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Results: In this paper, we develop a de Bruijn assembler, called Clover (clustering-
oriented de novo assembler), that utilizes a novel k-mer clustering approach from the
overlap-layout-consensus concept to deal with the sequencing errors generated by
the lllumina platform. We further evaluate Clover’s performance against several de
Bruijn graph assemblers (ABySS, SOAPdenovo, SPAdes and Velvet), overlap-layout-con-
sensus assemblers (Bambus2, CABOG and MSR-CA) and string graph assembler (SGA)
on three datasets (Staphylococcus aureus, Rhodobacter sphaeroides and human chromo-
some 14). The results show that Clover achieves a superior assembly quality in terms of
corrected N50 and E-size while remaining a significantly competitive in run time except
SOAPdenovo. In addition, Clover was involved in the sequencing projects of bacterial
genomes Acinetobacter baumannii TYTH-1 and Morganella morganii KT.

Conclusions: The marvel clustering-based approach of Clover that integrates the
flexibility of the overlap-layout-consensus approach and the efficiency of the de Bruijn
graph method has high potential on de novo assembly. Now, Clover is freely available
as open source software from https://oz.nthu.edu.tw/~d9562563/src.html.
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Background

Massively parallel DNA sequencing has become a prominent tool in biological research
[1, 2]. The high-throughput and low cost of next-generation sequencing technologies
produce high coverage of reads. The Illumina platform is one of the most commonly
used sequencers, producing reads with lengths ranging from 35 to 300 bp. The de Bruijn
graph approach is prevalent in the de novo assembly using Illumina reads, and it consti-
tutes all possible substrings of length k (termed k-mers) from the reads to efficiently pro-
cess the huge sequencing data. Choosing the length of & is an important issue in the de
Bruijn graph approach. Theoretically, for reads without sequence errors, smaller k-mers
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increase the connectivity of the graph and larger k-mers decrease the number of ambig-
uous repeats in the graph. There is therefore a balance between sensitivity and specificity
determined by k [3]. However, for reads with errors, larger k-mers decrease the sensitiv-
ity and specificity further due to sequencing errors generated by the Illumina platform,
in which the primary errors are substitution errors, at rates of 0.5-2.5% [4].

In this study, we are trying to answer what happens if we design an approach to allow
such errors on k-mers, and could the error allowance on k-mers improve the quality of
de novo assembly. Therefore we developed a clustering-oriented approach, called Clover,
to deal with those substitution errors, and use a new parameter p which describes the
level of error allowance on k-mers. For example, setting k to 40 and p to 1 means that our
algorithm uses each 40-mers in the input reads while allowing each of them to have the
flexibility of 1 substitution error.

With the flexibility of error allowance on k-mers, Clover tries to cluster these k-mers
together when their Hamming distance less than or equal to p, and merges each cluster
of k-mers to a node by finding its consensus sequence. To avoid over-merging of clus-
ters, which may occur on the boundary of repeat sequence, Clover will split each node
into multiple nodes when the merged node has multiple major consensus sequences (see
Implementation section for detail).

After the steps mentioned above, the number of nodes in the graph will dramatically
reduce, which therefore simplifies analysis of assembly. For example, Table 1 compares
three results of a Leptospira shermani assembly when using different level of error allow-
ance (p=0, 1 and 2). Setting p to 0 is equal to run our assembler with traditional de
Bruijn-based approach, which does not have the flexibility of error allowance on k-mers.
The assembly result shows that only setting p to 1 could dramatically increase the N50
both in contig and scaffold because it reduces the number of nodes to build the de
Bruijn graph that increases the specificity. The result also shows that setting p to 2 only
increases the N50 on contig whereas decreases on scaffold. In this case, reducing too
many nodes could increase the specificity, but it seems losing some meaningful informa-
tion, which decreases the sensitivity at the same time.

The memory requirements, as shown in Table 1, are in clear proportion to the number
of nodes to build the de Bruijn graph, but are not in obvious proportion to parameter p
(Additional file 4: Table S1, compares the memory requirements when using different
k and p). The time cost is dropped when setting p to 1 due to the benefit of simplifying
analysis, but setting p to 2 could not get the benefit more. Together with the phenomena
described above, we should choose a suitable p, not as large as possible. In the case of L.
shermani assembly, the suitable p is 1 and p/k is 2.5%, which is nearly the error rate of
[lumina platform.

Implementation
Clover proceeds through the following phases whose flowchart is shown in Fig. 1.

