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A B S T R A C T   

Deposition of visceral fat and insulin resistance play central role in the development of non-communicable 
diseases (NCDs) including obesity, hypertension and type 2 diabetes. However, we shed more light upon the 
intestines and the kidney as a strong driver of NCDs. Based upon unexpected outcomes of clinical trials using 
sodium-glucose cotransporter (SGLT) 2 inhibitors to demonstrate their actions for not only body weight 
reduction and blood glucose fall but also remarkable cardiorenal protection, we speculate that hyperfunction of 
the intestines and the kidney is one of critical contributing factors for initiation of NCDs. By detecting high 
amount of glucose and sodium chloride around them by sweet/salt taste sensors, the intestines and the kidney 
are designed to (re)absorb these nutrients by up-regulating SGLT1 or SGLT2. We designate these hyperfunc-
tioning organs for nutrient uptake as “greedy organs”. The greedy organs can induce NCDs (“greedy organ hy-
pothesis”). SGLTs are regulated by glucose and sodium chloride, and SGLTs or other genes can be “greedy genes.” 
Regulating factors for greedy organs are renin-angiotensin system, renal sympathetic nervous activity, gut 
inflammation/microbiota or oxidative stress. Mitigation of organ greediness by SGLT2 inhibitors, ketone bodies, 
bariatric surgery, and regular lifestyle to keep rhythmicity of biological clock are promising.   

1. Introduction 

About 70% of cause of death (about 57 million/year) is attributed to 
“non-communicable disease (NCD)s.” Researches by the World Health 
Organization and other organizations contributed to increased global 
awareness of NCDs as important clinical challenges [1]. 

Obesity induces insulin resistance and causes elevation of blood 
pressure (BP), postprandial high blood glucose and dyslipidemia which 
almost simultaneously occur. Postprandial hyperglycemia is often fol-
lowed by fasting hyperglycemia. These states are called metabolic syn-
drome, which leads to the onset of type 2 diabetes mellitus (DM), the 
development of chronic kidney disease (CKD) and the progression of 
arteriosclerosis. These pathological processes result in renal failure, 
blindness, stroke, myocardial infarction, heart failure and dementia. In 
2003, we defined the series of these events as “Metabolic Domino” 
(Fig. 1) [2]. Patients with metabolic syndrome are in the early stage of a 
series of metabolic events before the onset of diabetes. Since the pro-
gression of arteriosclerosis starts at this stage, cerebrovascular and 

cardiovascular (CV) events can occur at any time before or just at the 
time of the onset of diabetes. CKD is in the midstream of the metabolic 
domino around at the onset of diabetes. CKD not only causes renal death 
but also increases the risk of CV events (“cardio-renal connection”) 
[3–5]. The relationship between cancer and lifestyle-related diseases has 
been clarified [6]. Cancer has become a major cause of death in diabetic 
patients. Furthermore, with the advent of the super-aged society, frailty 
and decreased skeletal muscle mass (i.e., sarcopenia) are another issue 
of concern [7]. Metabolic Domino, thus, focuses on inter-organ com-
munications and “timing” of event occurrence in NCDs. 

In NCDs or Metabolic Domino, it is recognized that the common 
cause of series of events is obesity or visceral fat deposition. In this re-
view article, however, we shed more light on altered function of the 
intestines and the kidney, which are a strong driver of the sequence of 
such clinical events. 

2. The intestines and the kidney: critical organs for NCDs 

As a common pathophysiology in NCDs, we have focused on 
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abnormalities in mitochondria. Mitochondria produce adenosine 
triphosphate (ATP) needed for living activity. A decrease in mitochon-
drial function not only leads to decreased ATP production but also in-
creases reactive oxygen species (ROS). Decreased ATP production and 
increased ROS induce organ dysfunction and aging [8]. 

We previously reported that angiotensin II (Ang II) reduced the 
content of mitochondria in the skeletal muscle and deteriorated glucose 
tolerance [9]. In contrast, natriuretic peptide (NP)s, antagonizing hor-
mones to Ang II, and cyclic guanosine monophosphate, the second 
messenger of NP, stimulated mitochondrial biogenesis, and prevented 

obesity [10,11]. Both angiotensin converting enzyme (ACE) inhibitors 
and angiotensin type 1 receptor blocker (ARB)s are considered to 
improve glycemic control [12,13], and suppress new onset of diabetes 
[13,14]. Angiotensin receptor-neprilysin inhibitor is reported to lower 
hemoglobin A1c level in diabetics [15]. 

