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Abstract

The first case of the novel coronavirus in Brazil was notified on February 26, 2020. After 21

days, the first case was reported in the second largest State of the Brazilian Amazon. The

State of Pará presented difficulties in combating the pandemic, ranging from underreporting

and a low number of tests to a large territorial distance between cities with installed hospital

capacity. Due to these factors, mathematical data-driven short-term forecasting models can

be a promising initiative to assist government officials in more agile and reliable actions. This

study presents an approach based on artificial neural networks for the daily and cumulative

forecasts of cases and deaths caused by COVID-19, and the forecast of demand for hospital

beds. Six scenarios with different periods were used to identify the quality of the generated

forecasting and the period in which they start to deteriorate. Results indicated that the

computational model adapted capably to the training period and was able to make consistent

short-term forecasts, especially for the cumulative variables and for demand hospital beds.

Introduction

The World Health Organization, on January 30, 2020, declared the Severe Acute Respiratory

Syndrome—CoronaVirus 2 (SARS-CoV-2) pandemic. The first cases were reported in China,
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in the city of Wuhan, in December 2019. Up to June 30, 2020, the world had 10,176,328 con-

firmed cases and 500,812 deaths [1]. SARS-CoV-2 is the etiological agent of the disease known

as COVID-19 (Corona Virus Disease 19), whose main symptoms are fever, cough, myalgia or

fatigue, sputum, and dyspnea [2].

At that time, Brazil had 1,402,041 confirmed cases and 59,594 deaths [3]. The first reported

case occurred in the city of São Paulo on February 26, 2020, and, 23 days later, authorities rec-

ognized the occurrence of community transmission in the national territory [4].

In Pará, a state in the Brazilian Amazon region, the first COVID-19 case was notified in the

capital, Belém, on March 18, 2020. Since then, state authorities have implemented measures of

physical distance, isolation, quarantine, and lockdown, in addition to the distribution of com-

plementary drugs, implantation of clinics and field hospitals [5]. In this context, several studies

have contributed significantly to understand the biological, physiological, and climatic factors

that can influence the spread of the virus [2,6–14].

Some studies also applied mathematical models to provide the quantitative framework in

which scientists can assess hypotheses about potential underlying mechanisms. This model

explains patterns in data observed at different spatial and temporal scales [15]. These models

are useful for assessing the impact of interventions, optimizing the control strategies’ impact,

and generating short and long-term forecasts.

The growing use of mathematical models for epidemic forecasts has proven the importance

of obtaining reliable models to capture the basic characteristics of pathogens transmission in

specific social contexts. Some studies have already shown that artificial intelligence techniques

can be promising and support the fight against the COVID-19 pandemic progression [16,17].

That said, artificial neural network (ANN) is a technique that can be used to model epide-

miological phenomena, forecast epidemic peaks, and estimate the dimension of the risk and

scope of diseases [18–21]. The main characteristic of ANN is self-learning without prior

knowledge of the complex non-linear relationships that exist between the input and output

variables [22]. This is due to the massive and parallel processing of neurons and the tolerance

to noise [23]. In addition, this technique captures small distortions in the observed data and

transfers them for projections differently from mechanistic models [24]. Another advantage is

that this type of approach also makes it possible to use several predictor variables simulta-

neously, such as demographic data and incidence curves, which helps in capturing the dynam-

ics of virus transmission in the cities over time [25,26].

ANN has shown good forecasting results in emerging epidemiological outbreaks such as

Ebola, Zika, and Middle East Respiratory Syndrome [27,28]. Additionally, Yang et al. focused

on the COVID-19 outbreak in China between January and March 2020, using models based

on ANN and obtaining remarkable results when compared to the SEIR compartmental model

(Susceptible Exposed Infectious Recovered) [29]. Tamang, Singh & Datta, showed that ANN is

an efficient technique to process large data sets when modeling the number of COVID-19

cases from India, the USA, France, and the United Kingdom [30].

ANN was also used in short-term forecasting to predict the predominance of the COVID-

19 epidemic in Egypt [31]. This study indicated good results when compared to the statistical

model ARIMA (Autoregressive Integrated Moving Average), suggesting good agreement with

the historical data in up to 17 days of forecasting of confirmed cases.

In this pandemic context, the need to anticipate substantial increases in the capacity of stan-

dard hospital beds and Intensive Care Unit (ICU) beds is also relevant to prepare workflows in

advance for the patients’ diagnosis and fast isolation [32,33]. Hospital bed estimation proposals

have been put forward to identify the demand for ICU beds in the USA and China [34]. How-

ever, no studies have been found in the literature that modeled the demand for hospital beds

in short-term forecasting, making this study a pioneer in the area.
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This study sought to contribute to a broader understanding of COVID-19 transmission

dynamics, evaluating its progression over time in the State of Pará. This strategy, addressed in

Fernandes, aims to minimize uncertainties associated with forecasts [35]. For this reason,

ANNs were trained with data from 6 different moments, incorporating the ability to assess the

quality of forecasting at different epidemic stages in their structure. The assessment of these

different scenarios can help public health authorities to implement more effective

interventions.

