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Abstract: (1) Background: Maternal diet and alcohol consumption can influence both maternal
and infant’s gut microbiota. These relationships are still not examined in the Chinese population.
The purpose of this study was to explore the effect of alcohol consumption and maternal diet
during pregnancy on maternal and infant’s gut microbiota. (2) Methods: Twenty-nine mother-child
dyads were enrolled in central China. Fecal samples of mothers during late pregnancy and of
newborns within 48 h were collected. The V3-V4 regions of 16S rRNA sequences were analyzed.
A self-administrated questionnaire about simple diet frequency in the past week was completed
by mothers before childbirth. The demographic information was finished by mothers at 24 h after
childbirth. (3) Results: Among these 29 mothers, 10 mothers reported alcohol consumption during
pregnancy. The PCoA (p3-diversity) showed significant difference in maternal gut microbiota between
the alcohol consumption group vs. the non-alcohol consumption group (abund-Jaccard, r = 0.2,
p =0.006). The same phenomenon was observed in newborns (unweighted-UniFrac full tree, r = 0.174,
p = 0.031). Maternal alcohol consumption frequency showed positive associations with maternal
Phascolarctobacterium (p = 0.032) and Blautia (p = 0.019); maternal Faecalibacterium (p = 0.013) was
negatively correlated with frequency of alcohol consumption. As for newborns, a positive relationship
showed between Megamonas (p = 0.035) and newborns with maternal alcohol consumption. The diet
was not associated with both maternal and infant’s gut microbiota. (4) Conclusions: Maternal alcohol
consumption during pregnancy influenced the gut microbiota on both mothers and the newborns.
Future research is needed to explore these relationships in a lager birth cohort. Understanding the
long-term effect of alcohol consumption on maternal and newborns” gut microbiota is needed.
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1. Introduction

A variety of endogenous and exogenous factors can impact the gut microbiome [1,2]. The
Human Microbiome Project (HMP) [3] and the American Gut Project [4] are two initiatives that
focus on studying the characteristics of the human microbiome that are associated with both
healthy and diseased humans [5]. According to their work, a series of factors can contribute
to changes of the human gut microbiome such as demographic factors (e.g., sex, age, ethnicity,
geography) [6] and health history (e.g., use of antibiotics) [7]. Importantly, lifestyles, including
diet and alcohol consumption are primary factors that influence the development of the
gut microbiota in early life [8]. Studies have suggested the existence of mother to child gut
microbiota transmission during the neonatal period [9,10] and diet is another most important
factor in modifying the composition and diversity of human gut microbiota other than
geography and season changes [11]. The impact of both short-term and long-term intakes of
different dietary components on changes of gut microbiota have been demonstrated [6,12].
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Long-term habitual diet primarily refers diet patterns such as the Mediterranean diet and
Western diet. Studies found that the Western diet was associated with high abundance of
Bacteroides and Firmicutes while a plant-based habitual diet showed an increase of beneficial
Bifidobacteria [6,13]. Additionally, recent epidemiological evidence in a large scale global
population reported that dietary patterns can significantly affect gut microbiota composition,
richness, and diversity [6,14,15]. Specific food composition-based interventions among certain
human populations (e.g., obesity, diabetes, fatty liver, and elevated cholesterol) and animal
models suggested that even short-term dietary consumption could significantly affect the
composition of gut microbiota [14,16,17].

Besides the effect of diet consumption on gut microbiota, maternal prenatal diet
could influence the abundance of infant’s gut microbiota. In an American trial, maternal
vitamin D supplementation during pregnancy was associated with lower abundance
of Clostridium difficile and Bifidobacterium but higher abundance of Bacteroides fragilis in
infants aged 3—-6 months [18]. In a New Hampshire birth cohort study, higher abundance
of Streptococcus and Clostridium of infants aged 6 weeks was associated with maternal
fruit intake during pregnancy [19]. Another birth-cohort study in Spain [20] showed that
maternal fat intake was positively related with neonatal Firmicute members and negatively
associated with proteins and fiber intake. Similarly, one animal study about Japanese
macaque [21] demonstrated that maternal high-fat intake could decrease infants’” gut
microbiota diversity at the age of 12 months. Compared with Western countries, Chinese
people prefer vegetables and fruits and have different eating habits [22,23]. Until now, the
effect of maternal Chinese diet during pregnancy on gut microbiota of newborn is rarely
studied, and that from the first feces is needed to be proved urgently.

