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Abstract: Understanding the interactions of soil microbial species and how they responded to
disturbances are essential to ecological restoration and resilience in the semihumid and semiarid
damaged mining areas. Information on this, however, remains unobvious and deficiently
comprehended. In this study, based on the high throughput sequence and molecular ecology
network analysis, we have investigated the bacterial distribution in disturbed mining areas across
three provinces in China, and constructed molecular ecological networks to reveal the interactions of
soil bacterial communities in diverse locations. Bacterial community diversity and composition were
classified measurably between semihumid and semiarid damaged mining sites. Additionally, we
distinguished key microbial populations across these mining areas, which belonged to Proteobacteria,
Acidobacteria, Actinobacteria, and Chloroflexi. Moreover, the network modules were significantly
associated with some environmental factors (e.g., annual average temperature, electrical conductivity
value, and available phosphorus value). The study showed that network interactions were completely
different across the different mining areas. The keystone species in different mining areas suggested
that selected microbial communities, through natural successional processes, were able to resist the
corresponding environment. Moreover, the results of trait-based module significances showed that
several environmental factors were significantly correlated with some keystone species, such as
OTU_8126 (Acidobacteria), OTU_8175 (Burkholderiales), and OTU_129 (Chloroflexi). Our study also
implied that the complex network of microbial interaction might drive the stand resilience of soil
bacteria in the semihumid and semiarid disturbed mining areas.

Keywords: disturbed mining areas; soil microbial community; microbial network interactions;
network topology; keystone taxa; soil resilience

1. Introduction

Coal mining activities have resulted in surface subsidence, and have made the ecological
environment more fragile by creating huge, overburdening dumps and voids [1]. Recently, increasing
attention has been paid to the influences of coal-mining subsidence on the ecological environment [2].
The soil problems caused by coal mining have become increasingly prominent and already have been
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an important research topic in mining environmental ecology. Mining activities severely disrupt land
soils, resulting in the deterioration of the existing local ecosystems, such as destroying or degenerating
essential properties in the original soils [3]. The physical and chemical properties of existing soil and
microbial community characteristics have been seriously disturbed, and the quality of reclaimed or
restored soil has been quite poor [4]. Due to the protection of cultivated land and food security, the
ecological restoration of mining areas with high groundwater levels has focused on soil reclamation in
Eastern China. In the northern-western part of China, rapid and effective ecological restoration is also
in critical demand in order to ensure the sufficient management of semiarid, damaged mines.

Using soil microbes is important in order to stimulate an ecosystem’s resilience. Assessment of the
diversity and activity of the soil microbial community is essential to evaluate the success of reclamation
or restoration. However, few studies have been conducted on the soil microbial community diversity
where there is a high groundwater level, or in semiarid damaged mining areas [5–7]. In this study, we
identified the dominant bacteria, which was critical to enhance our understanding, and determined
the ecological attributes of soil bacterial communities, which are abundant and ubiquitous in the soil
at different mining areas. Understanding the ecological attributes of dominant bacteria will increase
our capacity to successfully cultivate them, which is critical to successful restoration and reclamation
progress in mining areas [8,9]. In addition, understanding how soil bacterial communities vary across
space and how they respond to mining activities is also important for restoration ecology [10]. For
example, by locating and identifying some dominant taxa, which tend to prefer special environmental
conditions, such as mine cracks and surface subsidence, we can forecast their distribution and enrich
them to enhance the ecological restoration capacity of damaged mines. Thus, a better understanding
of dominant soil microbial taxa in the mining areas would improve our ability to manage soil bacterial
communities and promote their functional abilities.

Microbial biodiversity includes the number of species, their abundance, and the complex
interactions among different species [11]. In the environmental habitats, massive microbial species
interact with each other to form complex ecological networks [12]. It is important to understand
microbial structural and functional effects, and the changes in microbial biodiversity, which might
be elucidated through the networks of interacting species. Additionally, it is essential, in studying
microbial biodiversity, to elaborate on and analyze the interactive network structures, as well as to
understand the underlying mechanisms. Therefore, in microbial ecology, the ecological networks of
biological communities have gained attention. However, it is still difficult to determine the network
structures and their relationships with environmental changes in microbial communities [13]. The
microbial community assembly process significantly affects the structure of microbial community, and
the selection process acts as one of the ecological processes controlling the assembly of the microbial
community. Moreover, this microbial interaction, which can be seen as a kind of selection, provides
some contributions to the microbial community assembly process [14]. Therefore, researchers have
increasingly studied microbial networks in diverse environments [15]. These microbial interactions
have been emphasized as being crucial to our understanding of the dynamics of microbial community
assembly alongside climate change [16]. Although some studies have investigated the changing
microbial interactions in response to different environmental disturbances, few studies have revealed
how microbial interactions vary in subsidence areas or damaged mines, especially in different locations.
Furthermore, deficiencies exist in how coal-mining activities have changed the structure of soil bacterial
communities and their interactions. Fortunately, in recent years, numerous studies have verified the
effect of land reclamation on soil bacterial communities after coal-mining disturbances [17]. Moreover,
some studies have focused on the relationship between changes in soil bacterial communities and
surrounding environmental factors. They discovered that changes in soil bacterial communities were
closely associated with soil properties, enzyme activities, and various types of vegetation cover. Some
studies also reported on how the structure of soil bacterial communities and their diversity changed
after coal-mining disturbances [7,17,18].
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The interactions of different microbial populations in a community play critical roles in determining
the functioning of an ecosystem, but little is known about the network interactions in the microbial
community, primarily because of the lack of appropriate experimental data and computational analytic
tools [19]. In recent years, high-throughput metagenomics technologies have rapidly produced a
massive amount of data, but one of the greatest difficulties in managing these data is deciding how
to extract, analyze, synthesize, and transform such a vast amount of information into biological
knowledge [20]. This study provided a novel conceptual framework to identify microbial interactions
and key populations based on high-throughput metagenomics sequencing data. The availability of
massive, community-wide, and replicated meta-genomic data from different mining areas has provided
an unprecedented opportunity to analyze network interactions in a microbial community [21].

