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Abstract

Background: The aim of this study was to determine if changes in latencies and amplitudes of the major
waves of Auditory Event-Related Potentials (AERP), correlate with memory status of patients with mild
cognitive impairment (MCI) and conversion to Alzheimer's disease (AD).

91 patients with MCI (mean + SD age = 66.6 + 5.4, MMSE score = 27.7) and 30 age-matched healthy
control (AMHC) subjects (mean £ SD age = 68.9 £ 9.9) were studied. 54 patients were re-examined after
an average period of 14(x 5.2) months. During this time period 5 patients converted to AD. Between-
group differences in latency and amplitude of the major AERP waves (N200, P300 and Slow Wave) were
determined. Within each group, correlation coefficients (CC) between these characteristics of the
different AERP waves were calculated. Finally, for patients, CCs were determined among each AERP wave
and their age and MMSE scores. Confirmatory factor analysis (CFA) was used to examine the underlying
structure of waveforms both in the control and the patient groups.

Results: Latencies of all major AERP components were prolonged in patients compared to controls.
Patients presented with significantly higher N200 amplitudes, but no significant differences were observed
in P300 amplitudes. Significant differences between follow-up and baseline measurements were found for
P300 latency (p = 0.009), N200 amplitude (p < 0.001) and P300 amplitude (p = 0.05). MMSE scores of
patients did not correlate with latency or amplitude of the AERP components. Moreover, the
establishment of a N200 latency cut-off value of 287 ms resulted in a sensitivity of 100% and a specificity
of 91% in the prediction of MCI patients that converted to AD.

Conclusion: Although we were not able to establish significant correlations between latencies and
amplitudes of N200, P300 and SWV and the patients' performance in MMSE, which is a psychometric test
for classifying patients suffering from MCI, our results point out that the disorganization of the AERP
waveform in MCI patients is a potential basis upon which a neurophysiologic methodology for identifying
and "staging" MCI can be sought. We also found that delayed N200 latency not only identifies memory
changes better than the MMSE, but also may be a potential predictor of the MCI patients who convert to
AD.
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Background

Cognitive event-related potentials (ERPs) have been
widely used in the study of dementive disorders, includ-
ing Alzheimer's disease. Of the major waves observed in
the ERPs (N200, P300 and Slow Wave), P300 component
corresponds to mental processes such as recognition, cat-
egorization of stimuli, expectancy or short-term memory
while there are many regions in the brain, especially in the
temporal lobe, the parietal lobe and the hippocampus
which are thought to be responsible for its generation [1].

The numerous clinical P300 studies [1-6], strongly suggest
that this ERP component, elicited by auditory, visual,
olfactory or somatosensory stimuli [7], may be clinically
useful as an index of cognitive function.

N200 wave, composed of N2a, known as mismatch nega-
tivity (MMN) and N2b, may represent short duration mem-
ory functions and preattentive storage taking place in
sensory cortex 26 [8]. The temporal cortex, the frontal lobe
as well as the thalamus and the hippocampus contribute to
the generation of MMN [9], whereas the frontal and the
superior temporal lobe are also involved in the generation
of the N2b wave [10], which is measured in the present
study. N200 wave may indicate an early cognitive elabora-
tion concerning subject's attention orientation [11].

The Slow wave (SW) reflects a later, final stage of the stim-
ulus' evaluation and its' relation to P300 remains unclear
[12,13]. To our knowledge, there is no published data on
the use of this ERP component in the evaluation of MCI
or AD.

MClI is described as the transitional stage between normal
cognitive changes of aging and the cognitive decline
caused by AD. The pathogenesis of MCI is currently
unknown.

MCI has recently attracted clinical and research interest,
primarily due to the fact that MCI patients are at increased

Table I: ERP studies on MCI patients
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risk for progressing to AD [14]. It is thought that the early
identification of those subjects destined to convert to AD
may offer the opportunity of therapeutic intervention in
the initial stages of the neuropathologic processes leading
to dementia, thereby substantially increasing the proba-
bility of therapeutic success. Accordingly, the need arises
to diagnose and monitor cognitive decline in patients
with MCI in an objective manner and to this end a
number of electrophysiological techniques have been
investigated, including ERPs. Bennys et al. [2] observed
that N200 and P300 latencies were significantly pro-
longed in AD patients when compared to either MCI
patients or controls and may be used for categorizing
patients into one of the three groups. Golob et al. [3] also
studied patients with MCI and AD over a period of 5 years
and concluded that P300 latency increased with normal
aging and is further prolonged in MCI patients. Except for
prolonged P300 latencies, P300 amplitudes were signifi-
cantly reduced in AD patients when compared to MCI
patients or healthy controls [4] or when compared to just
healthy age-matched controls [15].