Women are more likely to drink alcohol during stressful and difficult situations [24,25].
A large number of women who have an unintended pregnancy may consume alcohol
prior to the confirmation of pregnancy [26]. Evidence showed that pregnant women have
drinking behaviors despite repeated warnings against alcohol consumption during preg-
nancy [27]. Maternal alcohol consumption has negative consequences on fetal and infant
health, including fetal alcohol spectrum disorder [26], sudden infant death syndrome [28],
and abnormalities [29]. Association between changes in the gut microbiota and alcohol con-
sumption have been investigated extensively in the last few decades. Sufficient evidence
suggested that both acute and chronic exposure to alcohol may lead to specific shift of the
microbiota composition [30]. Bull-Otterson et al. [31] found that alcohol leads to a decreased
abundance in Firmicutes and an increased number of Actinobaceria and Proteobacteria at
phylum level. Evidence in humans also suggested that chronic alcohol consumption caused
a decreased Bacteroidetes but increased Proteobacteria, as well as increased permeability of
gastrointestinal tract [32]. However, changes of the gut microbiota in offspring born into
alcohol consumption mothers during pregnancy are rarely investigated.

Both alcohol consumption and diet seem to have significant effects on the composition
of the human gut microbiota [13,33,34]. However, whether alcohol consumption and
diet habits during pregnancy were associated with the gut microbiota in mothers and
newborns needs to be further investigated. Therefore, a population-based birth cohort
study was performed to assess the influence of maternal alcohol consumption and diet
during pregnancy on the gut microbiota of mothers and newborns. The results will confirm
the relationship between maternal alcohol consumption, diet habits, and gut microbiota in
both mothers and its offspring, which will provide a new angle to improve infants” health.

2. Materials and Methods

Between March 2017 and July 2017, 29 women during late pregnancy were recruited
from an obstetric outpatient clinic in a tertiary hospital in central China (Table 1). The inclusion
criteria were: (1) women in late pregnancy (>28 gestational weeks) who planned to deliver a
baby in the hospital; and (2) the habitual residence is Wuhan, Hubei Province, China. The
exclusion criteria included: pregnant women (1) with complications (e.g., gestational diabetes,
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hypertensive disorders); (2) receiving antibiotic treatment during pregnancy; or (3) with
cognitive impairment.

Table 1. Characteristics of maternal and infant birth cohort (N = 29).

Variable Maternal Alcohol Consumption p Value
Yes (10, 34.38%) No (19, 65.52%)
Maternal age 29.8 £2.04 30.9 +4.15 0.44
Pre-BMI 20.77 + 3.02 21.15 +2.63 0.73
GWG 15.95 + 1.63 15.53 +4.52 0.82
Gestational week 40.13 +1.08 39.55 +4.15 0.15
. C-section 7 (24.14%) 8 (27.59%)
Mode of delivery Vaginal delivery 3 (10.34%) 11 (37.93%) 0.16
Male 5 (17.24%) 5 (17.24%)
Infant gender Female 5 (17.24%) 14 (48.28%) 0.24
Newborns’ alpha diversity Shannon 4.01 +£1.07 2.62 +1.70 0.03*
Maternal alpha diversity Shannon 3.66 £ 0.50 3.19+:0.49 0.02*

Values listed are total for the variable (percent of total value n) or means + SD. Across rows (*) indicate means that are significantly different
(p < 0.05). Pre-BMI: pre-pregnancy body mass index; GWG: gestational weight gain.