By combining massive data, we introduced molecular ecological network (MEN) construction
methods and the statistical analysis of bioinformatics to explore the controlling factors affecting the
distribution of microbial communities with high groundwater levels and in semiarid mining areas.
Furthermore, we explained the relationships between soil microbial communities and explored some
microbial keystone groups that could respond to and adapt to environmental changes. On the other
side, the network approaches might provide a new way to improve the ecological diversity and
ecosystem services in subsided or reclaimed mining areas, through a better decision-making, based
on a more complete evaluation. The appearance of molecular biological techniques provides new
methodologies to construct large-scale replicated networks, although system-level responses to change
remain mostly unexplored. We addressed three hypotheses in the current study: First, network
properties differed significantly among mining habitats on a large scale geographic scale level. Second,
the soil properties that correlated with keystone bacterial communities were different across the mining
areas. Third, the microbial distribution patterns across spatial distance, and the interactions of bacterial
communities among mining areas might drive different soil resilience levels in future mine restoration
and reclamation. Finally, we hope this study will aid in defining the recovery resilience of a damaged
mine ecosystem from the perspective of a microbial MEN, and revealed the development pattern of
microbiome, and the ecological restoration elastic enhancement mechanism.

2. Materials and Methods

2.1. Study Sites, Soil Sampling, and Measurment

The Peibei (PB) coal-mining area (34◦13′39”N–34◦26′16”N, 117◦06′21”E–117◦12′16”E) is located
in Northern Anhui and Jiangsu Province (Figure 1). The study area has a warm temperate zone with a
semihumid monsoon climate and four distinctive seasons. The area has an annual average temperature
(AAT) of 14 ◦C and an annual average precipitation (AAP) of 800–930 mm, which is a representative
semihumid area in East China. The soil type was haplic brown, and the sampling sites were in
the subsided mining areas. The Zoucheng (ZC) coal-mining area is located in Shandong Province
(35◦8′12”N–35◦32′54”N, 116◦46′30”E–117◦28′54”E), which is situated in a warm temperate monsoon
climate zone (Figure 1). This Geographically representative semihumid area of Eastern China has an
annual rainfall of 777.1 mm, and an annual average temperature of 14.1 ◦C. The soil type is fluvo-aquic
soil. The samples were collected from the reclaimed farmland in the mining area. The Yangquan (YQ)
coal-mining area (113◦15′E–113◦18′ E, 38◦01′N–38◦03′N) is located in Shanxi Province, China (Figure 1).
It has a continental climate, with an annual average temperature of 8.7 ◦C, and an annual rainfall
between 450 and 550 mm, which is classified as a representative semiarid area of typical geographical
environment in Western China. The region is at the southern end of the Loess Plateau, and the main soil
type is calcareous cinnamon soil. Moreover, the ecological environment has been seriously damaged,
with frequent land cracks and an exposed vegetation root system along the surface. We collected the
soil samples from the damaged areas. The Datong (DT) coal-mining area (39◦53′24”N–40◦10′00”N,
112◦52′13”E–113◦32′35”E) is also located in Shanxi Province, China (Figure 1). This area used as the
representative semiarid area in Northern-Western China, has a continental climate and a mean annual
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temperature of 6.4 ◦C. The mean annual precipitation is 384.6 mm, with precipitation mainly occurring
from June to September. The collected soil type is loess and from the damaged mining areas. Using the
diamond sampling method, each soil sample was composed by 4 soil samples collected from plots
those were 9 m2 in size in the four mining areas.
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From June to August 2018, we collected approximately 500 g of surface (0–10 cm) soil from
14 discrete locations in the each mining area (Figure 1). We stored about 20 g of soil at −20 ◦C for
subsequent analysis of the microbial diversity. The remaining soil was air-dried and homogenized to
pass through a 2 mm sieve. We measured the soil pH and electrical conductivity (EC) values using
a pH meter and a conductivity meter, respectively (PHC-3C, DDS-307A, Shanghai leici, China). We
measured the soil organic matter (SOM) according to colorimetrical methods using hydration heat
during the oxidation of potassium dichromate. We also analyzed soil ammonium nitrogen (AN) using
the potassium chloride-ultraviolet spectrophotometry method, and measured the nitrate-nitrogen (NN)
content by calcium chloride-ultraviolet spectrophotometry. We measured the available phosphorus
(AP) using the hydrochloric acid ammonium chloride method. We analyzed the available soil potassium
(AK) by the ammonium acetate–flame photometric method.

2.2. DNA Extraction, PCR Amplification, and Illumina MiSeq Sequencing

According to the manufacturer’s instructions, we extracted DNA from 56 soil samples taken
from 0.5 g of fresh soil samples using the FastDNATM SPIN Kit for Soil (MP Biomedicals, Solon,
OH, USA). We amplified the V4–V5 region of the bacterial 16S rRNA genes using the primer sets
515F (5′-GTGCCAGCMGCCGCGGTAA-3′) and 907R (CCGTCAATTCMTTTRAGTTT). The DNA
Gel Extraction Kit (Axygen Biosciences, Union City, CA, USA) was used to pool and purify the
polymerase chain reaction (PCR) products. We quantified the purified PCR products using the
Quant-iT PicoGreen dsDNA Assay Kit (Invitrogen, Carlsbad, CA, USA). The purified amplicons were
paired-end sequenced (2 × 300) on the Illumina MiSeq platform using the MiSeq Reagent Kit V3
(Personalbio, Shanghai, China). We distinguished the sample sequencing data according to the barcode
sequence and checked the sequence of each sample for quality control. Then we removed the nonspecific
amplification sequences and chimeric with USEARCH (v5.2.236, http://www.drive5.com/usearch/) in
QIIME (v1.8.0, http://qiime.org/). We clustered the operational taxonomic units (OTUs) with a 97%
similarity cutoff using the UCLUST method in QIIME and used the Greengenes database (release 13.8,
http://greengenes.secondgenome.com/) to classify the species [22,23]. We conducted alpha diversity
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indices to reveal the richness, diversity, and evenness of the OTUs and performed beta diversity analysis
online using the open-source platform Metagenomics for Environmental Microbiology (DengLab;
http://mem.rcees.ac.cn:8080/). According to the taxonomic results, we constructed an abundance
diagram and obtained rich infrared images with Origin 9.1 (OriginLab, Northampton, MA, USA)
and R software (https://www.r-project.org/). The principal component analysis (PCA), non-metric
multidimensional scaling (NMDS), response ratio calculation (RRC), canonical correspondence analysis
(CCA), variation partition analysis (VPA), correlation test, mantel test, and LEfSe (linear discriminant
analysis effect size) were also conducted on this platform.

2.3. Network Construction and Analysis

On the basis of 16S rDNA sequencing data, we used all the data from the 56 collected soil
samples to construct the interaction networks, which we defined as phylogenetic MENs [24]. For these
56 samples, each mining area had 14 samples to establish their own networks.