To this end, the present study used ANN to forecast the number of confirmed cases and

cumulative deaths, the number of confirmed cases and daily deaths, as well as the standard

hospital beds and ICU beds occupancy during the COVID-19 pandemic in Pará State. This

research specifically answers two main questions: i) is there an improvement in the quality of

the forecasting when inserting new data? ii) in how many days does the generated forecasting

by the neural network begins to deteriorate?

Materials and methods

Study area

Pará is the Brazilian State with the lowest municipal human development index. It is in 24th

place (0.646) among the 26 states of Brazil and the Federal District [36]. Pará (Fig 1) has

1,248,000 km2 and more than 8 million inhabitants, where 9.1% are over 60 years old [37].

According to Köppen’s climate classification, Pará is in a tropical zone and has regions with

tropical rainy (Af), tropical monsoon (Am), and dry winter (Aw) climates [38]. Still, according

to these authors, the state annual mean air temperature can vary from 24˚C (75,2˚F) to more

than 26˚C (78,8˚F), and the total annual rainfall between 1600 millimeters and 3100

millimeters.

It is possible to realize that there was a high underreporting of COVID-19 in the northern

region of Brazil during the period evaluated [39]. This refers to the premise that the probable

factors of these underreporting are mainly due to the low number of tests—increased by the

number of asymptomatic individuals who do not seek the health system for testing.

These factors may have an impact on an appropriate testing performance and delay the

spread of data related to COVID-19 confirmed cases, especially in the poorest regions of the

country, such as the northern region, although the underreporting of deaths is relatively

smaller [40].

Data collection

For this study, our data selection encompassed a particular period. It starts on March 18, 2020,

the date on which Brazil had the first COVID-19 case notified, and it finishes on June 30, 2020

(Fig 2). The data on confirmed cases and deaths by COVID-19 used were collected in the offi-

cial database of the Pará’s government [41].

Until June 30, 2020, the Pará State accounted for 105,855 cases and 4,960 deaths [42]. These

data showed that the epidemic curve of the number of cumulative deaths was in a third growth

phase, characterized by a decrease in the growth rate and a stabilization trend. The cumulative

case curve, after the initial exponential growth phase, showed a linear growth trend.

The peak of daily deaths in Pará occurred 49 days after the first death (May 05, 2020). After

this date, a deceleration in the death curve for 56 days was observed. The daily case curve peak

was in the first half of May, but it was still early to assume a deceleration in the number of

infected cases for the same period.
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Regarding hospital beds, the occupancy peaked in mid-May when it began presenting a

slight downward trend. As for ICU beds occupancy rates, dedicated to severe COVID-19

cases, there was a growth until early June and subsequent stabilization.

ANN modeling

Different supervised ANNs architectures were trained to model the following output variables

together (Fig 3): the number of cases and cumulative deaths (cumulative variables); the num-

ber of cases and daily deaths (daily variables); and the standard hospital beds and ICU beds

occupancy, in six different scenarios.

The dates and number of days used for training the ANNs varied among the scenarios.

However, the initial date was March 18th for all scenarios. The final dates and the number of

days of the training periods for scenarios 1 to 6, were respectively: May 12th (56 days), May

19th (63 days), May 26th (70 days), June 6th (77 days), June 9th (84 days), and June 16th (91

days).

The trained ANNs were the multilayer perceptron type, with feedforward architecture and

a hidden layer, using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) iterative algorithm that

can be used for solving optimization problems, from the Statistica 13.5 software [43]. The pro-

cessing took place on a computer with two Intel1 Xeon1 Silver 4114 Processor (13.75 M

Cache, 2.20 GHz), 20 GB of RAM, 10 cores, and 64-bit Windows 10 Pro Operating System.

The BFGS memoryless quasi-Newton was successfully used for minimizing errors on artifi-

cial neural networks. The Quasi-Newton method is a method that is used when the calculation

of the Hessian matrix is difficult or time-consuming. This method has a rapid convergence

when compared with the method of gradient descent [44].

Fig 1. Location map of the Pará State, Brazil.

https://doi.org/10.1371/journal.pone.0248161.g001
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One hundred and fifty-nine neurons were used in the input layer of the ANNs trained to

forecast the cumulative variables (S1 Appendix). Two of them corresponded to the quantitative

variables’ standardized values: municipal demography and occurrence date. The other 157

neurons corresponded to the categorical variables: name of State’s municipalities (144 munici-

palities) and the names of the health regions (13 regions).

In the ANN architectures trained to predict daily variables, 15 neurons were used on the

input layer (S2 Appendix). Two of them corresponded to the quantitative variables’ standard-

ized values: region health demography and occurrence date. The 13 other neurons corre-

sponded to the categorical variables: the names of the health regions. To predict the standard

hospital beds and ICU beds occupancy, two neurons corresponding to the standardized values

of the daily death numbers predicted by the best ANN and occurrence date were used (S3

Appendix).