Organs rich in mitochondria are the intestines and the kidney. Both 
organs require high ATP consumption for exerting their biological ac-
tion of “(re)absorption” of needed materials into the body from the 
environment. Although renal filtering through glomeruli does not 
require energy, reabsorption from renal tubules requires a considerable 

Abbreviations 

NCD non-communicable disease 
BP blood pressure 
DM diabetes mellitus 
CKD chronic kidney disease 
CV cardiovascular 
ATP adenosine triphosphate 
ROS reactive oxygen species 
Ang II angiotensin II 
NP natriuretic peptide 
ACE angiotensin converting enzyme 
ARB angiotensin type 1 receptor blocker 
SGLT sodium-glucose cotransporter 
IEC intestinal epithelial cell 
PT proximal tubule 
GLUT glucose transporter 

RTC renal tubular cell 
G6Pase glucose-6-phosphate 
eGFR estimated glomerular filtration rate 
RYGB Roux-en-Y gastric bypass 
NHE Na+-H+-exchanger 
RAS renin angiotensin system 
MR mineralocorticoid receptor 
ENaC epithelial sodium channel 
EGF epidermal growth factor 
PAC plasma aldosterone concentration 
SNA sympathetic nervous activity 
RSN renal sympathetic nerve 
HFD high-fat diet 
SCFA short chain fatty acid 
FSGS focal segmental glomerulosclerosis 
β-OHB β-hydroxybutyrate  

Fig. 1. “Metabolic Domino” (adapted from reference 2) 
The collapse of “Metabolic Domino” starts with slight derangement in lifestyle, that is, more food intake and less exercise, which leads to visceral obesity, insulin 
resistance and causes hyperglycemia, high BP and dyslipidemia. The cluster of these pathological states is called metabolic syndrome. These metabolic abnormalities 
induce a variety of non-communicable diseases and organ dysfunctions, that are the cases of poor quality of life and short healthy life expectancy. 
ASO =
arteriosclerosis obliterans. ED =
erectile dysfunction. 
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amount of energy. 
We believe that it is safely stated that the intestines and the kidney 

are involved in the regulation of the function of mitochondria in all 
organs. The intestines are responsible for the absorption of glucose and 
fat (and amino acids), which serve as the source material for ATP pro-
duction, and the kidney plays a role in delivering these nutrients and 
oxygen (the fuel for ATP production) effectively to the whole body by 
regulating BP through promoting sodium (NaCl) retention and renin 
secretion. 

3. Hypothesis of “Greedy Organs”: the intestines and the kidney 
are greedy for sugar and salt 

It has been believed that NCDs are induced by dysfunction/failure of 
organs. However, we have introduced the hypothesis of “greedy organs” 
as a cause of NCDs. 

The word “greedy” has the following three meanings: 1) wanting to 
eat or drink more than one can reasonably consume (in relation to eating 
behavior) 2) immoderately desirous of acquiring e.g. wealth (with bad 
meaning) 3) ardently or excessively desirous (with good meaning). We 
think that during the course of “Metabolic Domino”, the intestines and 
the kidney hyper-function as greedy organs, with all of these three 
meanings. We use the word, “greedy”, in an association with a slang 
phrase, “greedy-guts”, which means big eater. 

In brief, reabsorption of sodium (NaCl) by the “greedy” kidney leads 
to hypertension/CKD, and the “greedy” absorption of glucose and fat by 
the intestines causes obesity/diabetes. Importantly, at the same time, 
excessive glucose release and/or production by the “greedy” kidney also 
causes diabetes and “greedy” absorption of sodium by the intestines also 
causes hypertension, forming a “crossing” relationship between the two 
organs and two disease entities (Fig. 2) [16]. 

Because greedy organ hypothesis is a concept for dissecting patho-
physiology of NCDs from the viewpoint of “(re)absorption of nutrients,” 
we do not include the brain or the liver, which utilizes or processes 
them, into greedy organs, although they significantly contribute to salt/ 
glucose metabolism. 

We came up with the above hypothesis based on the findings of our 
study concerning the effect of sodium-glucose cotransporter (SGLT)2 
inhibitors [17,18]. SGLT is a cotransporter that absorbs glucose and 
sodium simultaneously. SGLT1 is predominantly expressed in intestinal 
epithelial cell (IEC)s, whereas SGLT2 is predominantly expressed in 
renal tubular epithelial cells. Both make simultaneous absorption of 

glucose and sodium into the body. 
Even under pathophysiological circumstances with excessively high 

glucose/sodium concentration, the intestines and the kidney are to (re) 
absorb these nutrients more than metabolized or stored under the 
existing conditions. 

Glucose filtered by the kidney is reabsorbed by SGLT2, highly 
expressed in the proximal tubule (PT), and released into the bloodstream 
by glucose transporter (GLUT)2 (Fig. 3) [19,20]. Our experiment [18] 
using cultured renal tubular cell (RTC)s showed that the higher the 
concentration of glucose in the extracellular media, the greater the 
reabsorption of glucose by the RTCs due to increased SGLT2 expression. 
An in vivo experiment using db/db diabetic mice revealed that RTCs in 
hyperglycemia reabsorb a high amount of glucose leaked into the urine 
due to, in part, increased SGLT2 expression in RCTs, in spite of high 
glucose levels [18]. In other words, RTCs are “greedy”. 