Construction and clustering of k-mers

For given k (k-mer) and p (error allowance), Clover constructs a Hamming graph by
extracting all the input k-mers as nodes. The graph’s edges are created by the pairs of
k-mers if the Hamming distance of the k-mers (or their reverse complements) is < p.
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| Construction and clustering of k-mers |

| Consensus computing and splitting of nodes |

!

| De Bruijn graph construction |

| Graph cleaning and extension with shorter k-mers |

Scaffolding

Fig. 1 The flowchart of the Clover pipeline

CCAGGTCT
a reads
CAGGTATG
AGCTCTGT
TGTCTGTA

b Construction and clustering of k-mers

|CCAGG| |CAGGT| |AGGTC| |GGTCT

|CAGGT| |AGGTA|) |GGTAT|) IGTATGI

|AGCTC| |GCTCT| |CTCTG|) ITCTGTl

|TGTCT| IGTCTGl ITCTGTI ICTGTAl

Cc de Bruijn graph construction

|CCAGGH CAGGTHAGGTCHGGTCTHGTCTG HTCTGTH CTGTAl

Fig. 2 An example of 5-mers clustering while allowing 1 error

Figure 2 illustrates an example of 5-mers clustering while allowing 1 error. Basically,
the components of the Hamming graph are the clusters of k-mers (Fig. 2b). Clover
then merges all the nodes within each component of the Hamming graph into a single
node and computes its consensus sequence. In practice, just setting p to (k x error
rate of sequencer) can dramatically reduce the number of k-mers for constructing the
de Bruijn graph later and accelerates the subsequent graph processing. In the imple-
mentation, Clover uses two steps to cluster the k-mers: Step 1 extracts all k-mers from
the input reads. Step 2 constructs a Hamming graph of the k-mers and then performs
a breadth-first search to find each component in the Hamming graph. If there is no
error allowance needed (p =0), Clover will omit the process of step 2.
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Consensus computing and splitting of nodes

Clover computes the consensus sequence for each merged node by selecting the nucleo-
tide with the most occurrence on each base pair. For example, the fourth component
of Fig. 2b has 4 k-mers (GGTCT, GGTAT, GCTCT and TGTCT) whose consensus
sequence therefore is GGTCT as shown in Fig. 2c. To avoid over-merging, if the k-mers
of the merged node, called v, have a nucleotide on a base pair, called x, whose occurrence
is closed to that of the corresponding nucleotide, called y, in the consensus sequence,
Clover splits the merged node into multiple nodes. More realistically, given a fractional
threshold sp, if the occurrence of x is greater than or equal to sp times the occurrence of
9, Clover collects all the k-mers with x into a new node, called v;, leaves the others into
a new node, called v,, and recursively retries this splitting process on v; and v,. Let g
be the number of k-mers in the merged node. Then the consensus computing requires
O(g x k) time, the condition checking requires O(k) time and collecting the k-mers into
the new nodes requires O(q) time. Therefore, similar to the analysis of quick sort, the
worst case of the time complexity on the whole process is O(q* x k). Figure 2c shows the
resulting consensus sequences of Fig. 2b by setting sp to 0.6. Finally, Clover collects all
the resulting consensus sequences as the k-mer set for constructing de Bruijn graph in
the next phase.

De Bruijn graph construction

For the k-mer set obtained in the previous phase, Clover constructs the de Bruijn graph
by directly using the k-mer set as its node set. For any two nodes, it creates an edge
between them if their corresponding k-mers have an overlapping of length k— 1. Fig-
ure 2c provides an example for de Bruijn graph construction.

Graph cleaning and extension with shorter k-mers

Clover provides multiple operations based on spectrum, structure and their combina-
tion for removing spurious edges from the de Bruijn graph. The spectral error removal
operation is the trimming of low-frequency edges. The structural error removal opera-
tions are the pruning of tips, bubbles, and erroneous connections. If there are multi-
ple options during pruning of tips and bubbles, Clover prunes the low-frequency edges
first. All these operations were also used in SOAPdenovo [5] and Velvet [3]. Clover then
iteratively extends the graph by connecting two paths if the sequences of the paths have
an overlapping length shorter than k until the given minimum overlapping length m is
achieved. Clover defaultly sets the parameter m to (k/2) 4 1. For example, we compare
the different settings of m on the Rhodobacter sphaeroides assemblies (see Additional
file 4: Table S2), where k is set to 46 in this case, and find that the default value 24 of m
has the best scaffold result.