In our own work [16] with 22 MCI patients we had
observed that (a) the latencies of N200, P300 and SW
increase with age (p < 0.05); (b) the latency of N200 cor-
relates positively (p < 0.05) with that of P300; (c) the
latency of the SW correlates positively with the latency (p
< 0.01) and the amplitude (p < 0.05) of P300, but not
with either the latency or the amplitude of N200; (d) the
amplitude of P300 correlates positively (p < 0.01) with
the amplitude of SW and (e) the performance of the
patients in the MMSE does not correlate with the ampli-
tudes or latencies of N200, P300 and SW.

Although these results are in line with the findings of
many studies [2-4,15] the fact remains that there is sub-
stantial fragmentation regarding the goals of the different
studies reported on MCI, coupled in most cases, with a rel-
ative small size for the MCI populations studied (Table 1).
In addition, the work of Bennys et al. [2] refers to groups

Reference Patients Controls

[2] 30 AD, 20 MCI 10

[3] 14 AD, 41 MCI 22 young

44 age-matched

[6] Role of cholinesterase inhibitors, 15 MCI 15

[26] 26 AD, 38 MClI 20

[27] 17 MCI 16

[28] 14 AD, 16 MCI 15

[29] Olfactory potentials, 14 AD, 8 MCI 8

[4] 30 AD, 26 MCI 26

[5] 15 MCI 12

[30] 14 MClI 14
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of different mean age each and, in the case of AD, substan-
tially different educational background, while the work of
Golob et al. [3] focuses on the P50, N100 and P300. Fur-
thermore, no study so far examined the effects of MCI on
the SW.

Accordingly, the aim of the present study was 1) to deter-
mine if there are differences in latencies and amplitudes of
N200, P300 and SW between patient and control group
and also between different age-groups and 2) to identify
ERP parameters that could help us to electrophysiologi-
cally diagnose MCI. In addition, study participants were
clinically and neurophysiologically re-examined so as to
explore the evolution of ERPs over time and investigate
their predictive value in identifying at an early stage those
particular patients that subsequently convert to AD.

Methods

Stimuli and Procedures

Auditory event-related potentials were elicited using a
simple discrimination task, the so-called oddball para-
digm. Event-related potentials use two different tones, an
interstimulus interval of several seconds, with the target
oddball stimulus presented less frequently than the non-
target or standard stimulus. Briefly, a series of binaural
tones at 70 dB sound pressure level (SPL) with a 10 ms
rise/fall and a 100 ms, plateau time was presented to all
subjects. The auditory stimuli were presented in a random
sequence with target tones of 2000 Hz occurring 20% of
the time and standard tones of 1000 Hz occurring 80% of
the time at a rate of 0.5 Hz [17]. The subject is required to
distinguish between the two tones by responding to the
target (i.e. mentally counting) and not responding to the
standard [18]. Patients were instructed to pay attention in
distinguishing the tones, count the target tones silently
and report the total number at the end of the exam.

EEG activity was recorded (filter bandpass:0.1-50 Hz,
analysis time:1 sec) from scalp AgCl electrodes at Cz and
Pz sites according to the 10/20 system referred to linked
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earlobe electrodes, with a right hand ground. Artifacts
caused by ocular movements + 50 uV were automatically
rejected. Each patient was tested twice to ensure that wave-
form components are reproducible. The peak of the ERP
components was measured as follows: if the waveform
was smooth, the maximal amplitude point was taken as a
peak. Otherwise, the leading and trailing slopes of the
waveform were extended, and the intersection point was
determined [17].

In order to reduce electrode impedance, we used a special
type of paste (Elefix Nihon-Kohden, EEG paste Z-401 CE),
while the auditory event-related potentials were elicited
and analyzed by means of Neuropack 4 (Nihon-Kohden,
Tokyo) equipment.