According to a series of studies using IECs, the intestines are 
demonstrated to take up nutrients greedily [21,22]. It has also been 
reported that the intestines, like the kidney, absorb high amount of 
glucose by increasing SGLT1 expression when they detect sweet sub-
stances through sweet-responsive type 1 taste receptor 3 (T1R3) and the 
G protein gustducin [23]. 

In addition, when glucose concentration is high around the envi-
ronment, the kidney additionally makes more glucose (renal gluconeo-
genesis). In humans, gluconeogenesis occurs in the liver and the kidney, 
both of which possess the key enzyme of gluconeogenesis, glucose-6- 
phosphate (G6Pase) [24]. Hepatic gluconeogenesis maintains blood 
glucose levels during starvation periods such as sleep time to prevent 
hypoglycemia. However, the importance of renal gluconeogenesis has 
not been clarified well. In fact, renal gluconeogenesis is regulated in 
rather opposite direction to that of hepatic gluconeogenesis. 

Diabetes is associated with not only increased glucose reabsorption 
due to the up-regulation of SGLT2, but also increased renal gluconeo-
genesis [25]. Thus, the relationship between renal gluconeogenesis and 
glucose reabsorption seems to be synergistic, not complementary. 

4. Clinical implications of “Greedy Organs”: sugar and salt are 
bad companions for NCDs 

We believe that attenuation of hypermetabolism in the kidney after 
the administration of SGLT2 inhibitors maintains renal cell function and 
prevents the exhaustion of the kidney. “The Empagliflozin, Cardiovas-
cular Outcomes, and Mortality in Type 2 Diabetes (EMPA-REG 

Fig. 2. “Greedy organs” and lifestyle-related diseases 
The kidney and intestines absorb excessive nutrients 
for the production of ATP in mitochondria and 
become “greedy.” Excessive salt intake through 
SGLT2 makes the kidney greedy to induce hyperten-
sion/CKD. Excessive food intake through SGLT1 
make the intestines greedy to induce obesity/DM. 
There is a “crossing” relationship between “greedy 
organs” and lifestyle-related disease, that is, “greedy 
kidney” can cause obesity/DM and “greedy in-
testines” can cause hypertension/CKD. 
ATP =
adenosine triphosphate. CKD =
chronic kidney disease. SGLT =
sodium-glucose cotransporter.   
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OUTCOME)” published in 2015 [26] supports this hypothesis. Effects 
being independent of lowering blood glucose level may contribute to the 
unexpected clinical outcomes, based on the following findings: a) 
overall mortality decreased a few months after the administration of 
SGLT2 inhibitors; b) a sub-analysis showed a significant contribution of 
the decrease of heart failure to the reduction of the overall mortality; 
and c) no reduction in the mortality of stroke was observed. Therefore, 
SGLT2 inhibitors can function not only as an anti-metabolic agent but 
also as a CV agent. The sub-analysis of the EMPA-REG OUTCOME 
focusing on renal events published in 2016 (EMPA-REG Renal Outcome) 
[27] showed that SGLT2 inhibitor, compared with placebo, reduced the 
risk of development or worsening of renal events by 39%. This effect, 
however, cannot be explained by diuretic effects. 

EMPA-REG OUTCOME trial included type 2 diabetic patients with 
both preserved and modestly reduced kidney function. Administration 
of SGLT2 inhibitor led to an initial acute decline in estimated glomerular 
filtration rate (eGFR) of about 3 mL/min/1.73 m2. This initial dip in 
eGFR is considered to be caused by reduction of enhanced intra-
glomerular pressure, through tubule-glomerular feedback in the “greedy 
kidney.” Improved glomerular hyperfiltration, was followed by a 
marked slower decline in eGFR compared with those allocated to pla-
cebo during longer-term treatment, then finally leading to the risk 
reduction of renal dysfunction by 39% compared with placebo [27]. 

The Dapagliflozin and Prevention of Adverse Outcomes in Chronic 
Kidney Disease (DAPA-CKD) trial showed that reno-protective effect of 
SGLT2 inhibitor can be extended to non-diabetic CKD [28]. Moreover, in 
a sub analysis of DAPA-CKD using the same primary endpoint, dapa-
gliflozin showed a significant beneficial effect in 270 IgA nephropathy 
patients [29]. 

Reno-protective effect of SGLT2 inhibitor in non-diabetic CKD could 
be interpreted that residual nephrons in reduced kidney mass by various 

renal diseases suffer from the overload of filtered glucose and sodium, 
which they would do overwork to greedily reabsorb these nutrients as 
much as possible, in the place of destroyed nephrons. The administration 
of SGLT2 inhibitors can alleviate the greediness and exhaustion of the 
residual nephrons leading to reno-protection regardless of the cause of 
CKD. 

