk allele. Additionally,
Kote-Jarai et al. (41) found, in a functional follow-up study, that
rs2242652 (correlated with rs10069690) increased expression of
TERT. Chromatin conformation assays were also used to refine
the 11q13 locus associated with breast cancer to CCND1 (38)
and the 2q35 locus to IGFBP5 (32).

In the rheumatoid arthritis (RA) fine-mapping analysis (43),
the authors performed a three-stage meta-analysis and devel-
oped an annotation pipeline (see Fig. 4) to identify target genes
after prioritizing likely causal variants, which identified 98 candi-
date genes from within 101 risk loci. The prioritization pipeline
scored variants based on annotations including missense
variant, cis-eQTL in peripheral blood mononuclear cells, T cell/
monocytes and potential target genes using pubmed textmining
(Grail), protein–protein interactions (Dapple), primary immuno-
deficiency, somatic mutation, mouse knockout phenotypes and
molecular pathway analysis. The final step was to compare
candidate genes to the known drug target genes where the
authors found a significant enrichment for approved RA drugs
(P = 0.0035), including an anti-IL6R (tocilizumab) and a JAK3

Figure 4. Functional annotation schematic illustrating the annotation possibilities in the process of associated variant to target gene mapping. VEP, variant effect

predictor; CADD, Combined Annotation-Dependent Depletion; TFBM, transcription factor binding motif.
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inhibitor (tofacitinib). They also showed that drugs approved for
other phenotypes, such as those that target CDK6 and CDK4 for
cancer treatment, may also be applicable to RA. This analysis
demonstrates the utility of this process to aid the potential repur-
posing of drugs for the treatment of different phenotypes (43).

Trans-ancestry Meta-analysis
for Fine-mapping
Most of the approaches discussed so far assume association
analyses in relatively homogenous populations, with consistent
patterns of LD, as this scenario is most straightforward for dis-
covery association analysis. Meta-analysis of samples from
many different ancestries can be challenging when attempting
to discover associations, but ancestral differences in LD can be
advantageous when attempting to fine-map. In 2011, a Bayesian
method, called MANTRA, was developed to enable trans-ances-
try meta-analysis to overcome this problem of LD heterogeneity
between different ancestries (2). If an associated allele is shared
between groups with different ancestry, the differences in LD

between populations, such as European and African, can be use-
ful to help fine-map the locus by restricting the credible set
of variants to those that are in LD with the causal variant in
all populations (2). Although multiple independent signals in
disease-associated loci have been demonstrated, conditional
analysis in this context is not straightforward due to the differ-
ences in LD between populations in the study (35).

A trans-ethnic meta-analysis, utilizing MANTRA, was used to
refine the credible sets of causal variants for 10 loci associated
with T2D (35). The authors performed a meta-analysis of GWAS
from Asia, Mexico and Europe incorporating 26 488 cases and
83 964 controls using Metabochip genotypes imputed to 1000
Genomes Project haplotypes. Two of the loci with functional con-
sequences highlighted in the article were JAZF1 and SLC3OA8.
The credible set for JAZF1 locus was reduced to four SNPs
(16 kb), through the trans-ancestry method. One of these SNPs,
rs1635852, was shown (using ENCODE data) to reside in a region
of open chromatin with enhancer activity. Multiple TFs bind to
the region and the SNP shows allelic differences in enhancer
activity in pancreatic islet cells (46), highlighting its potential im-
portance in T2D pathogenesis. The SLC3OA8 (Zn28) locus was

Table 1. Selection of fine-mapped GWAS loci from recent studies, concentrating on large studies using the custom genotyping chips

Phenotype References Target gene Array Method (further details)

T1D Onengut-Gumuscu et al. (31) AFF3 Immunochip Bayesian analysis and 3C
BCAR2
PTPN22
IFIH1 (three independent signals)
CTSH
TYK2 (two independent signals)
FUT2

T2D DIAGRAM Consortium et al. (35) JAZF1 Metabochip TE meta, MANTRA (overlaps enhancer region)
SLC3OA8 (coding variant, functional experiment)