Subjects

The study group consisted of a total of 91 patients with
mild cognitive impairment and 30 age-matched control
subjects. MCI was diagnosed according to the widely used
criteria of Petersen et al. [14] which include: 1. Memory
complaint, preferably corroborated by an informant. 2.
Impaired memory function for age and education. 3. Pre-
served general cognitive function. 4. Intact activities of
daily living and 5. Absence of dementia.

Fifty-four patients were re-examined after an average
period of 14(+ 5.2) months (range from 7 to 26 months).
Analyses were conducted on the entire sample and on
subgroups of subjects aged < 65 and > 65 years. The basic
demographic characteristics of the participant groups are
shown in Table 2.

The patients were recruited from the Third Neurological
Clinic of the Aristotle University of Thessaloniki in Papan-
ikolaou General Hospital. The study was approved by the
Ethics Committee of the Aristotle University of Thessalo-
niki and it was performed according to the declaration of
Helsinki. An informed consent was obtained from all
patients, before they were admitted to the study. The

Table 2: Demographic and baseline ERP characteristics of the participant groups

Parameter Patients Controls Statistic

N (female-male) 91 (56-35) 30(15-15) ¥2=0.27

Age Mean (SD) 67.1(6.9) 68.7(9.9) t=0.96 p=034
Age range 46-83 49-90 -

Age < 65 (female) 38(28) 11(5) x2=0.08

Age > 65 (female) 53(28) 19(10) x2=0.99
N200, (mean * SD), ms 245.1 £29.9 234.4 + 24.3 U =1215,p =037l
P300, (mean * SD), ms 399.7 £ 433 367.6 £ 289 U =783, p <0.00I
SW,| (mean % SD), ms 534.1 £ 60.6 495.0 £ 45.6 U =800, p = 0.001
N200, (mean * SD), uV 9.3 +0.44 73 +0.39 U =897, p =0.025
P3004 (mean * SD), uVv 16.2 £0.77 13.5 £ 0.57 U=1032,p=0.107
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patients and the controls were assessed with neuropsycho-
logical tests, which include the Mini Mental State Exami-
nation (MMSE) [19,20] and by auditory event-related
potentials. The average performance of the patients in the
MMSE test was 27.7/30, whereas all control subjects
scored 29.7/30.

Statistical analysis

Statistical analysis was performed with SPSS 15.0 for Win-
dows (SPSS Inc) and AMOS 7.0 for the confirmatory fac-
tor analysis.

Of the measured parameters, age and the latencies of con-
trol subjects were found to be normally distributed (Sha-
piro-Wilk test).

Univariate ANOVA was used to determine differences in
ERP parameters between MCI patients and controls. A
confirmatory factor analysis was also used to examine the
underlying structure of the waveform both in the control
and the patient groups. Chi-square test was used to com-
pare frequencies between groups.

Pearson's correlation coefficient (r) was computed when
the variables had normal distribution, whereas Spear-
man's r, was used when at least one variable did not fol-
low the normal distribution.

Unpaired Student's t-test was performed to compare the
ages of patients and controls. Changes between baseline
and follow-up measurements were evaluated using the
Wilcoxon matched-pairs sign-rank test. The Mann-Whit-
ney U-test was used for comparisons between patients and
controls.

http://www.biomedcentral.com/1471-2202/9/107

Probability values < 0.05 (two-tailed) were considered sta-
tistically significant.

Results

Performance

All subjects responded to the target tones of the auditory
event-related potentials with an accuracy of over 95%.
Grand average AERP waveforms for MCI patients (n = 91)
and controls (n = 30) are given in Figure 1.

Correlation between major ERP components at baseline
exam

Comparisons were made for AERPs at baseline exam in
patients and controls to evaluate the relation between age,
latencies and amplitudes. The means (standard devia-
tions) of the AERP characteristics at baseline of the two
groups are shown in Table 2.

a. Patient group
In the 91 patients we studied at baseline the results reveal
that:

(a) The latency of N200 correlates highly significantly (r,
= 0.55, p < 0.001) with that of P300.