Clinical trials concerning the “greedy” intestines are scarce. Long 
term follow-up study (median duration 6.3 years) showed that obese 
patients (n = 1,724, mean body mass index 46.5 kg/m2) who underwent 
Roux-en-Y gastric bypass (RYGB) surgery showed significantly lower 
incidence of major CV events (composite of stroke, myocardial infarc-
tion, and congestive heart failure) and congestive heart failure as 
compared with matched unoperated control (n = 1,724) [30]. 

We recently demonstrated that salt also increases the expression of 
SGLT1 in the intestines [31]. High salt intake for 8 weeks to rats 
increased the expression of SGLT1 along with Na+-H+-exchanger (NHE) 
3 through the up-regulation of intestinal renin angiotensin system 
(RAS). There is another report to demonstrate that salt could activate 
SGLT1. RYGB in minipigs reduced the glucose uptake in the 
bile-deprived alimentary limb (AL) in the intestine. When bile, which 
contains high concentration of sodium, or salt (NaCl) itself was added to 
AL, glucose uptake was restored which was blocked by the SGLT1 in-
hibitor phlorizin, suggesting SGLT1 activation by salt [32]. 

5. “Greedy genes” 

As mentioned above, SGLT1 or SGLT2 behaves to absorb sugar 
(glucose) and salt (sodium chloride) as much as possible (“greedily”) by 
increasing its gene expression with elevated ambient concentration of 
glucose or sodium, leading to excessive absorption of these nutrients. We 
would like to call such genes as “greedy genes”, which contribute to the 

Fig. 3. Possible coordination among GLUT2, SGLT2, 
and Na+-K+-ATPase for effective glucose reabsorption 
from the urine 
When GLUT2 in the proximal tubule senses glucose in 
basolateral side, importin-α1 and HNF-1α dissociate 
from the GLUT2 and translocate into the nucleus, 
then SGLT2 expression increases. SGLT2 at the 
enhanced level transports more sodium and glucose 
simultaneously into the renal tubular cells using en-
ergy generated by Na+-K+-ATPase. Then, glucose and 
sodium are transported into the bloodstream through 
GLUT2 and Na+-K+-ATP channel, respectively. 
ADP =
adenosine diphosphate. ATP =
adenosine triphosphate. Glu =
glucose. GLUT =
glucose transporter. HNF =
hepatocyte nuclear factor. SGLT =
sodium-glucose cotransporter.   
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formation of greedy organs (Table 1). 
Sugar increases SGLT2 expression in the kidney. It was shown that 

human exfoliated PT epithelial cell (HEPTEC)s isolated from type 2 
diabetic patients expressed more SGLT2 and exhibited increased glucose 
uptake compared with HEPTECs from healthy individuals [33]. 
Increased expression of SGLT2 mRNA and protein was shown in the 
kidneys of type 2 diabetics with nephropathy [34] and db/db diabetic 
mice [18]. 

As the list of “greedy genes”, we want to add the genes encoding 
mineralocorticoid receptor (MR) and epithelial sodium channel (ENaC), 
the target of MR, along with NHE. 

It is reported that salt increases expression/activity of MR. High-salt 
diet activates Rac1, a member of the Rho family GTPase, in the kidneys 
in rodent models of salt-sensitive hypertension, leading to high BP and 
renal injury through an MR-dependent pathway [35], and that Rac1 
directly activated MR signal transduction both in vitro and in vivo [36]. 
We demonstrated that intestinal MR is involved in sodium absorption 
and BP regulation [37], and that increased activity of intestinal MR can 
cause hypertension and CKD. 

Sugar also increases the expression/activity of MR. We demonstrated 
that high glucose stimulated MR transcriptional activity and increased 
MR protein levels through decreased ubiquitination of MR protein in 
HEK293-MR cells [38], which are modified HEK293 cells expressing 
human MR stably [39]. We also reported that epidermal growth factor 
(EGF) increased MR transcriptional activity through EGF receptor and 
increased protein level by counteracting MR ubiquitination in vitro 
[40]. 

We proposed the concept of “MR-associated hypertension [41],” 
which was hypertension induced by MR overactivation irrespective of 
plasma aldosterone concentration (PAC). Even with low PAC, MR can be 
activated by increased MR gene transcription, increased MR sensitivity, 
or MR stabilization. MR-associated hypertension is often accompanied 
by NCDs, such as obesity and DM, with elevated insulin resistance and 
high plasma glucose level. 

