
Cognitive control increases honesty in cheaters but
cheating in those who are honest
Sebastian P. H. Speera,1, Ale Smidtsa, and Maarten A. S. Boksema

aRotterdam School of Management, Erasmus University, 3062 PA Rotterdam, The Netherlands

Edited by Joshua D. Greene, Harvard University, Cambridge, MA, and accepted by Editorial Board Member Michael S. Gazzaniga June 15, 2020 (received for
review February 25, 2020)

Every day, we are faced with the conflict between the temptation
to cheat for financial gains and maintaining a positive image of
ourselves as being a “good person.” While it has been proposed
that cognitive control is needed to mediate this conflict between
reward and our moral self-image, the exact role of cognitive con-
trol in (dis)honesty remains elusive. Here we identify this role, by
investigating the neural mechanism underlying cheating. We de-
veloped a task which allows for inconspicuously measuring spon-
taneous cheating on a trial-by-trial basis in the MRI scanner. We
found that activity in the nucleus accumbens promotes cheating,
particularly for individuals who cheat a lot, while a network con-
sisting of posterior cingulate cortex, temporoparietal junction, and
medial prefrontal cortex promotes honesty, particularly in individ-
uals who are generally honest. Finally, activity in areas associated
with cognitive control (anterior cingulate cortex and inferior fron-
tal gyrus) helped dishonest participants to be honest, whereas it
enabled cheating for honest participants. Thus, our results suggest
that cognitive control is not needed to be honest or dishonest per
se but that it depends on an individual’s moral default.

dishonesty | cognitive control | reward anticipation | self-referential
thinking | fMRI

Imagine a friend sends you a link to a website where you can
illegally stream recently released movies for free. Would you

decide to stream the movie which you otherwise would have paid
for? If so, how many movies would you stream? On a daily basis
we are faced with the conflict between the temptation to violate
moral standards to serve our self-interest and to uphold these
moral standards, but how the brain resolves this conflict
remains elusive.
When exposed to the opportunity to cheat, clearly, the (fi-

nancial) rewards play a crucial role: the higher the reward, the
more attractive the decision to cheat (1, 2). As the renowned
British novelist Jonathan Gash so eloquently stated, “Fraud is
the daughter of greed” (3). In line with this sentiment, behavioral
research has demonstrated that greedy people find a variety of
moral transgressions more acceptable and engage in such
transgressions more often as compared to less greedy people (4).
Indeed, neural responses in anticipation of reward, reflected in
activity in the nucleus accumbens (Nacc), predict cheating be-
havior in a subsequent task (5). Collectively, these findings em-
phasize that higher rewards and stronger sensitivity to reward
increase the likelihood of dishonesty.
Accumulating evidence from psychology, economics, and

neuroscience has demonstrated, however, that people care about
more than only maximizing their own monetary payoff, which is
reflected in the high prevalence of prosocial behaviors such as
altruism and reciprocity. People have internalized social norms
and use these as an internal benchmark against which they
compare their own behavior (6, 7). In the context of dishonesty,
the way we view ourselves, our self-concept (8–10), may prevent
us from cheating. People highly value honesty in others and also
have strong beliefs in their own moral standards (11). Violating
one’s own moral standards will require a negative update of one’s
self-concept which is highly aversive (12). As a consequence, people

are motivated to uphold their self-concept even if it comes at the
cost of foregoing potential monetary gains (13). Hence, when given
the opportunity to cheat, people are torn between the conflicting
motivations to obtain desirable monetary gains versus the long-term
goal of maintaining a positive self-image. Whereas the neural pattern
associated with greed have been linked to cheating behavior (5), the
neural processes linked to maintaining a positive self-image are yet to
be discovered. Based on the behavioral research presented here, we
hypothesize that self-referential thinking processes linked to a network
of regions including the medial prefrontal cortex (MPFC), posterior
cingulate cortex (PCC), and bilateral temporoparietal junctions (TPJs;
14–16) may underlie self-concept maintenance and promote honesty.
Several lines of research have proposed that cognitive control