According to Deng et al. [25], we followed four steps in the construction process: data collection,
data transformation, pairwise similarity matrix calculation, and adjacent matrix determination. During
the construction, we only used the OTUs (97% sequence identity) occurring in 100% of the total
samples for the network computation. Then, we filled the blanks of 0.01 with paired valid values. As
recommended, we used Spearman’s Rho to measure the correlation and calculated a similarity matrix.
Thereafter, we increased the similarity threshold from 0.01 to 0.99 with intervals of 0.01, and selected an
optimal similarity threshold. We determined significant non-random patterns by evaluating whether
the spacing of the eigenvalue distribution followed a Poisson distribution. In order to allow for a
comparison, we used an identical cutoff of 0.86 to construct the interaction networks for each mining
area. We performed network construction and statistical analysis using the existing pipeline available
at http://ieg4.rccc.ou.edu/mena. We visualized these networks with Cytoscape 3.7.0 software [26].

2.4. Characterization of the Molecular Ecological Networks and Statistical Analysis

We calculated network global properties, including total nodes and links, R2 of power-law, average
degree (avgK), and average path distance (GD). Then, we calculated network indices for individual
nodes on the pipeline, such as degree and stress centrality. Greedy modularity optimization was
presented as a separation method for module separation. In the network, module was defined as a
group of OTUs with a high connection among themselves, but few connections were made with OTUs
outside the group. Furthermore, modularity (M) was extremely important for system stability [27].
Then we calculated two important parameters, Zi (within-module connectivity) and Pi (among-module
connectivity), for the modularity of all the nodes. According to the values of Zi and Pi, we classified
the roles of nodes into four categories: peripherals (Zi ≤ 2.5, Pi ≤ 0.62), connectors (Zi ≤ 2.5, Pi > 0.62),
module hubs (Zi > 2.5, Pi ≤ 0.62), and network hubs (Zi > 2.5, Pi > 0.62) [22]. Additionally, we fitted
three power-law models for the first step of the network statistics. Then, to evaluate the constructed
networks, we rewired the network connections and calculated the network properties randomly with
100 permutations between random and empirical networks.

We also calculated the relationships between gene significances (GS) and environmental traits
and used the Mantel test to check for correlations between GS and network connectivity. The GS was
calculated and defined as the square of the Pearson correlation coefficient (R2) of the OTU abundance
profile with environmental traits. We used these correlations between GS and network indices to reveal
the internal associations between network topology and environmental traits. During the process, we
used the Euclidean distance method. Then we ran the process of module-eigengene analyses on the
pipeline. The eigengene analysis was useful in revealing higher-order organizations and to identify key
populations based on network topology. In the analysis, we summarized every module through a single
value decomposition analysis, which we referred to as the module eigengene. The relative abundance
profile of the OTUs within a module could be shown in eigengene. Moreover, the relationships among
eigengenes have been visualized as a clustering dendrogram through average-linkage hierarchical
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analysis [24]. Additionally, we calculated the relationships between traits and modules, which are
shown in a heatmap.

3. Results

3.1. The Taxonomic Composition of Microbial Consortia in Different Mining Areas

We analyzed the taxonomy alpha diversity of the soil microbial communities for 56 soil samples
(Table 1). After comparing the Chao and Shannon index for each mining area, we found that soil
bacterial diversity in the Zoucheng (ZC) network was the highest and that in the PB network had the
smallest value. The results implied that the ZC area had the highest species richness and diversity,
whereas Peibei (PB) had the lowest. We used Pielou evenness to measure the heterogeneity of the
community. The data in Table 1 showed that the value of ZC was the highest, which indicated that
the evenness of its microbial community species was the best. Moreover, the values of the Chao and
Shannon index were the smallest in PB, although the value of Pielou evenness was not the smallest.

Table 1. The alpha diversity index of soil microorganisms in the four mining areas.

Mining Area Chao Shannon Pielou Evenness

PB 3710.10 ± 836.20 b 6.5937 ± 0.5738 ab 0.8305 ± 0.0441 c

ZC 8319.38 ± 541.91 ab 7.7519 ± 0.0824 c 0.9014 ± 0.0105 bc

YQ 4917.14 ± 891.56 c 6.8408 ± 0.2617 bc 0.8463 ± 0.0177 ab

DT 5238.99 ± 421.43 bc 6.7701 ± 0.1585 b 0.8120 ± 0.0144 ab

Mean ± standard deviation (SD) (n = 14). Superscript letters such as a, b and c, indicate significant differences
between different sampling sites for each parameter separately using Duncan test at significant p < 0.05 level
(ANOVA analysis, n = 14). PB, ZC, YQ and DT stand for the sampling sites Peibei, Zoucheng, Yangquan and Datong.

Overall, the bacterial categories were relatively abundant in the 56 soil samples (Figure 2).
Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Gemmatimonadetes, Nitrospirae, Planctomycetes,
and Proteobacteria accounted for almost 90% of the total sequences in each soil sample. Cyanobacteria,
Candidatus Saccharibacteria (TM7), Firmicutes, Thaumarchaeota, and Verrucomicrobia were present in
some soil samples with little occupation. The most abundant phylum in the PB, ZC, and Yangquan
(YQ) mining areas was Proteobacteria, which accounted for 37.42% ± 6.26%, 32.67% ± 4.13%, and
24.80% ± 3.95%, whereas it was Actinobacteria (29.68% ± 12.37%) was the most abundant in the DT
mining area (Figure 2). Acidobacteria was the second most abundant phylum in PB (the proportion was
just 13.38% ± 5.63%). However, Actinobacteria was found to be the second most abundant phylum in
the ZC and YQ networks. Figure 2a,d also showed that the phylum Cyanobacteria and Verrucomicrobia
accounted for more than 1% in the PB mine, whereas TM7 (1.47% ± 2.39%) was the most present in the
Datong (DT) mine. Phylum Thaumarchaeota appeared in the ZC and YQ mining areas with a proportion
of more than 1%. Furthermore, the proportion of Acidobacteria trended in the order of ZC > DT >YQ >

PB, and Chloroflexi had a similar occupation of around 10%. The proportion of Nitrospirae was shown
to be around 1% in the four mining areas. The proportion of Bacteroidetes trended in the order of
PB > ZC > YQ > DT in the four areas. Moreover, the proportion of Gemmatimonadetes trended in the
order of DT > PB > YQ > ZC, and Planctomycetes trended in the order of YQ > ZC > PB > DT in the four
mining areas. These results suggested that the microbial distribution patterns across spatial distance
varied among the four mining areas, which supported half of the third hypothesis.