ENaC plays important roles for the regulation of sodium reabsorption 
in the kidney and the maintenance of normal BP. It was reported that the 
expression of α, β, γ-subunits of ENaC, and serum- and glucocorticoid- 
inducible kinase 1 mRNA was elevated by high sodium diet in Dahl 
salt-sensitive rats [42]. Hence, the expression of the genes encoding 
ENaC is upregulated by sodium, which results in the enhanced absorp-
tion of more salt and development of salt-sensitive hypertension. 

As for NHE, increased expression of NHE is suggested to cause so-
dium retention and hypertension. In platelets from the patients with 
essential hypertension [43] and lymphocytes from spontaneously 

hypertensive rats [44], the activity of NHE was increased. Transgenic 
mice overexpressing NHE in renal tubules showed significantly 
decreased urinary excretion of water and Na+, and significantly elevated 
systolic BP after salt loading [45]. 

Overactivation of “greedy genes” accelerates an absorption of bad 
companions, that is, sugar and salt, leading to insulin resistance, hy-
pertension/DM, CKD and chronic heart failure (Fig. 2). 

6. How to taste sugar and salt in Greedy Organs 

Sugar increases SGLT1 expression in the intestine. The sweet taste 
receptor subunit T1R3 and the taste G protein gustducin, expressed in 
enteroendocrine cells, act as sugar sensors. Dietary sugar increased 
SGLT1 mRNA and protein expression, and glucose absorption is 
increased in wild-type mice, but not in knockout mice lacking T1R3 or 
α-gustducin [23]. 

Diabetes is generally associated with increased glomerular filtration 
rate and increased tubular sodium reabsorption [46,47]. The energy that 
drives these processes is generated largely by the enzyme 
Na+-K+-ATPase in RTCs, which creates an inward negative membrane 
potential and Na+-gradient [20]. Using this Na+-gradient, SGLT2 re-
absorbs glucose with sodium. On the basolateral side of PT cells, GLUT2 
transports glucose reabsorbed from the urinary lumen by SGLT2 to the 
interstitial space and peritubular capillaries in the kidneys. Thus, the 
coordination among GLUT2, SGLT2, and Na+-K+-ATPase is crucial for 
effective glucose reabsorption from the urine. As an underlying mech-
anism of this coordination, we revealed that GLUT2 works as a glucose 
sensor and regulator of SGLT2 expression by an in vitro study using 
LLC-PK1 porcine renal epithelial cells [18]. When GLUT2 in the PT was 
stimulated by high glucose in basolateral side, importin-α1 and hepa-
tocyte nuclear factor-1α, which were bound to GLUT2, dissociated and 
translocated into the nucleus, then increased SGLT2 expression (Fig. 3). 

In mice and rats, ENaC, one of “the greedy genes”, has been proposed 
as a candidate of salt taste receptor [48,49]. ENaC might be also 
involved in human sodium detection and salt preference although the 
relevant mechanisms are not clear [50]. 

7. Regulating factors for Greedy Organs 

7.1. RAS 

Using the kidney biopsy specimen of non-diabetic patients with 
proteinuric glomerular diseases, SGLT2 mRNA level was shown to be 
significantly associated with angiotensinogen, renin, and ACE mRNA 
levels [51], which suggests the involvement of intra-renal RAS in SGLT2 
expression. Ang II increased SGLT2 expression level in an in vitro study 
using the human immortalized renal PT cell line (HK-2). Transgenic 
mice overexpressing angiotensinogen in their renal PT cells and wild 
type mice with a single injection of Ang II showed increased SGLT2 
expression levels in the PT. In an in vitro study using porcine endothelial 
cells, Ang II increased SGLT1 and SGLT2 protein expression, produced 
oxidative stress, resulting in increased senescence-associated beta-ga-
lactosidase activity and endothelial dysfunction, which were inhibited 
by SGLT1/SGLT2 inhibitors and ARB [52]. 

7.2. Renal sympathetic nervous activity (SNA) 

De Oliveira et al. [53] reported that renal SNA was significantly 
increased and splanchnic SNA was significantly decreased in DM rats 
induced by streptozotocin. Bilateral renal denervation of these rats 
reduced hyperglycemia, glycosuria, albuminuria, and SGLT2 mRNA 
expression in the kidney, normalized splanchnic SNA, and improved 
cardiac baroreflex sensitivity which was impaired in these rats. The 
result indicates that SGLT2 expression is directly/indirectly (through 
high glucose level) up-regulated by renal SNA. 

Conversely, SGLT2 activity may modulate SNA. Alloxan-induced 

Table 1 
Possible pathological states/diseases associated with “greedy organs” and 
“greedy genes”.  