2.1. Data Collection

After admission, a self-designed questionnaire was used to evaluate the 7-day frequency
and structure of maternal diet prior to delivery, as well as alcohol consumption during
pregnancy. As recommended by the Chinese Society of Nutrition [35], eight common domains
of foods for Chinese women during pregnancy were collected, including meat, eggs, fish,
vegetables, fruit, milk, nut, and soybean productions. We assessed the diet frequency which
involved every day, 5/6 day a week, 3/4 day a week, 1/2 day a week, and never. Alcohol
consumption was measured by consumption frequency, categorized as never, rarely, some of
the time, and most of the time. Maternal demographic characteristics were collected in the
hospital based on maternal self-report at 24 h after childbirth. Fecal samples from women
at late pregnancy and their infants after birth within 48 h were collected in the hospital
based on the Human Microbiome Project (HMP) protocol [21]. For sequencing and microbial
composition analysis, we used Silva (SSU123) 165 rRNA database and the average sequencing
depth was 50,000 reads/samples with a minimum of 30,000 reads. Our previous study [36]
had elaborated details on DNA extraction, amplification of polymerase chain reaction (PCR),
and [llumina MiSeq sequencing.

2.2. Statistical Methods

Before the analysis, data of genera relative abundance were transformed into the
centered log ratio (CLR). Maternal alcohol consumption was further combined into the
following: without alcohol consumption (n = 19) vs. with alcohol consumption (n = 10). For
maternal diet, we translated the frequency data into numerical variables, which included:
every day =5, 5/6 day a week =4, 3/4 day a week = 3, 1/2 day a week = 2, never = 1.

The difference of a-diversity (Shannon index) in alcohol consumption was tested by
Student’s t-test at the operational taxonomic unit (OTU) level. To explore 3-diversity of
alcohol consumption in mothers and infants, principal coordinates analysis (PCoA) was
conducted based on abund-Jaccard and unweighted-Unifrac full tree distance matrix and
calculated using OTU information from each sample. Analysis of similarities (ANOSIM)
was used to check whether these differences were significant. Community heatmap was
used to visualize microbiota composition of the two alcohol consumption groups.

The heatmap was used to display the relationships among maternal alcohol consump-
tion, diet frequency, and dominant bacterial communities (genus relative abundance > 1%,
based on Spearman correlation test). After adjusting confounders (e.g., gender [male vs.
female], delivery mode [natural vs. C-section]), multivariate analysis of general liner model
(GLM) was used to analyze significant factors on the mother and infant’s gut microbiota.
We set o < 0.05 as the significance level. All the analyses were adjusted using the Benjamini—
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Hochberg false discovery rate (FDR, < 0.05) in multiple hypothesis tests. These analyses
were performed using SPSS version 21 (IBM, Chicago, IL, USA) and R software [37].

3. Results
3.1. Taxonomies of the Gut Microbiota

The values of Good’s coverage were 99.7% in mothers and 99.6% in newborns. In total,
733 OTUs were acquired in maternal fecal samples. We found 98 families and 259 genera were
revealed from 29 maternal samples. Among infants, 1480 OTUs were revealed from 29 new-
borns” meconium (i.e., the first feces), with 270 families and 579 genera profiled. Figure 1 shows
taxonomic compositions of the dominant bacteria (relative abundance > 1%) at genus level.
Based on the cutoff point of 1%, 18 genera were identified. The most abundant genera included
Bacteroides (24.33%), Faecalibacterium (10.48%), Prevotella-9 (7.77%), [ Eubacterium]_rectale_group
(4.89%), Phascolarctobacterium (3.79%), and Megamonas (3.71%) for mothers. Eighteen genera
were identified in newborns and Prevotella_9 (11.74%), Bacteroides (11.21%), Escherichia-Shigella
(10.92%), Streptococcus (6.78%), Staphylococcus (5.58%), and Clostridium sensu strictol (5.11%) were
primarily identified.