To model the cumulative and daily variables of cases, deaths, and hospital beds, an adapta-

tion to the traditional Fletcher-Gloss method [45] was performed to define the tested neurons

Fig 2. Cases, deaths, and hospital beds occupancy caused by COVID-19 in the Pará State, Brazil.

https://doi.org/10.1371/journal.pone.0248161.g002
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range in the hidden layer of the ANNs (Eq 1).

ð2 �
ffiffiffi
n
p
þn2Þ � a � n1 � aþ ð2 �

ffiffiffi
n
p
þn2Þ ð1Þ

Being,

a ¼
5; for cases and deaths

4; for hospital resources

(

Where n is the number of neurons in the input layer; n1 is the number of tested neurons in the

hidden layer; and n2 is the number of neurons in the output layer.

This adaptation was performed because the traditional way would result in a long process-

ing time to model the cumulative and daily variables. It would occur due to the number of dif-

ferent architectures that would be trained according to the number of input variables. In

contrast, if the traditional method was used for all hospital beds few architectures would be

tested and when using α = 5, the minimum would be equal to 0.

Fig 3. ANN architecture with 1 neuron at input layer, 5 neurons and hyperbolic tangent activation function at hidden layer, and 2 neurons and

linear activation function at output layer. xj is the standardized or binary scale output of the j-th neuron of input layer when quantitative or

categorical variables were used, respectively. w1
ij is the synaptic weight that connects the output of the j-th neuron of the input layer to the input of the i-

th neuron of the hidden layer. u1
i is the result of the scalar product between xj and w1ij. b1i is the bias added to the i-th neuron of the hidden layer. y1

i is

the output of the i-th neuron from the hidden layer. w2
ij is the synaptic weight that connects the output of the j-th neuron of the hidden layer to the

input of the i-th neuron of the output layer. b2
i is the bias added to the i-th neuron of the output layer. y2

i is the output of the i-th neuron from the

output layer.

https://doi.org/10.1371/journal.pone.0248161.g003

PLOS ONE Artificial neural networks for short-term forecasting in the COVID-19 pandemic at the Brazilian Amazon

PLOS ONE | https://doi.org/10.1371/journal.pone.0248161 March 11, 2021 6 / 27

https://doi.org/10.1371/journal.pone.0248161.g003
https://doi.org/10.1371/journal.pone.0248161


Four activation functions were tested on the hidden and output layers: identity, exponen-

tial, logistic, and hyperbolic tangent. For that reason, considering all the combinations between

the number of neurons and activation functions, 176 different ANNs were trained to model

the cumulative and daily variables, and 144 ANNs were trained for hospital beds.

Goodness-of-fit

For each application and data set observed, it is necessary to choose the most appropriate tech-

nique among the many available. In this case, different performance metrics can be used as

selection criteria. Zeng and Wen used Mean Absolute Deviance (MAD) and Mean Squared

Prediction Error (MSPE) [25,46], and, in an epidemiological context, Chowell used the Root

Mean Squared Error (RMSE), Mean Squared Error (MAE), and Mean Absolut Percent Error

(MAPE) [15].

In this study, the data of each scenario were divided into training set (70%), validation set

(15%), using the early stopping method, and test set (15%) to evaluate the qualities of the

trained ANNs. Among the ANNs trained to each scenario, the five best were selected based on

the lowest average of Sum of Squares Error (SSE; Eq 2) and the highest Pearson’s linear corre-

lation coefficient between the real observed values (ryŷ; Eq 3), considering the training set.

SSE ¼
Xn

i¼1

ðŷi � yiÞ
2

ð2Þ

ryŷ ¼
covðyi; ŷiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2ðyiÞ:s2ðŷiÞ

p ð3Þ

Where ŷi is the predicted values; yi is the observed values; cov is the sample covariance; and s2

is the sample variance.

After selecting five ANNs on the training phase, the best ANN of each scenario was selected

based on the Weighted Value (WV; Eq 4) of the accuracy measures calculated from the test

dataset: ryŷ, RMSE (Eq 5), in percentage, MAE (Eq 6), bias (Eq 7), and Normalized Root Mean

Squared Error (NRMSE; Eq 7).

WV ¼
Xn

i¼1

nri : pi ð4Þ

RMSE ¼ 100

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nS
n
i¼1
ðŷi � yiÞ

2
q

�yi
ð5Þ

MAE ¼
Sn

i¼1
jŷi � yij
n

ð6Þ

bias ¼
Sn

i¼1
ðŷi � yiÞ
n

ð7Þ

NRMSE ¼ 100

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nS
n
i¼1
ðŷi � yiÞ

2
q

sðyiÞ
ð8Þ

Where nri is the number of records which obtained the ith placement; pi is the weight of the
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ith placement; n is the total number of observed values; ŷi is the predicted values; yi is the

observed values; �yi is the mean of the observed values; and s is the sample standard deviation.

WV ordinated the ANN from a ranking generated with weights assigned based on the effi-

ciency of each accuracy measure [47]. In this case, the weight equal to 1, was assigned to the

most accurate ANN, the weight equal to 2 to the second most accurate, and successively in

each accuracy measurement. However, when two or more ANNs presented the same value by

accuracy measure, the weight assigned corresponded to the average value of the ranking.