LDL cholesterol Musunuru et al. (36) SORT1 – siRNA knockdown (functional experiment)
Crohn’s disease Farh et al. (15) SMAD3 Immunochip PICS, TF binding
Multiple sclerosis IKZF3 Immunochip PICS, eQTL analysis

IL2RA PICS, enhancer map
Breast cancer Ghoussaini et al. (37) IGFBP5 iCOGS Enhancer map (variant flanks transcriptional

enhancer and interacts with promoter)
Dryden et al. (32) IGFBP5 – CHi-C

Breast cancer French et al. (38) CCND1 iCOGS 3C, allele-specific CHiP
Breast cancer Orr et al. (39) KLF4 Additional

genotyping
P-value, LD and functional annotation
(enhancer element, two independent signals)

Breast cancer Meyer et al. (40) FGFR2 iCOGS DHS (variants alter TF binding)
Prostate cancer Kote-Jarai et al. (41) TERT iCOGS Chip-seq and expression analysis
Breast cancer
Ovarian cancer

Bojesen et al. (42) TERT iCOGS mQTL TCGA (decreased methylation levels
increase cancer risk)

RA Okada et al. (43) CDK6 /CDK4 Immunochip TE meta, P-value, LD and functional annotation
(known drug targets for cancer)

Psoriasis Tsoi et al. (44), Das et al. (45) IL13 Immunochip Functional SNP in high LD with lead SNP
Psoriasis Tsoi et al. (44) TRAF3IP2 Immunochip Functional lead SNP

STAT2 Functional SNP in high LD with lead SNP
PRSS53 Functional SNP in high LD with lead SNP
CARD14 Functional lead SNP
TYK2 Functional lead SNP
YDJC Functional SNP in high LD with lead SNP
ERAP2 Functional SNP in high LD with lead SNP

Psoriasis Tsoi et al. (44) NFKBIZ Immunochip eQTL
FUT11 eQTL
MYOZ1 Expression analysis (psoriatic versus

normal skin)NFKBIZ

The target gene is the gene implicated by the functional annotation orfine-mapping analysis. TE = trans-ethnicmeta-analysis; TF = transcription factor; 3C = chromosome

conformation capture; CHi-C = capture Hi-C, similar to 3C; DHS =DNAse hypersensitivity sites; RA = rheumatoid arthritis.
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refined to a credible set of two SNPs in the analysis, one of these,
rs13266634 (Trp325Arg), which is the lead SNP in the trans-ethnic
meta-analysis, is non-synonymous and has an established mode
of action. SLC3OA8 is a Zn2+ transporter and in 2009, Nicolson et al.
(47) demonstrated that the Arg325 variant allele exhibits reduced
transporter activity than the wild-type allele, suggesting that
Zn2+ transport is important in T2D risk and thus highlighting a
potential therapeutic intervention for the condition.

Conclusion
After the success of the GWAS approach to identify regions of
the genome significantly associated with hundreds of different
diseases, a major current challenge is to translate those findings
into causal variants and target genes. As the majority of asso-
ciated variants are in non-coding regions of the genome, im-
proved functional annotation for these variants is essential.
Projects like ENCODE, NIH Roadmap Epigenomics and FANTOM5
have begun to make advances in characterizing regulatory
regions. Advances in the confident identification of causal var-
iants from GWAS identified regions have also been made, with
multiple different Bayesian methods to calculate posterior
probabilities of causality for each variant in a locus allowing be-
tween- and within-study comparisons to be made. The ability to
incorporate functional or other annotations to weight causal
probabilities and programmes that only require summary statis-
tics offer additional flexibility of analytical approach. The ultim-
ate value of GWASwill come from informed biological inferences
on causalmechanisms, aided by pinpointing causal variants and
target genes. This will enable more accurate pathway and func-
tional analysis and facilitate the understanding of disease biol-
ogy and identification of drug targets to help ameliorate the
symptoms of complex diseases.
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