Based on the community structure, principal component analysis (PCA), non-metric
multidimensional scaling (NMDS), and response ratio calculation (RRC) were performed for the
bacterial structure comparison of the four mining areas. The results indicated that the differences
among the microbial structures and compositions were representative. The colorful dots shown in
Figure 3 stand for different samples (or communities). If two dots were closer, it meant that there
was a higher similarity between the microbial community structures of the two samples. The results
of PCA and NMDS analysis showed that the soil microbial communities from the four mining areas
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were different, whereas the bacterial composition and structure within each group (mining area) were
grouped closely. It can be seen that the dot arrangement of PCA represents the distinctive pattern
along the vertical axis, according to the location order of PB, ZC, YQ, and DT. However, the NMDS
analysis showed that the groups followed a different pattern, with the horizontal axis separating the
four groups along the spatial order of PB, ZC, YQ, and DT.
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3.2. Topological Properties of MENs in Different Mining Areas

In recent years, the method of network analysis has been proposed as a new way to explore
interaction patterns of complicated data sets, which may provide more information than alpha–beta
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diversity analysis. Therefore, in this study, to derive a better understanding of big differences between
the composition and abundance of soil bacterial communities in mining areas, we used network
analyses to explore the associations between soil bacterial taxa in the mining sites.

In MENs, the microbial species (meaning nodes) are linked by pairwise interactions (meaning
links), which may reveal some of the biological interactions in the ecosystem. In this study, we
individually constructed four networks from different mining areas. We investigated some important
general network topological features, such as the scale free, small world, or modular, to understand
the differences among these MENs. Table 2 showed that their connectivity followed the power law,
and that the network connectivity (or degree) in the four constructed MENs was fitted well with the
power-law model (R2 values of 0.837–0.931, respectively). The results revealed that all the curves of the
network connectivity distribution were fitted well with the power-law model, which was indicative of
the scale-free networks. Furthermore, the average clustering coefficients and path distances were also
different from those of the corresponding random networks (Table 2).

Table 2. Topological properties of the empirical molecular ecological networks of microbial communities
and their random networks in different mining areas.

Network Indexes PB ZC YQ DT

Empirical
networks

Similarity threshold 0.86 0.86 0.86 0.86
R2 of power law 0.837 0.931 0.852 0.896
Total nodes 248 265 165 441
Total links 1285 516 163 640
Average degree (avgK) 10.363 3.894 1.976 2.902
Average clustering coefficient (avgCC) 0.314 0.258 0.158 0.184
Average path distance (GD) 3.334 7.725 3.975 7.802
Modularity 0.364 0.701 0.897 0.829
Module number (with >5 nodes) 6 10 9 13

Random
networks

Average clustering coefficient (avgCC) 0.134 ± 0.010 0.028 ± 0.006 0.007 ± 0.005 0.008 ± 0.003
Average path distance (GD) 2.772 ± 0.024 3.877 ± 0.058 6.454 ± 0.448 5.022 ± 0.076
Modularity 0.228 ± 0.005 0.496 ± 0.008 0.795 ± 0.011 0.637 ± 0.008

Table 2 showed that the average clustering coefficients (avgCC) of the PB, ZC, YQ, and DT
networks were 0.314, 0.258, 0.158, and 0.184, respectively. The average degrees (avgK) of the PB, ZC,
YQ, and DT networks were 10.363, 3.894, 1.976, and 2.902. The average path distances (GD) of the
PB, ZC, YQ, and DT networks were 3.334, 7.725, 3.975, and 7.802, which were close to the logarithms
of the total number of network nodes, suggesting that the four MENs had the typical property of a
small world. Deng et al. have reported that a higher avgK is indicative of a more complex network
and that a small GD means that nodes in the network are closer [25]. This information shows that
the PB network was the most complex network, and it could be identified by the highest avgK and
shortest GD (Table 2). For modularity, all modularity values ranged from 0.364 to 0.897, which was
higher than the modularity values from their corresponding randomized networks. Therefore, all of
the constructed MENs appeared to be modular. In the PB, ZC, YQ, and DT networks, we focused on
the modules with more than five nodes. As a result, we detected modules 6, 10, 9, and 13 with more
than five nodes. The module sizes varied considerably, ranging from 6 to 73 nodes, and the individual
modules showed obvious differences. Most importantly, all of the results confirmed that the network
properties differed significantly among different mining habitats, which supported the first hypothesis.

3.3. Dominant Microbial Taxa across Different Mining Areas

Microbial network structures were distinctly different among the four networks across the different
mining areas, and across the semihumid to semiarid locations in China (Figure 4). Figure 4 showed
that there were eight phyla in each network with node degrees > 1, namely, Acidobacteria, Actinobacteria,
Bacteroidetes, Chloroflexi, Gemmatimonadetes, Nitrospirae Planctomycetes, and Proteobacteria. As reported,
we considered the nodes with higher degrees to be the central nodes in the network structure [28].
Figure 4 also showed that nodes with high connectivity (degree) varied across the mining areas. In
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the PB network, the top five nodes (60> node degree >40), which might have been the predominant
phylum, belonged to Acidobacteria (OTU_24020, OTU_19752 and OTU_20695) and Gemmatimonadetes
(OTU_30606 and OTU_23181; File S1 in Additional file 1). In the ZC network, Acidobacteria (OTU_8126,
OTU_34138), Chloroflexi (OTU_40961 and OTU_75010), and Proteobacteria (OTU_59288 and OTU_10968)
had a high node degree (20> node degree >15) and played an important role (File S2 in Additional file 2).
In the YQ network, all of the nodes had a smaller node degree, whereas OTU_29287, OTU_61084, and
OTU_3172 had the top node degrees, with values of 7, 6, and 7, respectively (File S3 in Additional file 3).
Moreover, all three nodes belonged to Actinobacteria. In the DT network, OTU_26953 (Acidobacteria),
OTU_47804 and OTU_21400 (Actinobacteria), and OTU_3503 and OTU_33441 (Chloroflexi) had high
node degrees, with values of 13, 13, 14, 11, and 11 (File S4 in Additional file 4). Compared to the node
sizes of the other networks, the degree values of the YQ network were smaller (Figure 4). Furthermore,
the dominant bacterial species for all four networks showed significant changes. These results implied
that different mining areas were selected for different bacterial communities, which suggested that
the interactions among different microbial taxa in the soil bacterial communities were substantially
changed according to where they were located. This result confirmed the fact that the microbial
distribution patterns across spatial distance and the interactions of the bacterial communities varied
among the mining areas, which supported the third hypothesis.
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node degrees. A red link means a negative correlation and a blue link means a positive correlation.