Finally, the ANN that obtained the lowest sum of WV was considered the best and, there-

fore, was used to carry out our forecast. Particularly for cumulative variables that presented

decreasing forecasts, the second-best ANN was used.

Forecasting validation

The forecasts behavior was evaluated in different moments because normally, it is certain that

the initial growth phase of an epidemic follows exponential growth dynamics. This situation

suggests an overestimated epidemic forecasting trend.

In this context, scenarios 1 to 6 fitted with data of different time periods, provided useful

information about the forecast’s quality. The number of days of these forecasts to the scenarios

1 to 6 were: 49, 42, 35, 28, 21, and 14 days, respectively.

In this perspective, the forecasts made by the best ANN of each scenario were evaluated by

comparing the RMSE, in percentage, and the percent bias (pbias; Eq 9). They were calculated

for 7 and 14 days because they were the only coincident intervals in all scenarios. This analysis

allowed to infer on the premise of improving the quality of the forecasts with the insertion of

data.

pbias ¼ 100

Xn

i¼1

ŷi � yi
yi

� �

n
ð9Þ

Where, ŷi is the forecast values; yi is the observed values, and n is the total number of observed

values.

The diagnosis of the percentual residuals was also performed to evaluate the forecasting

quality. This analysis allowed to identify in how many days the forecasting lost its validity and

deteriorated. It has also provided us signs on the technique’s consistency by making it possible

to evaluate the residue distribution.

This study’s error acceptance percentage was defined at ± 15% for cumulative variables and

hospital beds. For daily variables, where there is a greater dispersion of data, the 0.01 and 0.99

percentile of percentage errors calculated in the last 28 days of ANN training were used to

establish the lower and upper limit of forecasting errors. This approach preserved the probabil-

ity coverage during the forecasting interval, even though it is not symmetric around the punc-

tual forecasting.

The main advantage of using this percentile is the construction of an interval derived from

the errors obtained during the training phase. Moreover, the 28 days’ period was defined by veri-

fying a random pattern of residues observed in all scenarios after preliminary graphical analysis.

Results and discussion

Goodness-of-fit

Most of the best-ranked ANN presented a number of neurons on the hidden layer near the

center of the tested amplitude (Table 1). This result indicates that the methodological approach

used to define the number of the tested neurons was efficient.
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For cumulative deaths and daily cases, the most frequent activation function in the hidden

layer was the hyperbolic tangent, but for daily deaths, it was the exponential function. To

cumulative cases, the function logistic was the most frequent, as well as to standard hospital

beds and ICU beds. In the output layer, the predominant function was the exponential, fol-

lowed by identity.

The correlation between the observed and forecasted values was higher than 0.99 to cumu-

lative variables and hospital beds, and over 0.92 to daily cases and deaths. Only in scenario 5 of

Table 1. Prediction and trend measures of the best ANN for the test dataset.

Variable Scenario ANN Achitecturea Hidden activation Output activation ryŷ RMSE (%) MAE bias NRMSE (%) WV

Cumulative cases 1 3 159-22-2 Exponential Exponential 0.9995 34.81 3.52 0.3960 4.3 9

2 1 159-32-2 Tanh Logistic 0.9997 17.08 4.67 0.9394 2.5 8

3 3 159-27-2 Logistic Identity 0.9995 20.26 6.70 -0.0147 3.4 8

4 4 159-32-2 Tanh Exponential 0.9980 24.51 8.58 -0.4841 6.4 9

5 4b 159-23-2 Logistic Tanh 0.9994 19.77 11.45 1.3754 3.9 13

6 5 159-29-2 Logistic Exponential 0.9997 13.30 11.74 -0.9107 2.6 5

Cumulative deaths 1 4 159-22-2 Tanh Exponential 0.9992 110.33 0.51 0.1852 11.2 10