3.2. Microbial Diversity

A significant difference in «-diversity was found between alcohol consumption and
without alcohol consumption groups in mothers (p = 0.02) and in infants (p = 0.03). Mothers
with alcohol consumption showed a higher diversity compared with those without alcohol
consumption during pregnancy, and similar results had been identified in newborns (Table 1).
The p-diversity through PCoA shows that the bacterial structure was separated based on
maternal alcohol consumption (Abund-Jaccard, r = 0.2, p = 0.006) (Figure 2a). For newborns, the
first two principal component scores, accounting for 52.82% of the total variations (unweighted-
UniFrac full tree, r = 0.174, p = 0.031) suggested that alcohol consumption was one of the
important factors in the change of microbiota composition structure (Figure 2b).

3.3. Associations between the Maternal Alcohol Consumption, Diet and Gut Microbiota Changes in
Mothers and Infants

The heatmap shows relationships between gut microbiota changes and maternal diet and
alcohol consumption (Figure 3). Significant relationships existed among maternal gut microbiota
with intake frequency of fruit (Lachnospiraceae: r = 0.369, p = 0.048), egg(Lachnospira: r = —0.373,
p = 0.046), fish(Blautia: r = —0.443, p = 0.016; Prevotella_9: r = 0.379, p = 0.042), nut(Blautia:
r = —0.448, p = 0.015), and soyabean products (Lachnospira: r = —0.443, p = 0.011). Moreover,
maternal alcohol consumption during pregnancy had a strong relationship with maternal gut
microbiota, including Faecalibacterium (r = —0.659, p = 0.001), Prevotella_9 (r = —0.407, p = 0.029),
Phascolarctobacterium (r = 0.451, p = 0.014), and Blautia (r = 0.442, p = 0.016). Infants born in
mothers who have had alcohol consumption during pregnancy revealed a similar impact on
Bacteroides (r = 0.512, p = 0.005), Faecalibacterium (r = 0.460, p = 0.012), Megamonas (r = 0.521,
p = 0.004), Rhodococcus (r = 0.495, p = 0.006), Lachnoclostridium (r = 0.483, p = 0.008), and Thermus
(r = 0426, p = 0.021). Maternal dietary intake of meat (Enterococcus: r = 0.376, p = 0.044),
eggs (Lachnospira: r = —0.374, p = 0.046), nut (Escherichia-Shigella: r = —0.454, p = 0.013) and
soybean products (Enterobacteriaceae: r = —0.373, p = 0.046) during pregnancy were related
with their offspring’s gut microbiota.



Biomolecules 2021, 11, 369 50f12

Prevotella 9

Megamonas

Streptococcus

[Eubacterium] eligens group
Roseburia

Bifidobacterium

Subdoligranulum

Lachnospiraceae NK4A136_group
Phascolarctobacterium
Lachnospiraceae
Lachnoclostridium

Blautia

Bacteroides

Faecalibacterium 06
[Eubacterium] rectale group 04
Lachnospira 03
Dialister 01
[Eubacterium]_ruminantium_group

¥3¥2 n8 n2 y4 y10y8n18 y0 y6 y7 n16n13y1 7 nd nl4 nl n3n17n6 n10n11n12015n1905y5 0o

Enterococcus

Staphylococcus
Enterobacteriaceae
Bifidobacterium

Rhodococcus

Lachnospira

Blautia

Lachnoclostridium
Phascolarctobacterium
Thermus

[Eubacterium] rectale group
Megamonas

Prevotella 9 1
Bacteroides 08
Faecalibacterium
Escherichia-Shigella 02
Streptococeus 0
Clostridium_sensu_stricto_1

ol 02 03 o4 05 06 o7 08 09 y1 y2 ¥3 nl0allnl? y4al3 y5nld y6 015016 y7 y8nlTal8 y9y10 0l

b

Figure 1. Distribution of microbial community for alcohol consumption group (Yes) vs. without alcohol consumption group (No)
at genus level were visualized by community heatmap (> 1% relative abundance). The abundance of different samples reflects
through color changes: (a) indicates maternal gut microbiota composition; (b) indicates newborns’ gut microbiota composition.
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Figure 2. Principal co-ordinates analysis (PCoA) was conducted to display gut microbiota structure difference of the two

alcohol consumption status onOTUevel (distance matrix: mothers: abund-Jaccard; infants: unweighted-UniFrac full tree).