(b) The latency of the P300 wave has a highly significant
statistical correlation with the latency of the SW (r,=0.59,
p < 0.001). The correlation between N200 and SW laten-
cies is also significant (= 0.26, p < 0.05). Therefore there
seems to be a relationship between the latencies of all
three major waves of AERPs and each one is dependant
upon the other. Fig. 2 shows the regression lines between
P300-N200 and SW-P300 latencies. It is evident that the
equations and the correlation coefficients of the two

20

N

Voltage (uV)
]

—— CONTROLS
— MCI PATIENTS

-10 -
_20 I 1 1 1 I I I I
0 100 200 300 400 500 600 700 800 900
time {ms)
Figure |
Grand average AERP waveforms for MCI patients (n = 91) and controls (n = 30).
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Figure 2

Regression lines of P300-N200 and SW-P300 latencies in MCI patients.

regression lines are practically identical and therefore the
value of SW can be determined by extrapolation of the
P300-N200 latencies regression line.

(c) There is a highly significant association (p < 0.001)
between P300-N200 latency difference and P300 (r, =
0.69) and SW (1, = 0.50) latencies. Moreover P300-N200
latency difference is significantly correlated with P300
amplitude (r,= 0.24, p < 0.05).

(d) The difference between SW and P300 latencies is
highly correlated with the difference between the latencies
of SW and N200 (r;= 0.78, p < 0.001).

(e) Significant correlation was found between N200 and
P300 amplitudes (r;= 0.33, p < 0.01).

(f) Statistically significant positive correlations were
found between N200, P300 and SW latencies and age
(N2001,=0.37 p<0.001; P3001,=0.33, p<0.01 and SW
I, = 0.27 p < 0.01) and a negative correlation between
P300 amplitude and age (r,= 0.26, p < 0.05). The regres-
sion lines between latencies of ERPs and age are presented
in Figure 3.

b. Control group
In the 30 healthy control subjects we studied the results
show that:

(a) Latencies of N200, P300 and SW increase with age (p <
0.01) (For N200 r = 0.52, for P300 r = 0.44, for SWr = 0.40).

(b) Highly significant correlations were observed between
the latencies of N200 and P300 (r = 0.58, p < 0.001) and
between P300 and SW latencies (r = 0.80, p < 0.001). Sig-
nificant correlation is observed also between N200 and
SW latencies (r = 0.40, p < 0.05)

(d) The latency difference P300-N200 is highly associated
with P300 latency (r = 0.59, p < 0.001).

(e) As in patients, the difference between SW and P300 laten-
cies is highly correlated with the difference between the
latencies of SW and N200 (r = 0.88, p < 0.001). Moreover it
is highly related with SW wave latency (r = 0.86, p < 0.001)
and associated with P300 latency (r = 0.46, p < 0.01).

(f) Similarly to the observation made in the patients
group, the amplitudes of the major waves in healthy con-
trols decrease with age. This decrease is highly significant
for P300 wave (r = -0.60, p < 0.001) but not for N200
wave (r =-0.22, p<0.5).

(g) There seems to be a highly significant correlation
between N200 and P300 amplitudes (r = 0.69, p < 0.001).
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Scattergramms showing the relation between AERP
latencies and age in MCI patients. From top to bottom:
N200, -age, P300, -age and SWV -age.
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Correlation of ERP latencies and amplitudes in MCI
patients with MMSE performance

No correlation was observed between latencies and ampli-
tudes of N200, P300 and SW and the patients' perform-
ance in MMSE.

Group differences (MClicontrols)

The Mann-Whitney test was used for intergroup compari-
sons of the ERP characteristics. P300 and SW latency were
significantly prolonged in patients compared to the con-
trol group (for P300 U = 783, p < 0.001; for SW U = 800,
p =0.001). On the other hand no difference was observed
in N200 latencies (U = 1215, p = 0.367). Moreover,
patients had significantly higher N200 amplitude (U =
897, p = 0.025) than controls, whereas P300 amplitude
did not seem to differ between the two groups (U = 1032,
p = 0.107). The statistical significances of the intergroup
differences are shown in Table 2.

In order to test the AERP waveform difference in MCI
patients compared to controls, confirmatory factor analy-
sis (CFA) was employed to examine the underlying struc-
ture of the waveform both in the control and the patient
groups. Given that the sample size of the present study
was relatively small for such an analysis, bootstrapping
techniques were used. These techniques are regarded an
ideal means to tackle problems in situations where the
assumption of adequate sample size is not met [21].