The connectivity within and among modules has been reported in order to identify the roles
of nodes in the MENs [29]. We used peripherals, connectors, module hubs, or network hubs to
assign every node in the ecological networks. In the four networks, peripherals occupied >96% of
the total nodes. Compared to one module hub (OTU_29287) in the YQ network, more module hubs
appeared in the PB (OTU_2777 and OTU_13398), ZC (OTU_10968, OTU_8126, and OTU_59288), and
DT (OTU_26953, OTU_21400, and OTU_40485) networks (File S1–S4 in Additional file 1–4). We
observed some connectors in the PB, ZC, and DT networks, while the YQ network did not have any
connectors (Figure 5). Compared to the module hubs, we detected more connectors, especially in the PB
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network, which had nine connectors. Figure 5 also showed that the module hubs and connectors had a
wide distribution in various microbial populations. Of the total nine module hubs, three belonged to
Acidobacteria, three to Actinobacteria, one to Chloroflexi, and two to Proteobacteria. Nine connectors in the
PB network belonged to the bacterial phyla Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, and
Proteobacteria. Moreover, two connectors, which were Actinobacteria and Chloroflexi, were shown in
the ZC network, whereas the two connectors identified in the DT network both belonged to phylum
Acidobacteria. A notable phenomenon was that we did not identify a network hub in the four networks.
The result suggested that Acidobacteria occupied the first percentage of the module hubs and connectors,
then followed then by Actinobacteria, Chloroflexi, and Proteobacteria. Furthermore, phyla Bacteroidetes
appeared just once.
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Figure 5. Z–P plot showing the keystone species in the different mining area networks. Different 
symbols with special colors represent different networks as follows: black star for the PB network, 
red circle for the ZC network, blue upward-facing triangles for the YQ network, and rose downward-
facing triangles for the DT network. The module hubs and connectors are labeled with phylogenetic 
affiliations (Acido—Acidobacteria, Actino—Actinobacteria, Bacteroi—Bacteroidetes, Chloro—Chloroflexi, 
and Proteo—Proteobacteria. *2 means that there are 2 connectors or 2 module hubs belong to that 
phylum). 

As shown in Figure 6a, in the PB network, the nodes with a high degree belonged to modules 1 
and 2, including Acidobacteria (OTU_24020, OTU_19752, OTU_20695, OTU_13398, and OTU_23653) 
and Gemmatimonadetes (OTU_30606 and OTU_23181). Notably, OTU_13398 also worked as a module 
hub. Moreover, OTU_19164, which was identified as the phylum Nitrospirae from module 2, had a 
high degree, in addition to OTU_27917 (Proteobacteria) and OTU_22409 (Actinobacteria). In the ZC 
network, the nodes with a high degree were primarily distributed in modules 1 and 2, which were 
identified as phyla Chloroflexi (OTU_40961 and OTU_75010), Acidobacteria (OTU_8126 and 
OTU_34138), and Proteobacteria (OTU_10968 and OTU_59288). OTU_8126 had the highest degree and 
worked as the module hub, although OTU_10968 and OTU_59288 also served as module hubs (Figure 
6b). In the YQ network (Figure 6c), the nodes all had a small degree compared to the other three 
networks. OTU_29287, shown as Actinobacteria, had the highest degree and worked as the module 

Figure 5. Z–P plot showing the keystone species in the different mining area networks. Different
symbols with special colors represent different networks as follows: black star for the PB network, red
circle for the ZC network, blue upward-facing triangles for the YQ network, and rose downward-facing
triangles for the DT network. The module hubs and connectors are labeled with phylogenetic
affiliations (Acido—Acidobacteria, Actino—Actinobacteria, Bacteroi—Bacteroidetes, Chloro—Chloroflexi, and
Proteo—Proteobacteria. *2 means that there are 2 connectors or 2 module hubs belong to that phylum).

As shown in Figure 6a, in the PB network, the nodes with a high degree belonged to modules 1
and 2, including Acidobacteria (OTU_24020, OTU_19752, OTU_20695, OTU_13398, and OTU_23653)
and Gemmatimonadetes (OTU_30606 and OTU_23181). Notably, OTU_13398 also worked as a module
hub. Moreover, OTU_19164, which was identified as the phylum Nitrospirae from module 2, had a
high degree, in addition to OTU_27917 (Proteobacteria) and OTU_22409 (Actinobacteria). In the ZC
network, the nodes with a high degree were primarily distributed in modules 1 and 2, which were
identified as phyla Chloroflexi (OTU_40961 and OTU_75010), Acidobacteria (OTU_8126 and OTU_34138),
and Proteobacteria (OTU_10968 and OTU_59288). OTU_8126 had the highest degree and worked as
the module hub, although OTU_10968 and OTU_59288 also served as module hubs (Figure 6b). In
the YQ network (Figure 6c), the nodes all had a small degree compared to the other three networks.
OTU_29287, shown as Actinobacteria, had the highest degree and worked as the module hub. In the DT
network, the nodes with high degree were primarily distributed in modules 1, 3, and 11, which were
shown as phyla Actinobacteria (OTU_47804, OTU_21400, and OTU_40485), Acidobacteria (OTU_26953),
and Chloroflexi (OTU_3503 and OTU_33441). Notably, OTU_21400 had the highest degree and worked
as the module hub, whereas OTU_26953 and OTU_40485 played the roles of module hubs (Figure 6d).
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3.4. Eigengene Network Analysis

Module 6 in Figure S1 illustrated a conceptual example of eigengene network analysis (Figure S1–S4
in Additional file 5–8). The eigengene network analysis was composed of various components. In
module 6, for example, the heatmap showed the standardized relative abundances (SRAs) of bacterial
species across 14 samples within module 6 in the PB network. In the heatmap, each row corresponded
to the individual OTUs in module 6, whereas columns indicated the 14 samples in the PB network. The
SRA of the corresponding eigengene (y-axis) across the samples (x-axis) were also shown in module 6.
Figure S1 showed that only five microbes had significant module memberships, where the y-axis
shows the SRAs and the x-axis shows the individual samples. The values in parentheses are module
memberships, and the module memberships included in the analysis correspond to the key species
within a module. We examined module membership, which is shown as the square of the Pearson
correlation between the given species abundance profile and the module eigengene. We identified
significant module memberships within the respective modules (File S5–S8 in Additional file 9–12).