The statistics of analysis of similarities (ANOSIM) are R and p. If R is closer to 1, it means that the difference between

groups is greater than the difference within groups. The Box-plot represented the distribution of different groups of samples

on the PC1 axis. (a) Indicates the maternal gut microbiota structure difference between with alcohol consumption and

without alcohol consumption group; (b) indicates newborns” gut microbiota structure born into mothers with different

alcohol consumption.

To further investigate the effects of maternal diet and alcohol consumption on ma-
ternal and infant’s gut microbiota, GLM was performed to control possible confounders.
Results showed that maternal alcohol consumption frequency was significantly related
with maternal gut microbiota, including Phascolarctobacterium (3 = 1771.10, p = 0.034, adjust
p = 0.032) and Blautia ( = 538.60, p = 0.020, adjust p = 0.019). Faecalibacterium (3 = —3055.7,
p = 0.001, adjust p = 0.013) were negatively correlated with frequency of alcohol con-
sumption. A positive relationship between Megamonas in infants and maternal alcohol
consumption frequency (p = 1066.53, p = 0.030, adjust p = 0.035). The x-diversity was not
associated with alcohol consumption both in mothers and infants.
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Figure 3. Relationship heatmap was performed to show the association between maternal /newborns’
bacterial abundance and maternal diet intake frequency as well as alcohol consumption before
delivery. The coefficient appeared color-coded based on under (red) or over-representation (green) in
the analysis (* 0.01 < p < 0.05, ** 0.001 < p < 0.01, ** p < 0.001). (a) Indicates relationships among
maternal gut microbiota with diet and alcohol consumption; (b) indicates relationships among
newborns’ gut microbiota with maternal diet and alcohol consumption.
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4. Discussion

In this study, alcohol consumption has significant impact on both maternal and
offspring’s gut microbiota. Mothers, who had alcohol consumption during pregnancy,
had a significantly lower abundance in Faecalibacterium genus and a higher abundance
in Phascolarctobacterium, Blautia genera compared with those without alcohol drinking
groups. These findings were consistent with previous studies [31,32,38,39]. In a study with
a pregnant animal model, reduced Bacillus was observed in pregnant mice exposure in
ethanol [40]. Interestingly, plenty of research studies have proved the transmission of gut
microbiota between mothers and offspring in utero. Studies [39,41,42] involving maternal
diet, gestational weight gain (GWG), and antibiotic treatment have reinforced that point
of view. Accordingly, several hypotheses [42] were proposed about transmission routes
(e.g., vagina, placenta, amniotic fluid, cord blood, and fetal membranes) which means
that maternal prenatal factors can alter the initial newborns’ gut microbiota. In the study,
for newborns with mothers who have consumed alcohol during pregnancy, we observed
higher abundance in Megamonas genus. The over-growth of Megamonas in newborns
further indicated that alcohol consumption during pregnancy might affect offspring’s gut
microbiota colonization in early life [43].