A one-factor model was postulated and tested for the five
measured variables, which were the latencies of N200,
P300 and SW (N200;, P300, and SW,) and the ampli-
tudes of N200 and P300 (N200, and P300,). All variables
were transformed to z-scores to share the same scale. Ini-
tial analyses showed that P300 latency had negative error
variances for both groups and thus it was excluded from
the model.

Figures 4a and 4b depict the AERP final models for the
two groups. All fit indices suggested a good fit of the mod-
els to the data: For the control group, x2=3.45,df=2,p=
0.178, CFI = 0.954, SRMR = 0.086 and for the MCI
patients group, x2 = 3.68, df = 2, p = 0.159, CFI = 0.935,
SRMR = 0.062. As suggested by the modification indices,
to improve the fit of the models, an error covariance
between N200, and P300, was added in the case of the
control group and between N200, and P300, in the case
of the patient group.

As shown by the fit indices, both models had acceptable
fit to the data. However, substantial differences between
them can be observed. In particular, the latencies of N200
and SW had higher factor loadings for the control group
(0.69 and 0.61) than the patients group (0.44 for both
variables), implying that MCI reduces the contribution of
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Confirmatory factor analysis results of the ERP wave-
form for (a) control and (b) patients group.
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these two components on the entire ERP waveform. Also
there is a substantial difference in the factor loadings for
the amplitudes of N200 and P300 in the two groups (0.03
and 0.27 for N200, and -0.66 and 0.71 for P300,).

Analysis of Variance (ANOVA)

A univariate ANOVA was conducted for a more compre-
hensive study of the relation between AERP parameters
(Table 3). Each variable was obtained as a dependent var-
iable with group (MCI patients/ AMHC) and age-group as
fixed variables. When each ERP component was examined
independently, differences between patient and control
group were found for P300 and SW latencies (p < 0.001)
and N200 amplitude (p = 0.029), whereas between the
two age-groups the differences were highly significant (p
< 0.001) for N200,, P300, and SW,, significant (p =
0.005) for P300, and non-significant (p = 0.065) for
N200,.

The effect of earlier ERP components on the later ones was
studied using preceding components as covariates. When
N200, was used as a covariate for the analysis of P300;, a
significant difference (p = 0.003) between groups, but not
between age-groups (p = 0.082) was found. In the analysis
of SW latency with N200, as a covariate, only the between-
groups comparison was found to be significant (p =
0.004), whereas with P300, as a covariate, no difference
between groups or age-groups was found (p = 0.288 and
0.487 respectively). This indicates that P300 and SW
latencies carry the same information, a finding that is in
agreement with the regression lines shown in Figure 2.

In the analysis of P300 amplitude with N200 amplitude
as a covariate, the significance in the difference between
the two age-groups remained (p = 0.024).

Change of ERP components with time

Significant differences between follow-up and baseline
measurements were found for P300, (p = 0.009), N200,
(p < 0.001) and P300, (p = 0.05) (Wilcoxon matched-
pairs sign-rank test).

Comparison of differences in ERP parameters between the
patients who during the follow-up converted to AD and
those who remained stable (Table 4), revealed that N200
latency was the only parameter with statistically signifi-
cant difference (Mann-Whitney test, Z = -3.58, p < 0.001).
In the MMSE test the difference between these two sub-
groups showed a trend towards significance (Z=-1.858, p
=0.063), indicating that N200, measurements at baseline
not only identify memory changes better than the MMSE,
but also may serve as a potential predictor of the MCI
patients who convert to AD. In particular the use of a cut-
off value of 287 ms resulted in an AUC of 0.988 (95% CI
=0.939-0.998, p < 0.001), a sensitivity of 100% (95% CI
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Table 3: Results of univariate ANOVA of basic ERP components (Statistically significant differences are shown in bold)