In this study, there were 6, 10, 9, and 13 modules in the eigengene analysis of the PB, ZC, YQ, and
DT networks, respectively. The module eigengenes explained 53%–81%, 61%–77%, 53%–81%, and
52%–70% of the variations in relative species abundance across the different samples in the PB, ZC, YQ,
and DT networks, respectively (Figure S1–S4 in Additional file 5–8). All of the eigengenes explicated
over 50% of the observed variations, which revealed that these eigengenes could represent species
shift across different samples in the individual modules.
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The meta-modules were shown as groups of eigengenes in dendrogram in the eigengene network,
which implied the higher-order structure of the constructed network. In this study, the eigengenes
from the modules showed significant correlations. Many meta-modules were clustered for the ZC,
YQ, and DT networks, whereas only one meta-module was clustered for the PB network (Figure 7a).
The eigengenes from the paired modules were clustered differently in the different networks, which
implied that the higher order organization of the paired modules was totally different among the
different mining areas. Otherwise, to check which property was most important for the network
modules, we investigated the trait-based module significances, by squaring the correlation between
signal intensity of the modules and some soil characteristics, including the climate parameters of AAP
(annual average precipitation) and AAT (annual average temperature; Figure 7b). Figure 7b showed
that strongly significant or significant correlations existed for the PB network between the connectivity
of the five modules and the selected variables, including AAT, pH, SOM (soil organic matter), and
AN (ammonium nitrate; p ≤ 0.001, 0.001 ≤ p ≤ 0.05). For the ZC network, the connectivity of only one
module was significantly related to the AAT and EC (electrical conductivity) values (0.001 ≤ p ≤ 0.05).
No significant correlations were observed, however, between the connectivity of all the modules and
the properties in the YQ network (p > 0.05). For the DT network, the connectivity of three modules
showed significant correlation with the selected variables, such as pH, AP (available phosphorus), and
AK (available potassium; 0.001 ≤ p ≤ 0.05). Moreover, these results indicated that these properties,
which correlated with the keystone bacterial community were totally different in different mining
areas, thus supporting the second hypothesis.

On the other side, a Mantel test and correlation test were performed to screen for the dominant
environmental factors, which affected the soil microbial community structure. The results were shown
in Tables S1 and S2. The Mantel test showed that microorganisms were closely correlated with AAP,
AAT, EC, NN, AP, and AK (p < 0.05; Table S1 in Additional file 13). According to the Pearson correlation
coefficient and significance, a correlation test presented the results that, AAP, AAT, EC, AN, AP, and
AK had significant impacts on the structural differentiation of bacterial compositions (Table S2 in
Additional file 14).
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According to above results, CCA and VPA were performed to analyze the correspondence between
the environmental factors and microbial community groups for the four mining areas (Figure 8). As
shown in Figure 8a, samples from the ZC and YQ groups were almost gathered, while PB and DT were
separated with them. The correlation information between environmental factors and communities
can be expressed by the angle between the environmental factor arrow line and the linking line, which
connected the sample points and center points. Therefore, on the left part of Figure 8a, the correlations
between AAT and PB communities were the largest compared to the EC value and AK, while AP had a
closer relationship with YQ and ZC groups. Based on the results of CCA, AAT presented the highest
explanation percentage for the analysis between environmental factors and microbial communities,
followed by AP > AK > EC (Figure 8b).
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4. Discussion

The rapid development of technologies, such as high-throughput sequencing technologies, has
provided a huge amount of scientific data, especially in the field of molecular ecology [30]. Moreover,
dealing with a huge amount of data, as well as using these data to understand functional processes at the
community level, presents significant challenges. Moreover, the network interactions play an important
role in the ecosystem processes and functions. Therefore, based on high-throughput sequencing data,
we constructed several networks, investigated the different interactions in the microbial communities
of the semihumid and semiarid mining ecosystems, and identified the key populations. We also
examined the relationships between network structures and soil properties.

The results of the taxonomic composition of microbial consortia in different mining areas (Table 1,
Figure 2) suggested that, the observed species changed across long distances, which might signify
that some new species were generated with different locations. While the disturbed mining soil
environment might pose a challenge for some species in the soil, it still stimulated new microbial
species, especially for bacteria that can adapt to special, reclaimed environments. From the semihumid
locations to the semiarid areas, soil microbial diversity showed the decreasing trends, which might
suggest that some special environment might be formed in the damaged, regional mining sites, and
could cause some bacteria to die. Most soil microbial phyla represented in this study belonged to
13 major phyla. Nevertheless, the species distributions on the phylum level were different for the four
mining areas. Regarding the temporal variation in Figure 3, the PCA and NMDS results indicated that
the microbial communities changed throughout the spatial distance. Figure 3 displayed that the PB
group was far away from the DT group, while the distance was slight between ZC and YQ. While the
percentage of the PC2 (principal component) explanation was just 11%, the result obtained on this axis
might still be reliable in interpretation (Figure 3a). This result, in Figure 3b, might indicate that the
microbial structure has become more different with locations changing from semihumid to semiarid
mining areas, which was in line with the research investigated by Helingerová et al. research [17].
Moreover, the response ratio calculation (RRC), and linear discriminant analysis effect size (LEfSe)
methods were also used to analyze the differences among the soil community structures in the four
mining areas (Figures S5 and S6 in Additional file 15–16). The RRC and LEfSe results also implied
the existence of gaps in the four groups, which confirmed that the observed changes of the microbial
community were significantly impacted by the changing spatial locations. Moreover, in spite of the
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soil microbe being significantly disturbed or destroyed by mining activities, especially in the semiarid
areas, the soil microorganism, through interactions, might be resuscitated or restored on their own.

In this study, we also analyzed the microbial interactions in different mining areas using the
method of molecular ecological network analysis. The network properties changed across all four
mining areas (Table 2), from semihumid to semiarid areas, and the species involved in the microbial
interactions also changed, as demonstrated by variations in the dominant phyla (high node degree)
(Figures 4 and 5). In the networks, community stability was higher with increased complexity. The
simple network structure (no connectors or module hubs and more sparsely distributed species) and
low competitive connections may have caused a negative effect on biogeochemical functions, indicating
an unstable and vulnerable microbial community when other disturbances occurred. Microorganisms
under this condition might have been specialized to the local environments and may thus have been
sensitive to environmental changes. The results (Table 2 and Figure 4) indicated that the network
interactions for some microbial groups were more complicated in the PB network located in the
semihumid area, although the microbial community diversity in this network was the poorest. The
nature parameters in PB and ZC are totally different from those of YQ and DT. This result implied that
different natural condition might have significantly affected the microbial community structure and
their network interactions in different ways.

The networks obtained showed the general features of many cellular networks, such as modular,
small world, or scale-free [31]. A small-world pattern contributed to the efficient communication of
different members in a community, and could quickly respond to external environmental changes, such
as mine subsidence, subsidence cracks, landslides, or soil reclamation. Closeness centrality is based on
the average shortest paths, and thus reflects the central importance of a node in disseminating
information. Complex networks with greater connectivity are more robust to environmental
perturbations than simple networks with lower connectivity [32,33]. In this sense, the higher
complexity of the PB and ZC networks suggested that (Table 2), as different taxa were complementary,
the microbiome in the eastern semihumid mining areas with a high groundwater level was more
resilient to environmental stresses, such as mine subsiding or land reclamation activities. The result
might imply that the network structural complexity might be related to the geographic location and
environment. Further studies are necessary to corroborate this observation.