is needed to resolve the tension between reward and self-concept
(5, 17–20). It has been found that this conflict is often settled
with a compromise in which participants behave dishonestly
enough to profit from the opportunity to cheat but honestly
enough to maintain a positive self-image (13). While it is evident
that cognitive control plays a crucial role in resolving this con-
flict, the precise nature of the role of cognitive control in moral
decisions remains controversial (21).Two competing theories
have been proposed: the Will and the Grace hypotheses (18).
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The Will hypothesis puts forward that people are per default
selfish and dishonest and that in order to be honest, deliberate
cognitive control needs to be exerted. Thus, honesty is a result of
the effortful resistance of temptation, similar to the cognitive
control processes that allow individuals to delay gratification
(22). This hypothesis is supported by behavioral studies that have
shown that participants who are cognitively depleted by de-
manding tasks, sleep deprived, or under time pressure are more
prone to dishonest behavior (17, 20, 23, 24). Collectively, these
studies suggest that people automatically serve their self-interest
and require cognitive control to resist the temptation to cheat in
order to maintain a positive self-image.
In contrast, the Grace hypothesis proposes that people are

intuitively honest and require cognitive control to override their
dominant honest impulses to occasionally profit from an op-
portunity to cheat. The hypothesis that cheating rather than
honesty is a complex cognitive function demanding cognitive
effort is supported by research showing that people react faster
when asked to tell the truth as compared to lying (for meta-
analyses, see refs. 25, 26) and are more honest under time
pressure (27, 28). Cheating requiring cognitive capacity is also
supported by findings that people cheat less when taxed by a
cognitively demanding memory task as compared to a less taxing
task (29). In sum, these findings suggest that honesty is intuitive
and cognitive control is required to override this default intuition
in order to benefit from an opportunity to cheat.
In light of these evidently contradictory findings, this study

aims at investigating how cognitive control resolves the conflict
between external financial rewards and one’s self concept and,
more specifically, how this decision process unfolds in the brain.
A better understanding of the function of cognitive control in the
decision to cheat may help reconcile the controversy between the
Will and Grace hypotheses.
In order to study how reward, self-concept, and cognitive

control influence cheating on a trial-by-trial basis, we developed
an innovative task, based on a general paradigm proposed by Gai
(30), in which participants could cheat repeatedly, deliberately,
and voluntarily inside the MRI scanner without suspicion of the
real purpose of the task. Specifically, the advantage of this task,
which we call the spot-the-difference task, is that it allows for
directly tracking on which trials the participants cheated, en-
abling us to study within subject variation in moral decisions and

its neural underpinnings. Importantly, previous neuroimaging
studies on cheating behavior have not been able to answer these
questions as they used tasks such as the coin-flip task (5, 18),
where cheating is inferred from the aggregate behavior at the
end of the task, thus eliminating the possibility to study
trial-by-trial variation in behavior. Notably, participants believed
that the experimenter did not know that they were cheating,
which is critical as participants are found to cheat less if they
believe experimenters can observe their choices and know the truth

Fig. 1. Individual differences in proportion of cheating (0 to 1) on the
spot-the-difference task. n = 40.
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Fig. 2. Honest participants engage the self-referential thinking network
more strongly than cheaters when exposed to the opportunity to cheat. (A)
More honest participants exhibit greater activation in the PCC, MPFC, and
bilateral TPJs when exposed to the opportunity to cheat. (B) Self-referential
thinking mask obtained from Neurosynth. (C) Neural overlap between
group level results for cheatable vs. noncheatable trials correlated with
cheat count and the self-referential thinking mask obtained from Neuro-
synth. (D) The correlation between the level of honesty (reversed cheat
count) and neural activation when participants were exposed to the op-
portunity to cheat as contrasted to no opportunity trials, for the PCC, bi-
lateral TPJs, and the MPFC (using ROIs obtained from the conjunction
analysis).
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(31). The spot-the-difference paradigm is therefore a behavioral
paradigm that assesses cheating behavior inconspicuously on a
trial-by-trial basis enabling us to study individual differences in
neurocognitive processes underlying cheating behavior while also
being sensitive to within-subject variation. This will enable us to not
only identify neural mechanisms promoting honesty in general but
also explore the neural processes that underlie an honest decision
made by someone who generally cheats.
In our analysis, we first conducted an exploratory whole-brain

analysis to identify the brain networks underlying the decision to
cheat or to be honest. We first identified the brain networks
engaged when exposed to the opportunity to cheat and when
making the decision to cheat or to be honest. To reduce the
reverse inference problem (32), we then assessed the neural
overlap between our results and metaanalytically derived maps
associated with reward, self-concept, and cognitive control from
Neurosynth (33). Subsequently, we used the regions of interest
(ROIs) obtained from this conjunction analysis to conduct a
trial-by-trial analysis to study the neural mechanisms underlying
within-subject variation in cheating behavior and also to explore