Pathophysiological states/diseases Related “greedy genes” 

Obesity SGLT1 [32] 
Glucose intolerance/Diabetes 

Mellitus 
SGLT2 [18,26,33,34], SGLT1 [32] 

Hypertension  
Essential hypertension MR [37], NHE [43], 
Salt-sensitive hypertension SGLT1 [31], MR [35,36], ENaC [42], NHE 

[45] 
“MR-associated hypertension” MR [41] 

CKD (especially at early phase)  
Diabetic SGLT2 [27,28] 
Non-Diabetic SGLT2 [28,29] 

Congestive heart failure SGLT2 [26], SGLT1 [30] 
Cancers  

Pancreas SGLT2 [74] 
Kidney SGLT2 [75] 
Colon SGLT1 [76,77] 

CKD = chronic kidney disease. ENaC = epithelial sodium channel. MR =
mineralocorticoid receptor. NHE = sodium-hydrogen exchanger. SGLT = so-
dium-glucose cotransporter. 
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diabetic rabbit showed increased blood glucose, elevated BP, and 
exaggerated renal sympathetic nerve (RSN) response to lowering BP, 
although heart rate and RSN activity itself were not changed [54]. 
Empagliflozin reduced this exaggerated RSN response to the level in 
non-diabetic rabbits, effectively normalizing the baroreflex. The inhib-
itory effect of empagliflozin on RSN activity was also observed in rat 
kidney injury model without diabetes [55]. Taken together, empagli-
flozin mitigated the exaggerated RSN activity, in other words, mitigated 
the greedy kidney with or without diabetes. 

7.3. Gut inflammation and alteration of gut microbiota 

Using macrophage-specific chemokine receptor 2-knockout and IEC- 
specific tamoxifen-inducible Ccl2-knockout mice, we previously re-
ported that a high-fat diet (HFD) increased Ccl2 expression in IECs that 
leads to the recruitment of pro-inflammatory macrophages, increased 
gut permeability with inflammation and insulin resistance in the adipose 
tissue [56]. It is reported that gastrointestinal inflammation of mice, 
which is induced by dextran sodium sulfate and pro-inflammatory cy-
tokines, increased SGLT1 in IECs that leads to glucose handling dysre-
gulation [57]. Taken together, it is speculated that gut inflammation 
induced by HFD might increase the expression of SGLT1 and make the 
gut greedy for sugar. 

The greedy intestines might be modulated by gut microbiota. The 
serum concentration of metformin in type 2 diabetic patients was 
demonstrated to be correlated with that of short chain fatty acid (SCFA) 
(butyric acid and propionate acid) [58]. Metformin shifted gut micro-
biota composition and increased several SCFA-producing microbiotas 
[59]. When SCFA was supplemented to total parenteral nutrition, 
GLUT2 mRNA and protein was upregulated in the jejunum, resulting in 
increased jejunal uptake of L-glucose and lauric acid [60]. Conversely, 
Canagliflozin, which is a not only SGLT2 but also modest SGLT1 in-
hibitor, increased cecal SCFA and reduces plasma uremic toxins in mice 
[61]. 

7.4. Oxidative stress 

It was demonstrated that insulin increased tubular SGLT-2 expres-
sion and reactive oxygen species in a dose-dependent manner, and 
stimulated glucose entry into cultured PT cells obtained from the human 
kidney [62]. Because an anti-oxidant N-acetylcysteine completely 
blocked these effects of insulin, this observation could be interpreted 
that SGLT2 expression was regulated via oxidative stress generation. 

Empagliflozin was shown to improve diabetic myocardial structure 
and function, decreased myocardial oxidative stress, and ameliorated 
myocardial fibrosis [63]. In experiments using type 2 diabetic mice, 
ipragliflozin reduced urinary albumin excretion, inhibited glomerular 
hypertrophy and relieved mitochondrial injury by reducing NADPH 
oxidase 4 expression [64]. In this study, ipragliflozin exerted 
reno-protective effects by reducing oxidative stress in tubular epithelial 
cells and glomerular podocytes. 

Taken together, increase of oxidative stress would induce SGLT2 
expression, followed by increase of uptake of glucose and sodium, and 
increase of sodium and glucose uptake induces oxidative stress, which 
forms a vicious cycle. 

In obese high-fat diet-fed rats, the expression levels of renal gluco-
neogenic enzymes including G6Pase were elevated, and oxidative stress 
markers in the kidney were increased, both of which were decreased by 
SGLT2 inhibitor [65]. As both apocynin, a selective NADPH oxidase 
inhibitor, and tempol, a superoxide radical scavenger, inhibited renal 
gluconeogenesis in vitro and in vivo [66], it is possible that augmented 
oxidative stress induced by up-regulation of SGLT2 might stimulate 
renal gluconeogenesis. 