We considered the OTUs with the highest degree and highest closeness centrality, and the lowest
betweenness centrality scores to be the keystone taxa [34]. Keystone taxa are highly connected taxa that
play important roles in the microbiome, and their removal can cause significant changes in microbial
composition and functioning [35]. Although previous studies have reported keystone taxa in various
environments, reports on keystone taxa in the disturbed mining areas have been limited [36–39]. As
found in this study, key populations can be distinguished according to their network profiles and
module memberships. Networks in the semihumid mining areas, with a high groundwater level,
such as PB and ZC, showed that the keystone taxa belonged to the microbial phyla Acidobacteria,
Gemmatimonadetes, Chloroflexi, and Proteobacteria, whereas Actinobacteria, Acidobacteria, and Chloroflexi
were the key species in the YQ and DT networks from semiarid mining areas (Figures 3–5; File S1–S4
in Additional file 1–4). Although the YQ mining area is far away from the PB and ZC mining areas,
the most abundant phylum was the same (i.e., Proteobacteria), whereas Actinobacteria was the most
abundant in the DT mining area, despite the fact that the two mining areas were closer to each other
(Figure 1). This result might indicate that no direct relationship existed between the location sites and
microbial abundance. We know that Proteobacteria is widely distributed around the world. It has an
aerobic bacterium that is capable of degrading a variety of contaminants, as well as some bacteria that
produces several oxidases that oxidize diverse compounds [40]. Proteobacteria has a highly diverse
physiology and is distributed in almost all of the different ecological environments. Mining areas are
complicated and contain surface subsidence, cracks, landslides, reclamation, and restoration areas.
This complicated condition might result in a suitable environment for Proteobacteria, which may have
made Proteobacteria the dominant bacteria. Actinobacteria are ubiquitous gram-positive bacteria, and
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have a characteristic filamentous morphology, which might be the reason for their high abundance in
the semiarid DT mining area. In addition, Actinobacteria have a variety of important functions that
make them useful and powerful in soil and marine environments, including degradation of organic
substances. In the adverse and comprehensive semiarid mining areas, the existence of Actinobacteria,
as the dominant microbe, might help to improve the soil quality. Acidobacteria play a significant role in
soil ecological processes, and this diverse phylum is widely distributed throughout various natural
environments [41,42].

On the other side, the abundances of key taxa Chloroflexi and Gemmatimonadetes were low,
suggesting the lack of a direct relation between abundance and key functional importance. Chen et al.
(2017) have reported that Chloroflexi increased when the environment became more anaerobic. It is
possible that mining areas have many kinds of environments, such as surface subsidence or cracked
areas, which are suitable for the Chloroflexi [43]. Even though the ecological function of Chloroflexi was
not clear, this phylum was still the keystone microorganism in the four mining areas. Recently, phylum
Gemmatimonadetes has been described as a bacterial group whose members are widespread in soil
habitats. Its cultured representative genus is Gemmatimonas aurantiaca, which has been isolated and is
able to grow under not only anaerobic conditions but also aerobic conditions [44,45]. This finding might
suggest that Gemmatimonadetes could be a suitable phylum in complicated mining areas that contain
aerobic and anaerobic environmental habitats. This might be the reason why the Gemmatimonadetes
was the keystone taxa. Tobin-Janzen et al. [46] reported that Nitrospira was the dominant genus of
bacteria in soil samples from an underground coal-mining fire (Pennsylvania, USA). Sun et al. [47]
have found a similar conclusion, that is, Nitrospira accounted for the highest proportion in the soil
samples from China. However, what these past studies found was different from the results from our
study. Ezeokoli et al. [48] have investigated the microbial community in opencast coalmines but did
not study the keystone taxa. Their results showed that microbial communities in mining areas have
been impaired and have had negative effects on soil biological processes, especially nutrient cycling
and ecosystem sustainability.

In this study, the connection between two OTUs indicated that the two OTUs might respond
to a common environmental parameter. Then characterization of the OTU connections in modules
could be used to describe these interactions among the microbial communities [49]. Additionally, it
might be suggested that the same underlying factors motivated changes in OTU abundances with
strong module memberships. Therefore, OTUs with strong module memberships should have some
physical or functional relationships in the community. As shown in this study, module memberships,
topological roles, and phylogenetic relationships have provided some information to identify the key
OTUs. Thus, the interactions and ecological roles of these microbial communities in mining areas
might provide insight for mining activities in China, especially for ecologically fragile and vulnerable
areas. For the first time, this study presented different network interactions among soil microbial
communities in semihumid mining areas with high groundwater levels and semiarid mines.

In fragile ecological systems, understanding how the soil microbial communities respond to
external environmental changes, in particular, for anthropogenic change, is significantly important [50].
In this study, the method of network analysis revealed an appropriate way to discover how
environmental changes affected microbial communities. Previous studies have shown that when
the external environment changed, such as variations in soil properties, the diversity of microbial
communities changed, which may be correlated with disturbances in soil characteristics [51–53].
Additionally, soil factors, such as pH, moisture content, total carbon content, and organic matter,
have been reported to have a greater impact on the soil bacterial community structure and diversity
in the ecological restoration of mining areas. For example, Xiao et al. [54] have reported that soil
microbial activity was affected by soil factors to different degrees, and that soil microbes played a
critical role in the recycling of soil nutrients and soil fertility. Pille Da Silva et al. [55] found that soil
microbiological attributes affected microbial biomass carbon and microbial basal respiration. The
microorganism could increase soil quality and restore biological diversity in the coal-mining area.
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Understanding this relationship between a microbial community and soil properties is critical to the
ecological restoration of coal-mining areas. Bi et al. [56,57] found that the arbuscular mycorrhizal (AM)
fungal community was influenced by the mine slope position and subsidence. Their study clarified
that the AM fungal ecological function could potentially aid vegetation restoration and reduced erosion
in coal-mining areas.