Scaffolding

Clover utilizes read-pair information by aligning both ends of the pairs to the paths in
the graph to find pairs of anchors. Given a scaffold support ss, which defaultly is set
to 5, Clover links each pair of paths with the consistent bound if its support from the
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pairs of anchors is greater than or equal to ss. Clover calculates the medium length of
insert sizes inferred from the pairs of anchors to be the consistent bound of the linked
pair of paths. Finally, Clover predicts contigs by searching Eulerian super-paths on
the graph.

Results and discussion

To evaluate the assembly correctness of Clover, we have tested three typical datasets in
the GAGE study: Staphylococcus aureus (2.9 Mb), Rhodobacter sphaeroides (4.6 Mb) and
human chromosome 14 (88.3 Mb) [6]. Each dataset has original reads, Quake corrected
reads and Allpaths-LG corrected reads. The result with the best scaffold N50 on these
three datasets is selected for assembly comparison we will discuss later.

Running Clover assembler
We provide Clover source code with this submission (see Additional file 1) and at our
website https://oz.nthu.edu.tw/~d9562563/src.html.

Installation of Clover is provided at Additional file 2.

Each dataset in the GAGE study (see Additional file 2) is available at https://gage.cbcb.
umd.edu/data/.

For testing Clover, test data is available at ‘Test Case’ of our website.

In Table 2, the results of our Clover were obtained from Allpaths-LG corrected reads.
The assembly instructions used by our Clover are:

o S aureus: clover -k 32 -p 0 -il frag l.fastgsshortjump_l.fastq -i2 frag 2.
fastq,shortjump_2.fastq -cs 5 -ss 3 -is 180,3500 -hp 0.6 -pm -ml 700.

o R sphaeroides: clover -k 46 -p 0 -il frag l.fastq,shortjump_l.fastq -i2 frag 2.
fastq,shortjump_2.fastq -cs 7 -ss 3 -is 180,3500 -hp 0.6 -pm -ml 200.

o Human chromosome 14: clover -k 80 -p 3 -il frag 1.fastq,shortjump_1.
fastq,longjump_1.fastq -i2 frag_2.fastq,shortjump_2.fastq,longjump_2.fastq -cs 9 -ss
5 -is 155,2543,35306 -hp 0.8 -ml 900.

The assembly results display all statistics data in the screen (see Additional file 3: Sec-
tion S2) and create two assembly output files named out_contig.fasta and out_scaffold.
fasta.

Running Leptospira shermani assembly
We provide Leptospira shermani dataset tar file at our website https://oz.nthu.edu.
tw/~d9562563/src.html.

Download and unpack it: tar -zxvf leptospirashermanidata.tar.gz.

The assembly instructions are: clover -k 40 -p ? -is 485 -il Lepto_500_1.fq -i2
Lepto_500_2.fq -hp 0.6, where ? runs with 0, 1 and 2, respectively.

The assembly results display all statistics data in the screen (see Additional file 3: Sec-
tion S1) and create two assembly output files named out_contig.fasta and out_scaffold.
fasta.
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Assemblers

Table 2 shows the comparison of Clover’s performance against several modern assem-
blers, which include ABySS [7], Bambus2 [8], CABOG [9], MSR-CA [10], SGA [11],
SOAPdenovo [5], SPAdes [12] and Velvet [3]. All assembly statistics were generated by
the GAGE validation scripts. Bambus2, CABOG and MSR-CA are well known overlap-
layout-consensus assemblers, while ABySS, SOAPdenovo, SPAdes and Velvet are famous
de Bruijn graph assemblers and SGA is typical string graph assembler.

Comparison

For the S. aureus dataset, SOAPdenovo and ABySS have produced the longest two
contigs. SGA, SPAdes, Clover and ABySS have been detected the fewest four errors in
contigs, but SOAPdenovo contains many errors. Therefore ABySS achieves the longest
corrected contigs. MSR-CA has produced the longest scaffolds, but its longest scaffold
has been broken by an error. Instead, Clover and Bambus2 achieve the longest corrected
scaffolds in terms of N50 and E-size respectively.

For the R. sphaeroides dataset, SOAPdenovo and Bambus2 have produced the longest
two contigs. However, considering the assembly correctness, Clover achieves the long-
est corrected contigs. SGA and SPAdes contain fewest two errors in contigs, but their
N50 lengths are relatively shorter. Excluding SGA and SPAdes, Clover’s contigs contain
fewest errors. On the other hand, MSR-CA and Clover have the best two scaffold results
both in uncorrected and corrected N50.