ERP Component Controls Patients Significance
Age-group Mean S.E. Mean S.E. P

N200, <65 220.7 8.19 235.3 441 0.064
> 65 244.6 6.23 252.1 3.73

P300, <65 353.6 11.54 3814 6.21 <0.001
> 65 379.9 8.78 412.8 5.26

SW, <65 475.0 16.68 515.5 8.97 <0.001
> 65 506.4 13.04 547.5 7.60

N200, <65 8.05 1.27 10.62 0.69 0.029
> 65 6.80 1.03 837 0.59

P3004 <65 17.02 2.15 17.80 .17 0.114
> 65 10.85 1.68 15.08 0.99

P300,_ <65 371.1 9.88 3873 5.22 0.003

(covariate N200,) > 65 3785 7.29 405.4 4.48

SW, <65 485.3 16.80 519.0 8.88 0.004

(covariate N200,) > 65 505.6 12.75 543.2 7.62

SW, <65 510.5 13.56 525.2 7.05 0. 288

(covariate P300,) > 65 521.4 10.26 528.1 6.30

P3004 <65 17.02 2.15 17.80 1.17 0.341

(covariate N200,) > 65 10.85 1.68 15.08 0.99

= 48-100%) and a specificity of 94% (95% CI = 86.9-
98.1%).

There was a significant difference in N200 latency medi-
ans between controls, MCI stable patients and AD-con-
verters (Kruskal-Wallis Test, p = 0.001). The difference was
significant between controls and AD-converters (Mann-
Whitney test, p = 0.001), but not between controls and
MCI stable patients (p = 0.632).

Discussion
In this study AERPs were conducted to determine if
changes in latencies and amplitudes of the major waves of

AERPs, correlate with memory status of patients with MCI
and conversion to AD.

As noted, patients with MCI are at high risk for developing
Alzheimer's disease [22] and according to Petersen et al.
[23], they convert to Alzheimer's disease at a rate of about
12% per year and by the end of the sixth year, after MCI is
diagnosed, 80% of patients with MCI convert to Alzhe-
imer's disease. In another study [22] over a period of five
years, less than 50% of patients with MCI converted to
AD. Therefore, early diagnosis in these patients is very
important, and for this purpose ERPs have been employed
in several studies. In a study involving 12 healthy elderly
controls and 15 MCI patients, auditory event-related

Table 4: Comparison of ERP parameters between MCI stable and AD-converting subgroups (Statistically significant differences are

shown in bold)

Parameter Total MCl stable AD-converters Statistic p
N (female) 91(56) 86(54) 5(2) x2=1.037 0.309
Age Mean (SD) 67.1(6.9) 66.8(6.7) 72.6(9.5) Z=-1.666 0.096
MMSE Median 28 28 26 Z=-1.858 0.063
(IQR) (26-29) (26-29) (24-28)
N200, median 240 2385 306 Z =-3.580 <0.001
(IQR), ms (225-265) (224-258) (291-327)
P300, median 394 394 467 Z=-1916 0.055
(IQR), ms (370-424) (370-422) (387-518)
SW| median 527 528 522 Z=-0.165 0.869
(IQR), ms (488-571) (490-570) (474-684)
N200, median 8.75 84l 11.25 Z=-1734 0.083
(IQR), uv (6.25-11.25) (6.25-11.25) (8.82-16.22)
P300, median 13.90 13.95 13.75 Z=-0.944 0.345
(IQR), uv (10.45-19.65) (10.50-20.0) (9.40-15.25)
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potentials following the "oddball" paradigm were used
[24]. The median performance of patients with MCI in the
MMSE was 27.7. P300 latency was significantly delayed in
MCI patients, but N200 latency as well as the amplitudes
of the two components were found not to be statistically
different between the two groups. Pokryszko-Dragan et al.
[25], also observed that in patients with mild and moder-
ate Alzheimer's disease, P300 latency was significantly
prolonged compared to healthy subjects. From the charac-
teristics of the P300 wave (latency, amplitude), which we
studied, P300 amplitude was also found not to be signifi-
cantly different between patient and control group,
whereas P300 latency was significantly delayed in patients
compared to control subjects.

Our results confirm those presented by Golob et al. [5].
However, having also studied the N200 and SW character-
istics, we also observed that SW latencies are significantly
delayed in MCI patients when compared to healthy con-
trols. In addition, we observed that the strong correlation
which exists (a) between the N200-to-SW latency differ-
ence and the latencies of P300 or SW and (b) between the
P300-to-SW latency difference and the latencies of P300
or SW, in control subjects, disappears in MCI patients.
Another observation is that, both the amplitudes of P300
and N200-to-P300 latency difference correlate with the
latency of SW in MCI.