2 1 159-32-2 Tanh Logistic 0.9993 30.46 0.54 0.0291 3.7 11

3 5 159-27-2 Tanh Identity 0.9994 25.38 0.71 -0.0267 3.4 8

4 4 159-32-2 Tanh Exponential 0.9984 39.55 0.86 0.1488 7.4 10

5 1 159-27-2 Logistic Identity 0.9993 26.38 1.17 0.0472 3.8 8

6 2b 159-25-2 Tanh Identity 0.9994 24.24 1.24 -0.1754 3.4 12.5

Daily cases 1 2 15-5-2 Tanh Exponential 0.9614 51.97 19.60 -0.2664 27.4 8

2 4 15-5-2 Tanh Identity 0.9582 50.56 17.30 -0.6249 28.5 7

3 2 15-8-2 Exponential Exponential 0.9416 52.60 26.76 6.8013 34.0 10

4 3 15-5-2 Tanh Logistic 0.9363 55.07 31.13 -14.0956 38.9 6

5 1 15-10-2 Tanh Exponential 0.9424 51.63 26.19 -8.5063 34.3 9

6 5 15-5-2 Exponential Exponential 0.9285 51.71 27.85 0.6137 37.4 5

Daily deaths 1 5 15-11-2 Logistic Identity 0.9834 57.19 1.15 -0.1680 18.3 9.5

2 3 15-10-2 Logistic Exponential 0.9873 54.26 0.95 -0.0654 15.8 7

3 3 15-5-2 Exponential Exponential 0.9817 52.34 1.03 0.0832 20.2 9

4 4 15-15-2 Exponential Exponential 0.9777 53.87 1.40 0.0097 22.5 5.5

5 2 15-9-2 Exponential Exponential 0.9806 49.60 1.04 0.1341 20.3 8

6 4 15-15-2 Exponential Exponential 0.9806 50.51 1.19 0.3022 20.4 6.5

Standard hospital beds

occupancy

1 1 2-3-2 Logistic Tanh 0.9978 24.05 15.63 -7.1677 15.8 10

2 4 2-8-2 Logistic Identity 0.9985 7.61 7.41 2.4666 5.8 5

3 2 2-7-2 Logistic Tanh 0.9971 7.09 21.40 3.4817 8.1 8

4 2 2-9-2 Tanh Identity 0.9985 4.03 15.50 1.9142 5.3 6

5 3 2-4-2 Logistic Identity 0.9985 7.97 15.78 12.8058 6.8 8

6 4 2-4-2 Logistic Identity 0.9981 5.20 14.92 3.3560 5.9 6

ICU beds occupancy 1 4 2-6-2 Tanh Exponential 0.9980 10.21 3.35 -0.8465 6.4 7

2 5 2-8-2 Logistic Exponential 0.9985 11.04 4.52 -1.5238 7.6 10

3 1 2-9-2 Tanh Identity 0.9982 5.97 8.26 3.8645 6.4 7

4 1 2-3-2 Logistic Exponential 0.9975 5.53 7.06 0.9004 6.9 5

5 4 2-6-2 Logistic Logistic 0.9983 7.78 7.94 -0.1680 5.8 11

6 1 2-8-2 Logistic Identity 0.9991 4.05 4.81 -0.7954 4.2 8

a represents the neuron number at input-hidden-output layers.
b the second-best ANN of the scenario.

https://doi.org/10.1371/journal.pone.0248161.t001
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daily death modeling, RMSE below 50% was observed when the daily variables were evaluated.

For the daily cases and hospital beds, MAE over 11.74 and biases with greater amplitudes was

observed. Lastly, only for the cumulative cases and ICU beds, NRMSE over 10% was not

observed.

Several studies have used ANN and other techniques to model a dynamic temporal of cases

and deaths caused by COVID-19 in the world [48–50]. Saba & Elsheikh reported ryŷ like the

cumulative variables of this study, after using nonlinear autoregressive ANN to model cumula-

tive cases with data of 40 days [31]. Similarly, Torrealba-Rodriguez, Conde-Gutiérrez & Her-

nández-Javier, presented ryŷ above 0.9 when modeling daily confirmed cases in Mexico by

ANN [20].

Besides these, no other studies were found the presented measures of prediction accuracy

like those used here for comparison, despite being an issue that can affect the forecasting accu-

racy. Furthermore, studies that modeled data on COVID-19 evaluating different scenarios in a

seven-day variation were not found, which makes this study unique.

Fig 4. Forecasting of cumulative cases in the six analyzed scenarios.

https://doi.org/10.1371/journal.pone.0248161.g004
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Forecasting analysis

The growth stage was identified from curve fitting. Then, to analyze the generated forecasts

was presumed that the ANN captured the training data dynamics’ signature and loaded the

information to the cumulative (S4 Appendix), daily (S5 Appendix), and hospital beds (S6

Appendix) variables forecasts.

For cumulative cases, exponential growth was observed in scenarios 1, 2, and 4, mostly

characterized by the exponential trend of the projected curve (Fig 4). In scenario 5, a growth

slowdown was observed, which resulted in a linear growth phase. Even though scenarios 3

and 6 presented a plateau tendency, it is early to assume that the growth reached its peak.

Therefore, it was necessary to evaluate the behavior of posterior data before making any

assumptions.

An exponential growth profile of cumulative deaths was observed in the forecasts of scenar-

ios 1 and 2 (Fig 5). In scenario 3, the forecast identified linear growth in the curve, and in

Fig 5. Forecasting of cumulative deaths in the six analyzed scenarios.

https://doi.org/10.1371/journal.pone.0248161.g005
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scenario 5, there was a stabilization trend. Finally, scenarios 4 and 6 showed a wave effect due

to the deceleration observed in the final data of the training set.

For daily cases, scenarios 1 and 2 forecasted data with exponential growth. However, sce-

nario 2 presented a wave effect when capturing a possible increase of cases with the insertion

of new data (Fig 6), while in scenario 3, a linear trend was observed—unlike the other scenar-

ios. In other scenarios, a slight slowdown trend was observed, but it is premature to assume

the epidemic is ending, mostly because the curve did not show an accentuated fall.