For the human chromosome 14 dataset, Clover produces the relatively conservative
contigs, but its contigs contain fewest errors except SGA. CABOG has the best contig
results both in uncorrected and corrected N50. Velvet produces the longest scaffolds.
However, when focusing on the assembly correctness, Clover achieves the longest cor-
rected scaffolds.

Note that the N50 statistics is defined as the minimum contig length (in descending
order) needed to cover 50% of the genome. The N50 statistics generated by Clover is the
minimum contig length needed to cover 50% of all the sequence produced. However, the

Table 3 Comparison of assemblers on run times and memory requirements

Assembler Staphylococcus aureus Rhodobacter sphaeroides Human Chromosome
14

Time Memory Time Memory Time Memory
Clover 5.6 min 10.1 GB 13.9 min 11.0GB 104 h 59.3GB
ABySS 5.1 min 0.5GB 11.6 min 0.5GB 6.7 h 33GB
Bambus2 55.5min 23GB 37h 123 GB 51d 190.3 GB
CABOG NA* NA* 29h 123 GB 229h 1904 GB
MSR-CA 255 min 262 GB 41.3 min 283 GB 13d 34.6 GB
SGA 355 min 1.1GB 1.7h 35GB 188 h 350GB
SOAPdenovo 2.3 min 3.1GB 1.8 min 50GB 21h 8.0GB
SPAdes 56.8 min 6.1 GB 29.5 min 4.5GB 109 h 22.0GB
Velvet 54 min 0.4 GB 7.3 min 0.5GB 11.7h 723 GB

Time the run time to assemble the genome, Memory the memory requirement to assemble the genome

*NA, could not run because of incompatible read lengths in one library
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N50 statistics generated by the GAGE validation scripts is the minimum contig length
needed to cover 50% of the reference genomic sequence provided in GAGE study. There-
fore the N50 statistics of Clover in Additional file 3 and the N50 statistics of Clover in
Table 2 have a little difference.

The result of L. shermani seems to be poorer than S. aureus and R. sphaeroides. How-
ever, these two datasets in GAGE study have two libraries and the fragment size is up
to 3500 bp [6], whereas the L. shermani dataset only has single library with fragment
size 485 bp. The better assembly quality is caused by using more libraries. Practically,
researchers usually use optical mapping to arrange scaffolds and then obtain the draft
sequence [12].

In addition, our clustering approach can apply on ever error-corrected reads. For
example, the assembly of human chromosome 14 is generated by clustering 80-mers
while allowing 3 errors on Allpaths-LG corrected reads. Therefore Clover would not
conflict with current error correction tools. In practice, we will apply smaller k-mer on
single library or lower coverage dataset such as the L. shermani assembly, and larger
k-mer on more complex genomes such as human chromosome 14. When using large
k-mer, increasing the level of error allowance is especially needed even on ever error-
corrected reads.

Run times and memory requirements

To assess Clover’s run times and memory requirements, we have rerun above assemblers
that follow the same processes and parameters of GAGE with their newest version on
a 16-core AMD Opteron 6128 2 GHz server with 256 GB of RAM. The parameters of
optimal result seem varying with the different version of assemblers and hence we only
take their run times and memory requirements into comparisons. Because we don't have
large-scale parallel environment, we only run ABySS on single-process version.

Table 3 shows the comparison of these assemblers on run times and memory require-
ments. The result shows that the run time of Clover is significantly competitive to those
efficient de Bruijn graph assemblers except SOAPdenovo. SOAPdenovo is the fastest
assembler due to the multi-process parallelization.

The major cost of Clover is the k-mers clustering. In the k-mers clustering, Clover con-
structs a Hamming graph in which it links each pair of k-mers as an edge if the Ham-
ming distance of the pair of k-mers is <p. To accelerate the process, Clover utilizes the