functional connectivity between the resulting networks of re-
gions. To test the generalizability and replicability of our results,
we then used cross-validation to explore whether we can use
neural activation to predict unseen trials and functional con-
nectivity patterns to distinguish between cheaters and honest
participants. Here we use “cheater” and “honest” as shorthand
to indicate individuals who cheated (or not) in our task, which
may or may not generalize to stable traits of (dis)honesty.
We observe a central role for the cognitive control network

but find that its effects depend on a person’s moral default. For
more honest participants, cognitive control is needed in order to
cheat, whereas for cheaters, cognitive control is required to be
honest. We demonstrate the generalizability and replicability of
our findings by means of significant out-of-sample prediction of

A

B

C

D

Fig. 3. Cheaters exhibit higher activation in the ACC and left IFG when
deciding to be honest. (A) A whole-brain analysis revealed that participants
who cheat more exhibit higher activation in the ACC and left IFG when
deciding to be honest. (B) Cognitive control network derived from Neuro-
synth. (C) Neural overlap between group-level results for honest vs. cheated
trials correlated with cheat count and the cognitive control mask obtained
from Neurosynth in the left IFG and ACC. (D) The correlation between cheat
count and neural activation when participants decided to be honest as
contrasted to a decision to cheat, for the left IFG and the ACC (using ROIs
from the conjunction analysis).
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Fig. 4. Cheaters exhibit higher activity in the Nacc when making (dis)honest
decisions. (A) The left and right nucleus accumbens are parametrically
modulated by the magnitude of reward. (B) Reward network derived from
Neurosynth. (C) Neural overlap between the parametric modulation analysis
of the magnitude of reward and the reward anticipation network derived
from Neurosynth. (D) Mean Nacc activity during the decision phase predicts
cheat count.

19082 | www.pnas.org/cgi/doi/10.1073/pnas.2003480117 Speer et al.

https://www.pnas.org/cgi/doi/10.1073/pnas.2003480117


cheated decisions and cheating individuals, based on neural ac-
tivation levels and connectivity patterns.

Results
Behavioral Results. Forty participants completed the spot-
the-difference task (for detailed description, see Method) inside
the MRI scanner. In the spot-the-difference task, participants
were presented with pairs of images and were told that there
were always three differences between the image pairs. Differ-
ences consisted of objects that were added to or removed from
an image, or objects that differed in color between images.
However, images could actually contain one, two, or three dif-
ferences. Participants were asked to find three differences be-
tween the images. Because reward (see below) was contingent on
participants reporting that they had found all three differences,
without having to point them out, this design encouraged
cheating behavior (i.e., reporting having found all three, even
when objectively fewer than three differences were actually
present in the images). Participants were told that the purpose of
the study was to investigate the underlying neural mechanisms of
visual search for marketing purposes such as searching for a
product in an assortment or information on a webpage. Large
individual differences in the total amount of cheating were ob-
served (mean = 26%, median = 14%, SD = 26%; Fig. 1): some
participants cheated only on one or two trials (17.5% of partic-
ipants), whereas others only missed one or two opportunities to
cheat (5%). Participants who cheated relatively often in the
spot-the-difference task are from now on referred to as cheaters,
whereas participants who were more honest are referred to as
honest individuals. To assess suspicion about the real purpose of
the study, participants were asked what the goal of the experi-
ment was. Participants mentioned marketing research, consumer
decision-making, and visual search as our general cover story
suggested that visual search is important for quickly locating
one’s favorite brand or product in a supermarket. Importantly,
none of the participants mentioned dishonesty, moral decision-

making, or related concepts, which indicates that none of the
participants were suspicious of the real goal of the study.
We also explored how the task characteristics of the

spot-the-difference task influenced cheating behavior. Given the
nested structure of our data (trials within different numbers of
differences and rewards within participants), we conducted a
multilevel analysis for our behavioral data. This analysis was
conducted for the cheatable trials only, so all trials with three
differences between the images were removed. The dependent
variable was the binary response (cheating vs. honest) with a logit
link (cheating = 1, honest = 0). The number of differences and
level of reward served as trial level predictors. The model
allowed for random intercepts and random slopes within par-
ticipants. This analysis revealed a significant effect of the number
of differences (excluding three differences trials) on cheating
behavior (b = 2.13, SE = 0.44, z = 4.85, P < 0.001). This shows
that participants cheated more when the crime is smaller (that is,
they indicated to have found three differences more often when
there were two differences as compared to when there was only
one). Specifically, when there were two differences, participants
cheated on 36% of the trials, whereas participants only cheated
on 16% of trials with only one difference (t = 3.28, P = 0.002).
No effect of reward magnitude (Method) on cheating behavior
was observed, and no significant interaction effects between
number of differences and reward were found. We also tested for
possible fatigue or habituation effects by using trial number as a
trial level predictor to see whether cheating behavior increased
or decreased over the course of the experiment. No effects of
time were observed.