Only in daily deaths were observed data with slowdown trend (Fig 7). Scenarios 3 to 6 pre-

sented an accentuated fall and a decrease in the data variability. In scenario 1, the model fore-

casted growth continuity, while in scenario 2, the data oscillation captured a wave effect

during the first peak that occurred between late April and mid-May.

To achieve stabilization, scenario 1 predicted that 700 standard hospital beds are necessary

(Fig 8). This forecast increased linearly in scenario 2, while scenario 3 forecasted stabilization

with approximately 800 standard hospital beds. In scenario 4, a wave effect was observed, and

Fig 6. Forecasting of daily cases for the six analyzed scenarios.

https://doi.org/10.1371/journal.pone.0248161.g006
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in scenarios 5 and 6 a decrease was observed followed by stabilization, probably because they

captured a fall in the state’s COVID-19 case growth.

On the one hand, scenario 1 (Fig 9) showed forecasts indicating overcrowding in ICU beds,

probably due to skewed data. On the other hand, scenarios 2 and 3 present a growth behavior

and the maximum capacity of ICU bed occupancy rates peaking on June 1st, which indicated

the need for 500 beds. Scenario 4 predicted a linear growth, which stabilized in scenario 5 and

then showed a declining trend in scenario 6.

Fundamentally, a forecast analysis can be described as the ability of a model to predict with

accuracy. According to Hyndman & Athanasopoulos, predictability depends on how well the

explanatory variables are understood, how much data is available, and if forecasting can affect

what is trying to predict [51].

In the context of the COVID-19 pandemic, several studies are assuming that the data

gathered about the disease is reliable and making predictions on how it is going to behave

[35,52–55].

Fig 7. Forecasting of daily deaths in the six analyzed scenarios.

https://doi.org/10.1371/journal.pone.0248161.g007
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The application of forecasting techniques to prevent the short and long-term impacts of

infectious diseases has been receiving more attention since the COVID-19 outbreak, especially

regarding mortality and the health system’s ability to care for all infected patients. Therefore, a

better understanding of how the ANN captured the characteristics of historical data and used

these pieces of information to create more reliable forecasts is necessary.

In their investigations, Fernandes and Petropoulos & Makridakis, analyzed COVID-19

forecasts in different moments since there is a high level of uncertainty regarding the published

data in this pandemic [35,54]. Moreover, in this study, the forecasts were reassessed with new

data added weekly.

Uncertainties are normally discussed in time series forecasting, and noisy data are one of

the main sources. Chowell (2017) presented a noise quantification methodology to generate

confidence intervals [15]. Fernandes (2020) discussed the insertion of new data and the pro-

gressive analysis of forecasting in several moments [35]. He assumed that the forecasting qual-

ity tends to improve and consequently decrease uncertainty associated with forecasts.

Therefore, the results presented in this research showed that the ANN generated forecasts

with a trend more closely related to the observed data (Fig 2). This behavior became more

Fig 8. Forecasting of standard hospital beds occupancy in the six analyzed scenarios.

https://doi.org/10.1371/journal.pone.0248161.g008
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distinctive for the daily variables in scenarios 3, 4, 5, and 6, whose curves displayed a decreas-

ing dispersion behavior as more data were inserted.

However, when exposed to the cumulative variables, the ANN proved to be sensitive, cap-

turing the training data’s oscillations and consequently loading these variations into the fore-

casts. Oscillations were observed on the weekends due to habitual underreported cases on

these days.

Evaluating forecast accuracy. Due to the higher variability of data (Table 2), a loss of

quality was observed in the prediction and trend measures compared to daily and cumulative

variables. Regarding cumulative cases and deaths, scenario 5 stood out for presenting the best

prediction and trend measures in the initial seven and fourteen days of forecasting.

Only one scenario for daily registered cases and deaths could not be highlight. The scenario

4 showed the lowest RMSE of daily cases forecasts for seven and fourteen days, but in this

same variable, scenario 5 presented a pbias closer to zero.

Fig 9. Forecasting of ICU beds occupancy in the six analyzed scenarios.

https://doi.org/10.1371/journal.pone.0248161.g009
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Scenario 4 also presented the lowest RMSE in the fourteen-day forecast of daily deaths,

while scenario 3 achieved the same results in the seven-day forecast. Apart from that, the low-

est pbias were observed in the scenario 6 to for seven- and fourteen-day forecasts. Similarly,

none of the scenarios were completely accurate in the standard hospital beds and ICU beds

forecasts.

However, just like the cumulative cases and deaths forecast, scenario 5 generated the most

accurate standard hospital beds and ICU beds forecasts for seven and fourteen days. In the

fourteen-day forecast for standard hospital beds, this scenario showed the lowest pbias, while

Table 2. Prediction and trend measures used to validate the forecasts.