8. Time-course of Greedy Organs (hyperfunction to 
hypofunction/failure) 

Although we reported the up-regulation of SGLT2 in PTs of db/db 
mice [18], the existing literature is inconsistent regarding SGLT2 
expression in the diabetic kidney. On one hand, mRNA and protein ex-
pressions of SGLT2 increased in kidney biopsy specimen of type 2 di-
abetics with nephropathy [34]. On the other hand, it was reported that 
SGLT2 mRNA expression in PTs was lower in type 2 diabetic patients 
than nondiabetic control [67,68]. A study using human kidney biopsy 
tissue of glomerulonephritis (minimal change disease, membranous 
nephropathy, focal segmental glomerulosclerosis (FSGS), IgA nephrop-
athy) showed that tubular SGLT2 mRNA expression was correlated 
positively with eGFR and negatively with interstitial fibrosis [68]. It 
means that when eGFR is high, SGLT2 is highly expressed and the kidney 
can become greedy. While the renal function is decreasing with the 
decrease of nephron number, SGLT2 activity might be enhanced with 
greediness in residual nephrons, however, after the significant pro-
gression of tubular fibrosis, SGLT2 expression comes to decrease and 
kidney cannot get greedy anymore. 

It was reported that 10 nondiabetic FSGS patients did not show 
significant change in eGFR nor 24-h urine protein excretion after 8-week 
administration of dapagliflozin [69]. Because renal parenchymal SGLT2 
mRNA expression decreased in FSGS patients compared with controls, 
this ineffectiveness of dapagliflozin might be due to the downregulation 
of SGLT2. The sensitivity analysis of this study showed that dapagli-
flozin decreased urinary protein evidently among patients with low 
urinary protein excretion at the baseline. Therefore, SGLT2 inhibitor 
might exerts reno-protective effects only when renal tubular function is 
maintained. The greediness of the kidneys might be achieved by active 
tubules. 

It could be postulated that excessive greediness and too much 
accumulation of nutrients might lead to hyperfunction initially, and 
then hypofunction of the organs, finally resulting in organ failure. 

9. Cancers and Greedy Organs 

Comprehensive investigation of the relationship between diabetes 
and cancer risk using eight Japanese cohort studies (>330,000 subjects) 
revealed that DM was associated with 20% increased risk of total cancer 
incidence [6]. In addition, a significantly increased risk was observed for 
cancers at specific sites, such as the colon, liver, pancreas, and bile duct, 
all of which associated with nutrient digestion and absorption. Positive 
link between renal cell carcinoma and diabetes was also reported 
[70–72]. Greedy organs of diabetic patients might be vulnerable to 
cancer (Table 1). Since cancer cells require high amounts of glucose for 
uncontrolled proliferation, cancer cells exhibit altered metabolism, 
characterized by a transition from oxidative phosphorylation to 
glycolysis (Warburg effect) [73]. It is plausible to speculate that the 
threshold of cancer cells to become greedy for sugar might be lower than 
that of normal cells. 

The functional expression of SGLT2 was demonstrated in human 
pancreatic and prostate adenocarcinomas [74]. SGLT2 inhibitor reduced 
tumor growth and improved survival rate in a xenograft mouse model of 
pancreatic cancer [74]. Kuang et al. showed higher expression levels of 
SGLT2 in human renal cell carcinoma cell lines (ACHN, A498, and 
Caki-1 cells) as compared with HK-2 cells [75]. 

Guo. et al. reported that the overexpression of SGLT1 and EGF re-
ceptor was related to higher clinical stages and poor prognosis of the 
patients with colorectal cancer [76]. Weihua et al. [77] also reported 
that SGLT1 protein and EGF receptor were overexpressed in various 
human cancer cell lines including colon cell line. 
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10. How to mitigate Greedy Organs 

10.1. SGLT2 inhibitors 

Findings from EMP-REG Renal Outcome [27] showed that the 
administration of SGLT2 inhibitors led to better clinical outcomes. 
Therefore, SGLT2 inhibitors are expected to provide a new mode of 
reno-protection. This may be true for heart failure as well. SGLT2 in-
hibitors currently draw much attention as possible novel cardiorenal 
protective agents. It is speculated from an experiment using rat nephrons 
that SGLT2 blockade in diabetes lowers cortical oxygen consumption 
and raises medullary oxygen consumption, leading to the respite of 
vulnerable PT cells [78]. 

SGLT2 inhibitors are, thus, expected to be the promising agents to 
suppress greedy organs and exert critical organ protection. However, 
there would be some caution. When SGLT2 inhibitors became 
commercially available between 2013 and 2014, many patients treated 
with SGLT2 inhibitors were hospitalized due to severe ketoacidosis. 
Therefore, the U.S. Food and Drug Administration issued a warning to 
avoid the use of SGLT2 inhibitors in patients with type 1 diabetes who 
are at higher risk of ketoacidosis [79]. A possible cause of ketoacidosis is 
postulated that potential hypoglycemia after the administration of 
SGLT2 inhibitors is sensed by the kidney, leading to the activation of 
renal vagal afferent nerves and sympathetic nerves, which stimulates 
lipolysis in the adipose tissues and produces ketone bodies (Graphic 
abstract). 