The negative effect of maternal alcohol consumption during pregnancy is undoubted,
both on mothers and newborns. In this study, mothers with alcohol consumption during
pregnancy had a lower-level abundance of Faecalibacterium. Faecalibacterium was shown to
involved in intestinal anti-inflammatory [44] and play a role in preventing alcohol-induced
gastrointestinal and extra-intestinal diseases [45,46] by blocking nuclear factor kB (NF-
kB) [47]. High intestinal permeability (IP) was positively related to the abundance of Blautia
genus [48]. Additionally, the prevalence of Phascolarctobacterium was believed to associated
with hepatic diseases including nonalcoholic steatohepatitis (NASH) [49] and hepatocellu-
lar carcinoma (HCC) [50]. In addition, Blautia was known to be elevated in people with
depressive symptoms [51]. Furthermore, a number of studies in animals about the effect of
alcohol on the gut microbiota also showed that alcohol consumption caused a decreased
abundance of Firmicutes and increased numbers of Verrucomicrobia and Bacteroidetes, and
Firmicutes have been confirmed, which was associated with anti-inflammatory activity in
human body [38]. Canesso et al. [52] transplanted fecal samples of mice fed with alcohol
into germ-free mice, and there was an increase of gut and hepatic inflammation which
suggested that gut microbiota can mediate alcohol proinflammatory effect. Besides, in
this study, Megamonas was abundant in infants exposed to alcohol consumption mothers.
Additionally, increased Megamonas was proved to be associated with major depressive disor-
der [53]. Moreover, prenatal alcohol espouse was linked to changes in newborns’ cognitive
and behavioral development including depression, mood diseases, and autism [54,55].
In utero, MRI also demonstrated [56] that maternal ethanol exposure in gestation could
perturb brain development associated motor control. According to Kakiyama'’s study,
infants born into mothers who have alcohol consumption during pregnancy may result in
hepatic damage, along with an increased number of Bacteroides [30]. Further, long-effect
on offspring existed even low-level alcohol exposure during pregnancy [55]. In summary,
alcohol consumption mediated mothers’ gut microbiota composition and passed the effect
on infants. However, their gut microbiota composition showed different changes. The inter-
generational transmission of Faecalibacterium, Phascolarctobacterium, Blautia, and Megamonas
genera were not found in this study. Other cohort study [57] has pointed out that excessive
Lachnospiraceae genus transmission was observed in overweight mothers and overweight
infants aged 1 and 3 years old. Nevertheless, plenty of factors were associated with the
transmission process, including infants” gestational age, delivery mode, antibiotic usage,
and the operating room microbes [58]. It may be the possible cause that different gut micro-
biota change patterns occurring in mothers and infants in this study. Besides that, further
long-term clinical studies were strongly recommended, taking factors into account such
as alcohol categories, specific levels of alcohol consumption during pregnancy. It would
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help investigate roles of alcohol consumption in maternal and infants’ gut microbiota
more accurately.

In our study, we explored the effect of meat, eggs, fish, vegetables, fruit, milk, nut, and
soybean productions on maternal and infants” gut microbiota. Although some maternal
diet was associated with gut microbiota in mothers and infants, they were not significantly
controlling confounder factors. However, studies have proved that [59] eggs intake was
correlated with Lachnospiraceae and Blautia. Soybeans and grains as the main source of
polyphenols including isoflavones and flavones were the primary dietary influencing fac-
tors on Lactobacillus, Bifidobacterium, and Enterococcus avium [60-64]. It also found [59] that
pulses intake was negatively related to clostridium. In addition, the changes were translated
significantly into gut microbiota of infants [65-67]. A previous study showed that high fat
or oral probiotic supplement can drive gut microbiota changes in offspring [65]. Maternal
Lactobacillus rhamnosus GG (LGG) consumption increased the abundance of Bifidobacteria
colonization in infants [68]. The abundance of Bacteroides decreased in newborns exposure
to maternal high-fat diet during pregnancy [69]. However, different duration and quantity
of diet components intake may lead to various results in gut microbiota [70], based on
the microbe-host co-metabolism [71]. Likewise, 35% of bacterial OTUs were related to
eating time and frequency. Human gut microbiota changed throughout the day with a
decreased concentration of butyrate, acetate, and propionate [72]. It seems to explain
different findings in the relationships between diet and gut microbiota.

5. Conclusions

In conclusion, these results showed that maternal alcohol consumption during preg-
nancy induced changes of the gut microbiota in mothers and their offspring. In the area of
maternal and infant health care, this study has provided compelling evidence that limiting
maternal alcohol consumption is of benefit to both mothers and infants. Among limitations
of our study, the dietary and alcohol assessment may be subjected to memory bias. Specific
effects of different degrees and different kinds of alcohol consumption on the maternal
and infant gut microbiota are still unclear. Future research should lay great stress on
food/alcohol quantity or proportion and minimize bias as possible. Besides, a limited
participant size results in less representative of the study. Thus, it is in urgent need to
develop a large birth cohort and explore the long-term impact of alcohol consumption and
diet on infant and mother’s gut microbiota.
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