Variable Scenario ANN 7 days 14 days

RMSE (%) pbias (%) RMSE (%) pbias (%)

Cumulative cases 1 3 4.89 -3.49 7.85 -5.72

2 1 23.44 -21.07 32.98 -27.89

3 3 8.60 5.50 12.75 9.31

4 4 5.63 -5.19 5.01 -1.91

5 4 1.67 0.42 2.21 1.20

6 5 7.73 -7.03 12.33 -10.78

Cumulative deaths 1 4 11.54 4.20 16.65 9.22

2 1 27.51 -25.89 30.63 -28.81

3 5 18.02 15.57 29.33 24.40

4 4 8.43 -7.78 9.81 -9.24

5 1 0.66 -0.50 0.95 -0.76

6 2 4.02 3.68 8.98 7.50

Daily cases 1 2 31.32 22.89 41.73 30.00

2 4 44.64 8.69 41.28 18.14

3 2 36.74 28.31 39.45 35.58

4 3 25.77 23.32 29.46 20.63

5 1 32.13 4.33 30.15 10.70

6 5 26.33 18.00 34.51 32.09

Daily deaths 1 5 35.64 34.55 69.66 70.21

2 3 37.46 36.27 60.29 60.95

3 3 11.64 -7.32 18.56 -15.26

4 4 13.17 9.86 17.34 14.83

5 2 21.57 -14.75 25.80 -16.49

6 4 22.71 -0.56 23.21 7.88

Standard hospital beds occupancy 1 1 13.84 -12.78 16.75 -15.64

2 4 9.06 7.71 18.80 16.14

3 2 10.51 9.52 18.97 17.77

4 2 4.59 4.12 4.62 3.68

5 3 3.62 -0.79 6.44 3.34

6 4 4.03 2.21 8.82 7.21

ICU beds occupancy 1 4 15.81 -14.59 33.48 8.99

2 5 9.18 7.70 16.02 13.12

3 1 3.26 -1.06 12.34 -8.58

4 1 11.07 7.68 23.60 19.87

5 4 6.80 6.30 4.86 3.95

6 1 11.74 -11.51 11.42 -11.14

https://doi.org/10.1371/journal.pone.0248161.t002
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scenario 4 obtained the highest RMSE. Finally, scenario 3 was the most accurate when fore-

casting ICU beds for seven days.

From these prediction and trend measures, it was possible to infer that there is no direct

relationship between the quantity of data used for training of the ANNs and the forecast accu-

racy for seven and fourteen days. Excluding scenario 2, the ANN technique has shown itself

capable of forecasting cumulative cases and deaths for seven days with an RMSE below

18.02%.

With ANN assistance, Moftakhar, Seif & Safe used 35-day old data to model the number of

COVID-19 new daily cases in Iran [56]. They performed forecasts for six days with an under-

estimation bias and pbias equal to -53.5%, much higher than the pbias of scenario 3—the high-

est scenario obtained in this study. This may have been motivated by fewer days used for

training or by the used ANN hyperparameters.

Eshragh et al. evaluated the quality of the forecasts by identifying two rupture points [57].

Therefore, they were able to determine the initial, intermediate, and final phases, and then

evaluated the accuracy of forecasts using mean absolute percentage error.

Fig 10. Percentual residuals for cumulative cases of the 6 analyzed scenarios.

https://doi.org/10.1371/journal.pone.0248161.g010
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There is a large discussion on assessing forecast quality through prediction and trend mea-

sures in the literature. For instance, Hyndman & Koehler compared prediction measures for

univariate time series forecasts and found problems related to division by zero and prediction

trends with high values [58].

However, for epidemic models, division by zero does not occur due to the curve growth fea-

ture and the lack of zero notifications on daily variables data. This study focused on short-term

time horizons and generated low-value results for the measure values. For this reason, it is rea-

sonable to say that the higher values indicated early deterioration when compared to other val-

ues in the same variable.

Forecast deterioration analysis

While evaluating the ANN training periods of the cumulative cases, a random pattern was

identified in the percentage residuals (Fig 10). Except for scenario 2, where a tendency to

underestimate percentage residuals and a rapid deterioration of forecasts was observed, the

Fig 11. Percentual residuals for cumulative deaths of the 6 analyzed scenarios.

https://doi.org/10.1371/journal.pone.0248161.g011

PLOS ONE Artificial neural networks for short-term forecasting in the COVID-19 pandemic at the Brazilian Amazon

PLOS ONE | https://doi.org/10.1371/journal.pone.0248161 March 11, 2021 18 / 27

https://doi.org/10.1371/journal.pone.0248161.g011
https://doi.org/10.1371/journal.pone.0248161


other scenarios projected without deteriorating beyond 11 days. Furthermore, as more data

was added, it was noted that the forecast residuals were more stable within the 15% range.

Consistent and stable predictions were observed when entering new ANN training data for

cumulative deaths (Fig 11). On one hand, scenarios 1, 2, and 3 presented greater variability of

residuals in the fit and therefore showed biased forecasts. On the other hand, scenarios 4, 5,

and 6 confirmed the ANNs ability to perform forecasting within the range ±15% with accuracy

for at least 13 days.

Well-fitted trainings were observed in all daily case scenarios corroborated by the occur-

rence of a random pattern for the last 28 days of ANN training (Fig 12). However, only in sce-

narios 4, 5, and 6 were forecasts obtained with more than 10 days without deterioration.