We interpret this finding as a disorganization of the AERP
waveform in MCI patients whereby the generators of the
N200, P300 and SW of the AERP are "decoupled" in MCI.
In this respect we also observed that (a) the strong corre-
lation that exists between N200 and P300 amplitudes in
our control subjects disappears in the case of MCI; (b) the
P300 amplitude becomes strongly correlated with the
N200-to-P300 latency difference and (c) Age stops being
correlated with P300 amplitude. In our view therefore,
while, in AMHC, N200 wave can be considered as the
"initiator" of both the P300 and the SW, in MCI it does
not influence the generation of SW. The observation that
in MCI the N200-to-P300 latency difference does not cor-
relate with either the N200-to-SW latency difference or the
P300-to-SW latency difference, further underscores this
point. Further evidence of the disorganization of the AERP
waveforms and the "decoupling" of the wave generators
in MCI patients compared to healthy controls is provided
by the results of the CFA, where substantially different
loading factors of the AERP parameters of the two groups
were found for the two groups.

According to the ANOVA analysis of our data, the between
age-groups (= 65 and > 65 years) difference observed in
P300 latency is due to N200 latency, while the between
groups difference which is observed in SW latency is due
to P300 latency. This means that, P300 and SW may carry

http://www.biomedcentral.com/1471-2202/9/107

the same information and be due to the same generator, a
finding that comes to agreement with Garcia- Larrea and
Cezanne-Bert [31], but contrasts with the conclusions of
Freidman et al [13].

Differences between patient and control group were
found for P300 and SW latencies (p < 0.001) and N200
amplitude (p < 0.05), whereas differences between the
two age-groups were found for all components except for
N200 amplitude.

The fact that MMSE does not correlate with the ampli-
tudes or latencies of N200, N300 and SW, indicates that
the latencies of these major ERP components, when
viewed as statistical functions of age, are orthogonal to the
corresponding set of MMSE scores [32], which in turn,
implies that these latencies can be used as measures of
MCI independent of the MMSE score.

Finally, from our follow up study it is also evident, that
N200 latency is capable of predicting which MCI patients
will convert to AD and therefore seems to have a predic-
tive value for AD diagnosis. The choice of a cut-off value
of 287 ms resulted in a sensitivity of 100% and specificity
of 91%. Moreover N200 latency was significantly higher
in the 5 MCI patients that converted to AD compared to
MCI stable patients (p < 0.001). The mean age of these 5
AD-converters (72.6 years) was higher than that of the
MCI stable patients (66.8 years), however, this difference
was not significant (p = 0.096, Table 4).

It must be emphasized that the small number of the MCI
patients who converted to AD does not allow for a general
conclusion to be drawn. However, this finding is consist-
ent with results presented in other studies [2,33], regard-
ing the usefulness of N200 latency measurements in
predicting MCI conversion to AD.

Conclusion

Despite the fact that in our study we measured latencies
and amplitudes of all the major waves of the AERPs
(N200, P300 and SW) in the largest number of MCI
patients to date, we like to point out that we were not able
to establish significant correlations between latencies and
amplitudes of N200, P300 and SW and the patients' per-
formance in MMSE, which is a basic psychometric test for
the assessment of patients suffering from MCI. This con-
clusion, we believe, is in line with the conclusions of the
majority of the relevant known studies (Table 1), which
also fail to demonstrate that the performance of MCI
patients in MMSE correlates with ERP parameters. In addi-
tion, our results point out to the disorganization of the
AERP waveform in MCI patients (whereby the generators
of the N200, P300 and SW of the AERP are "decoupled"
in MCI) as a potential basis upon which a neurophysio-
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logic methodology for identifying and "staging" MCI can
be sought. The significant correlations that exist between
the different peaks of the AERP waveform in AMHC,
which in many ways break down in MCI, can be used for
this purpose. This in turn, implies that statistical descrip-
tions of the ensemble of an individual's AERP waveforms
are needed for this purpose, rather than the simple aver-
aged AERP waveforms. We have made this the next step in
our search for a neurophysiologic indicator of MCI. Valu-
able aid in this search gives us the observation that N200
latency might serve as a potential useful marker in the
early diagnosis of AD.
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