Table 4 The results of two bacterial genome sequencing projects

Acinetobacter baumannii Morganella morganii KT
TYTH-1

Length of sequence 3,957,368 bp 3,826,919 bp

Number of contigs 165 58

GC content 39% 51%

Number of protein-coding sequences 3682 3565

Number of tRNA genes 75 72

Number of rRNA genes 6 10

GenBank accession number CP003856 ALJX00000000

The NGS datasets of these two bacterial sequencing projects are available for download at https://oz.nthu.edu.tw/~d9562
563/src.html
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indexing technique that partitions a k-mer into (p+ 1) substrings. If the Hamming dis-
tance of a pair of k-mers is < p, there must exist a pair of substrings that are exactly the
same. Therefore Clover uses (p+ 1) hash tables which index each substring of all k-mers
to find the candidate pairs of k-mers, and performs comparisons to check their real
Hamming distances. Let # be the number of the reads. [ be the length of the reads, k be
the length of k-mers and p be the level of error allowance on the k-mers. Note that p can
be 0 in this study. Then n x (/ —k+1) is the number of k-mers within the reads, (p+1)
is the number of hash tables needed to find the candidate pairs of k-mers and each com-
parison for them requires O(k) time. Therefore, the worst case of the time complexity on
k-mers clustering is O(n x (I —k+1) x kx (p+1)) = O(n x ({ — k) x k x (p+1)). Similarly,
the memory needed to store all the sequences of the k-mers is O(n x (I — k) x k), and the
memory needed for all the k-mers on the hash tables is O(n x (I —k) x (p+1)). Since k
is much larger than p, the worst case of the space complexity on k-mers clustering is
Onx (I—k)xk).

Sequencing projects

It is worth mentioning that Clover was involved in two sequencing projects to respec-
tively sequence bacterial genomes Acinetobacter baumannii TYTH-1 (4.0 Mb and 165
contigs) [14] and Morganella morganii KT (3.8 Mb and 58 contigs) [15]. The contigs gen-
erated by Clover were then used to build the draft sequences, which were confirmed by
optical mapping and PCR. From the draft sequences of A. baumannii TYTH-1 and M.
morganii KT, 3682 and 3565 protein-coding sequences, 75 and 72 tRNA genes, and 6
and 10 rRNA genes were further predicted, respectively. Table 4 shows the summary of
these two sequencing results.

Limitations

The limit of our current Clover is that it cannot apply on genomes with large size up to
250 Mb. This is caused by 256 GB of RAM in our server (see Run times and memory
requirements section for detail). However, if the server has more RAM, the limitation
could be eliminated. The memory requirement issue exists in many assemblers with
which we compared in this study. As shown in Table 3, if a genome can not be assembled
by Clover, the genome has the high probability that it can not be assembled by other
assemblers we used in this study.

Future works

We leave the parallelization of program as a future work that will further improve the
performance of Clover. Besides, we leave the exploration of other possible clustering
algorithms to further improve Clover as another future work.

Conclusions

In this study, we developed a new clustering-oriented de novo assembler, called Clover,
that integrates the flexibility of the overlap-layout-consensus approach on clustering
k-mers and the efficiency of the de Bruijn graph method, with which we improve the
robustness with respect to sequencing error especially using large k-mers. We discov-
ered the effect of our clustering approach that not only improves the assembly result but
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also accelerates the assembly process by simplifying analysis on the Leptospira shermani
assembly. The evaluation of Clover on GAGE datasets finally shows that it achieves a
superior assembly quality in terms of corrected N50 and E-size while remaining a sig-
nificantly competitive in run time.

Availability and requirements

Project name Clover.
Project home page https://oz.nthu.edu.tw/~d9562563/
Operating system(s) Linux.
Programming language C, Python and Cython.
Other requirements Python-devel to develop Python extensions.
License GNU GPL2.
Any restrictions to use by non-academics None.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.1186/512859-020-03788-9.

Additional file 1 Clover source code for Linux. Please refer toInstallation of Clover'

Additional file 2 Datasets and Installation of Clover. GAGE dataset list and locations, and build Clover’s executing
and programming environments.

Additional file 3 Section S1—Leptospira shermani assembly statistics results. Section S2—Clover assembly statistics
results. Clover output screen text.

Additional file 4 Table ST—Memory requirements (GB) of k versus p correlation on Leptospira shermani assembly.
Table S2—Sensitivity comparison of different minimum overlapping lengths on Rhodobacter sphaeroides assembly.
Supplemental analysis of Clover.
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ABySS: Assembly by short sequences; bp: Base pairs; CABOG: Celera assembler with the best overlap graph; Clover:
Clustering-oriented de novo assembler; DNA: Deoxyribonucleic acid; E-size: Expected size; GAGE: Genome assembly
gold-standard evaluation; GC-content: Guanine-cytosine content; kb: Kilo base pairs; Mb: Mega base pairs; MSR-CA:
Maryland super-read celera assembler; NGS: Next-generation sequencing; PCR: Polymerase chain reaction; rRNA: Ribo-
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