The last 28 days of the training set for daily deaths showed percentual residuals with a ran-

dom pattern and approximately constant variation (Fig 13). However, scenarios 1 and 2 pre-

sented fast deterioration of forecasts due to the early exponential growth.

Scenarios 3, 4, and 6 produced better forecasts, but unlike the others, scenario 3 was the

only one that presented a strong underestimation tendency. At last, early deterioration was

Fig 12. Percentual residuals for daily cases of the 6 analyzed scenarios.

https://doi.org/10.1371/journal.pone.0248161.g012
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observed in scenario 5 due to the acceptance criteria. In general, a significant part of the subse-

quent data of this scenario remained within the acceptance range, with a slight trend of

underestimation.

Scenarios 1, 2, and 3 forecasted standard hospital beds occupancy without deterioration for

a maximum of respectively 5, 9, and 4 days (Fig 14). Scenario 4 consistently forecasted for 18

days, and scenarios 6 and 5 validated the ANN capacity of forecasting within the range of

±15% for respectively 10 and 13 days.

The forecasting of scenarios 1, 2, and 4 deteriorated up to 6 days for the ICU beds occu-

pancy (Fig 15). Scenario 1 deteriorated from the first-day forecast; however, scenarios 3, 5, and

6 forecasted respectively for 9, 20, and 13 days.

The percentual residuals of the daily cases forecasts and deaths corroborated with the accu-

racy measures of the validation set because they were higher regarding the measures of cumu-

lative deaths and cases. This situation was expected due to these daily variables presenting a

higher variability.

Fig 13. Percentual residuals for daily deaths of the 6 analyzed scenarios.

https://doi.org/10.1371/journal.pone.0248161.g013
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The diagnosis of residuals is constantly described in the literature, especially when it comes

to time series. According to Athanasopoulos and Hyndman, a good forecasting method gener-

ates residuals with a mean equal to zero and uncorrelated. Therefore, these residuals are useful

to verify if the technique has properly collected the information from the data [51].

The epidemic data are characterized for initial exponential growth, and after modeling,

they tend to present residuals that do not follow a random pattern, suggesting a bad fit to the

data. However, random pattern was collected in the last 28 days of the ANN training period in

most scenarios.

The forecast deterioration analysis is usually conducted in residual graphs or by accuracy

and trend measurements [59,60]. However, the acceptance criteria are often based on statisti-

cal significance.

Mestre suggests that it is possible to consider statistically acceptable forecasts even if they

do not present errors with normal distribution, but they need to be random and present con-

stant variance [61]. In this sense, Burnham, Anderson & Huyvaert stated that there are no bet-

ter criteria to be applied due to predictive analytics’ underlying uncertainties [62].

Fig 14. Percentual residuals for standard hospital beds occupancy of the 6 analyzed scenarios.

https://doi.org/10.1371/journal.pone.0248161.g014
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Few variability in the residual graphic of the cumulative variables was observed. For this

reason, the establishment of more restricted forecast acceptance criteria was allowed. For

daily variables, it was necessary to use a broader acceptance strategy of the residuals, due to

the high variability observed in these variables. Therefore, accepting forecasts that present

residuals like those observed in the prediction of the training set was an acceptable

criterion.

Conclusions

This study presented forecasts of the number of COVID-19 confirmed cases, deaths, and

demands for hospital beds in the state of Pará, in the Brazilian Amazon, from ANN. As a

result, it was attempted to identify whether the quality of forecasts increases as new data is

inserted, and on how many days the forecasting starts to lose its validity and deteriorate. The

results show that the ANNs generate forecasts that tended to be closer to the observed data in

the daily variables and hospital beds as new data are inserted in the ANN training dataset.

Fig 15. Percentual residuals for ICU bed occupancy in the 6 analyzed scenarios.

https://doi.org/10.1371/journal.pone.0248161.g015
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Nevertheless, there is no direct relationship between the amount of data used for ANN

training and the accuracy and trend measures of the 7 and 14-day forecasts. For, when fore-

casting for 7 and 14 days, except for daily cases, scenario 6 does not present better accuracy

measures than scenario 5. However, in this variable, scenario 5 does not show a more precise

forecast than scenario 4.

Unlike scenario 2, the other cumulative case scenarios forecast at least 11 days without dete-

riorating. For cumulative deaths, scenario 2 deteriorates on the first day; however, the forecasts

of scenarios 4, 5, and 6 do not deteriorate within less than 13 days.

Daily cases of scenarios 4, 5, and 6 deteriorate within more than 10 days. As for daily deaths,

only scenario 4 forecasts beyond 7 days without deterioration, and unlike the other variables,

scenario 5 does not forecast any day without deteriorating.

Only scenarios 1 and 3 forecasted standard hospital beds occupancy without deteriorating

under 9 days. Similarly, scenarios 3, 4, and 6 also forecasted ICU beds occupancy with at least

9 days without deterioration.

In summary, the artificial intelligence technique used in this study can assist government

authorities to reduce the impacts of the pandemic. This technique can forecast in advance the

number of potential cases, deaths, and hospital beds occupancy with a low error percentual.
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