In our study, we identified strongly significant or significant correlations between the node
connectivity in the module and the selected environmental variables, such as AAT, soil pH, SOM, and
ammonium nitrate content, for the PB network. Fernández-Montiel et al. [58] showed that soil pH
could change the slightly acidic environments to an acidic condition. Results from 12 sites, following
the mining activities of different lengths of time, in terms of reclamation, suggested that soil microbial
abundance, taxonomic diversity, and functional diversity could be improved by increasing the number
of reclamation years [59]. A redundancy analysis revealed that soil pH was significantly important
in microbial metabolic structure and bacterial genetic assemblages. This finding was similar to our
results, that is, the soil pH value was significantly correlated to different species of module 6, but
only in the PB network (Figure 7), especially for the OTU_19170 (Koribacteraceae), which belonged to
Acidobacteria (File S1 and Figure S1 in Additional file 1 and 5). Sáenz de Miera et al. [60] presented the
finding that subgroups of Acidobacteria showed a significantly positive relationship with soil pH value.
Soil organic matter is always represented as an important indicator to estimate the soil carbon storage
and to evaluate soil quality. Disturbances introduced by mining activities might affect the activity of
soil microbes, thus affecting the SOM content. The results in this study also showed that the SOM had
a significant relationship with module 6, of which the important nodes OTU_4611 (Burkholderiales)
and OTU_8175 (Burkholderiales) belonged to phylum Proteobacteria, which was the keystone phylum in
the PB network (File S1 and Figure S1 in Additional file 1 and 5). Therefore, all of these results may
have suggested that the pH value and SOM revealed a complicated relationship with soil microbial
communities, in particular with the keystone species in the PB network. In a sense, these results
confirmed that the method of network analysis was effective and feasible to analyze the relationship
between environmental factors and microbial community structures.

The AAT and EC value were significantly related to two modules in the ZC network. During the
succession of land following coal mining, aggregate stability and organic matter increased, whereas the
EC value decreased. Other researchers have examined the soil bacterial characteristics of 21 coal-mining
sites [61]. One result was that the bacterial species composition was significantly correlated with the
soil EC value, which was similar to conditions in the ZC network. Our results showed that the soil
EC value was significantly correlated with different species of module 1 (Figure 7), especially for the
OTU_34138 and OTU_8126 (Acidobacteria), which belonged to keystone species in the ZC network
(File S2 and Figure S2 in Additional file 2 and 6). The EC value presented as a kind of soil-leaching
solution, which reflected the water-soluble salt content in the soil. Once the soil was disturbed by
mining activities, the solubility of calcium carbonate or magnesium carbonate in the soil might have
been affected, and then the water-soluble salt content in the soil-leaching solution changed, which
influenced the microbial communities. Sun et al. [47] have found that the distribution of bacteria was
primarily affected by SOM, AK, and AP in similar coal-mining areas. The location map in Figure 1
shows that PB and ZC are close to each other, and belong to the semihumid area. Moreover, both of
them are located in the coal-mining areas with high groundwater levels. For these areas, the soil was
affected by a secondary anti-alkali and heavy metal migration problems. In the future, we need to
investigate additional properties, such as heavy metal contents.

In the DT network, the soil variable pH and AP showed a significant correlation with the module,
whereas we did not identify a significant correlation between the modules and soil variables in the YQ
network. This result implied that pH and AP values might have played an important role in the DT
network structure. In the DT network, pH showed a positive relationship with the phyla Acidobacteria.
Notably, the important nodes in module 7 all belonged to Acidobacteria (File S4 and Figure S8 in
Additional file 4 and 8). This suggested that Acidobacteria was significantly correlated with the soil
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pH value. Ma et al. [40] have reported similar results, that is, the abundance of Acidobacteria changed
with variations in the soil pH value. In this study, this result indicated that external environmental
variables affected the network interactions among different microbial groups and that such changes
may be related to soil properties, such as the pH value. These results also indicated that both pH value
and mine activities affected the microbial and network structures.

Furthermore, AP showed a significant correlation with module 12 in the DT network, and the
important nodes in module 12 (Figure 7) belonged to Gemmatimonadetes (OTU_34734, OTU_13954,
and OTU_19203) and Chloroflexi (OTU_129; File S4 and Figure S8 in Additional file 4 and 8). This
indicated that Gemmatimonadetes and Chloroflexi were significantly correlated with the soil AP value
and that Chloroflexi was the keystone species in the DT network. Furthermore, the presence of
microbes in the same module implied that these microbial populations compartmentalized with
each other to survive in response to disturbances caused by mining activities. It is well known that
phosphorus is one of the most indispensable nutrient elements for soil development. It can be easily
fixed in the soil, although its utilization rate is low. Moreover, phosphorus is a necessary element for
microbial metabolism—for example, some soil microorganisms may produce acidic substances through
metabolism, and then dissolve some insoluble phosphates and apply them to their own metabolic
processes. All of these results could indicate that the soil phosphorus content might be correlated with
keystone species. We speculated that the disturbed environmental factors influenced the microbial
composition, thus influencing the AP content. In this study, we did not find any significant correlation
between environmental factors and network modules in the YQ network, implying that we need to
examine and include additional environmental factors in this analysis, or developed a new method to
prove this relationship.

The combined results of the mantel test, correlation test, CCA, and RDA show that, in spite of the
fact that environmental variables such as AP, AK, and EC showed significant effects on the microbial
communities, the explanation percentages in the VPA plot (Figure 8) were very low. However, the
natural factor, AAT, could explain 13.725% of the effect, which might suggest that natural geographic
conditions influence the microbial community structures. On the other side, soil pH value and SOM are
well known as being the key environmental factors that affect the soil bacterial communities [51,58–60].
However, on the phylum level, pH and SOM showed no effects on the microbial community structures,
which might imply that natural geographic factors, such as the spatial distance (from semihumid to
semiarid locations), play key roles in soil microbial compositions.

Information on the common presence of bacteria related to keystone microbes, however, is still
insufficient for these networks. We are still not able to identify the exact keystone species and their
differentiations between the semihumid and semiarid mining areas, which may have mitigated the
effects of soil disturbance and accelerated the restoration of mined soil. Moreover, the high-throughput
16S RNA gene sequencing only provided extensive information about only the taxa present in bacterial
communities in disturbed mining areas, but did not provide enough insights into the functional roles of
these keystones, which is essential for ecological restoration. Using Geochip technology, the ecological
function network analysis and more extensive research on metabolism should be investigated in the
near future.

5. Conclusions

This study demonstrated microbial interactions and their relationships in semihumid and semiarid
disturbed mining areas. The results showed that soil bacterial compositions and the network interactions
were completely different across the semihumid and semiarid mining areas. The results of keystone
species suggested that different mining areas selected different microbial communities in order to
resist the adverse environment. The results of trait-based module significances showed that several
environmental factors (e.g., AAT, pH, EC, AP, and AK) were significantly correlated with some keystone
OTUs. This study provided a new method to study network interactions among different microbial
populations in different fragile ecological systems. Our findings also provided insight into the ways in
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which microorganisms responded to mining activities and changed their resilience by regulating their
interactions in the significantly different ecosystems. In the future, more studies will be conducted on
the functional network analysis to deepen our understanding of these mechanisms.
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