10.2. Ketone bodies 

Regarding the beneficial effects related to SGLT2 inhibitors, ketone 
bodies produced by fatty acid oxidation are drawn attention. Among 
various hypothesis explaining the reno-protective effects of SGLT2 in-
hibitors, the “thrifty substrate” hypothesis [80] may support our 
“greedy” kidney hypothesis. Energy production in humans requires 
glucose and fatty acids as the main substrates. Although fatty acids have 
high energy-producing capacity, high amount of oxygen is needed to 
burn them. An analysis of ATP production with the same amount of 
oxygen showed higher ATP production level by glucose compared with 
that by fatty acids [81]. The heart constantly requires high level of en-
ergy and normally produces energy almost exclusively by fatty acid 
oxidation [82]. However, the heart in ischemia uses glucose as the 
alternate energy substrate due to reduced oxygen supply. Ketone bodies 
have relatively high energy value with moderately low oxygen con-
sumption, compared to fatty acids and glucose. The administration of 
SGLT2 inhibitors leads to increased blood ketone bodies. When the heart 
and kidney use ketone bodies more as a substrate for energy production, 
SGLT2 inhibitors may increase the efficiency of energy acquisition, 
reducing cardiac and renal events, resulting in organ protective effects 
[83]. These hypotheses are consistent with our idea that SGLT2 in-
hibitors mitigate the greedy organs. A report from Mizuno et al. [84] 
demonstrated that human diabetic heart uses less glucose and more 
ketone bodies as an energy source than non-diabetics. 

β-hydroxybutyrate (β-OHB), which is an endogenous ketone body, is 
expected to be an anti-ischemic molecule, and its strong protective ef-
fects were shown in the heart, brain, and liver of rodents. We found that 
the administration of β-OHB to mice attenuated renal ischemia- 
reperfusion injury by blocking pyroptosis [85]. Other probable mecha-
nisms of anti-ischemic effects are; reduction of oxidative stress, mito-
chondrial protection, or enhanced autophagy [86]. An untargeted 
metabolomic approach demonstrated lower circulating levels of β-OHB 
in high salt-fed hypertensive rats. Moreover, the rescue of low β-OHB 
levels by nutritional supplementation of its precursor attenuated 
salt-sensitive hypertension in rats [87]. 

10.3. Bariatric surgery 

To explore possible factors to contribute to the glucose- and BP- 
lowering effects of RYGB is one of active research fields with many 
and diverse candidate mechanisms. Among them, alteration of gut 
microbiota is considered to play some roles. It was demonstrated in 2013 
that in mice, microbiota was altered by RYBG and transplantation of 
altered microbiota to germ free mice induced body weight reduction 
[88]. We reported increased levels of incretins and bile acid after bar-
iatric surgery with improved glucose tolerance along with change of gut 
microbiota in humans [89]. Since in 7.2., we describe that alteration of 
gut microbiota is one of the regulating factors for greedy organs, bar-
iatric surgery can serve, to a certain extent, to mitigate the greedy 
intestine. 

10.4. Regular lifestyle rhythm 

Possible relationship between clock genes and greedy genes have 
been suggested. There was a circadian rhythmicity in intestinal glucose 
absorption, which was mediated via diurnal alterations in SGLT1 
expression in rat jejunum [90,91]. Circadian clock proteins Per1and 
Clock were detected at promoters of NHE3 and SGLT1. Per1 was shown 
to regulate the expression of NHE3 and SGLT1 in PT cells of mice at the 
level of transcription [92]. Thus, the clock genes might regulate glucose 
absorption from the intestine via greedy genes. 

HFD attenuated the circadian rhythm of feeding and locomotor ac-
tivity, and reduced the amplitude of mRNA expression levels of Clock, 
Bmal1, and Per2 in the hypothalamus, liver, and fat in mice [93]. 
Whereas, time-restricted feeding of HFD, without caloric restriction, 
magnified the oscillation of the mRNA expression of circadian clock 
genes such as Per2 and Bmal1, improved glucose metabolism, and pre-
vented obesity in mice [94]. 

It is not clear whether the disturbed rhythmicity of glucose absorp-
tion from the intestines increase the expression or activity of the “greedy 
genes.” Nevertheless, regular lifestyle is necessary to keep biological 
clock in shape, leading to a reduction of insulin resistance and preven-
tion of NCDs. 

11. Conclusion 

We believe that greedy organs including the intestines and the kid-
ney can be one of critical contributing factors for NCDs, such as type 2 
diabetes and hypertension, and that a new mode of therapy that miti-
gates the greedy organs is expected to be promising for NCDs. However, 
further investigation is required to develop a sophisticated method that 
effectively mitigates the greedy organs. 
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