Neural Mechanisms Associated with the Opportunity to Cheat. As a
first step of our functional MRI (fMRI) analysis we explored the
neural activation in response to the opportunity to cheat. In
order to do so, we contrasted neural activity on trials in which
participants had the opportunity to cheat against trials in which
they did not have this opportunity (Method for details). To ex-
plore whether there are individual differences in the neural re-
sponse to this opportunity, participants’ cheat count was added
as a group level covariate. The whole-brain analysis revealed that
more honest participants (compared to those who cheated more)
exhibited greater activation in the PCC, the MPFC, and the bi-
lateral TPJ when exposed to the opportunity to cheat (pFDR <
0.05; see Fig. 2A and SI Appendix, 4 for table with clusters).
As the activated network in our group-level results highly re-

sembled the self-referential thinking network, we conducted a
conjunction analysis with a metaanalytically derived self-
referential thinking mask obtained from Neurosynth, false dis-
covery rate (FDR) corrected for multiple comparisons at P <
0.01 (33) (Fig. 2B and SI Appendix, 3) to test whether there is
indeed neural overlap. Neural overlap was found in the PCC
(overlap [mm3] = 4,600), in the MPFC (overlap [mm3] = 4,072),
in the right TPJ (overlap [mm3] = 869), and in the left TPJ
(overlap [mm3] = 608) (Fig. 2C).

Fig. 5. Interaction effect between cheat count and the left IFG in predicting
the probability of cheating. The lines that are shown are the fitted values for
participants 3 SD (lightest blue), 2 SD (light blue), and 1 SD (blue) above the
mean of the cheat count and participants 1 SD (dark blue), 2 SD (darker
blue), and 3 SD (black) below the mean of the cheat count.

Table 1. Multilevel logistic regression model using the cognitive
control network to predict cheating

Estimate SE z value Pr(>jzj)
Intercept −1.582 0.069 −22.793 <0.001
ACC 0.132 0.06 2.306 0.02
L IFG 0.422 0.061 6.908 <0.001
Cheat count 1.60 0.07 23.735 <0.001
L IFG × cheat count −0.382 0.062 −6.192 <0.001

The source of anatomical labels: Automated Anatomical Labeling Atlas
tools cross referenced with Neurosynth. L, left.
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Neural Mechanisms Underlying the Decision to Cheat. Next, we ex-
plored which neural mechanisms underlie the decision to cheat
or not, when given the opportunity. To answer this question, we
contrasted the neural activation of trials where participants had
the opportunity to cheat but decided to be honest, against trials
on which participants decided to cheat. As before, to explore
whether there are individual differences in the neural processes
underlying honest as compared to dishonest decisions, partici-
pants’ cheat count was added as a group-level covariate.
We found that participants who cheated more showed higher

activity in the anterior cingulate cortex (ACC) and the inferior
frontal gyrus (IFG) when they made the decision to be honest
(P < 0.001, uncorrected; see Fig. 3A and SI Appendix, 5 for table
with clusters). Stated differently, cheaters engage their ACC and
IFG more than honest participants when refraining from
cheating. As the activated network in our group-level results

highly resembled regions within the cognitive control network,
we conducted a conjunction analysis with a metaanalytically
derived cognitive control mask obtained from Neurosynth (33)
(Fig. 3B and SI Appendix, 3) to test whether there is indeed
neural overlap. Neural overlap was found in the ACC (overlap
[mm3] = 168) and in the left IFG (overlap [mm3] = 1,256)
(Fig. 3C).

Neural Correlates of the Sensitivity to Reward Are Associated with
Cheating.
Level of difficulty phase. Although we did not find any effects of
reward on cheating on the behavioral level, we did want to test
whether the participants responded to the reward on the neural
level, as previous research has eluded to the relevance of reward
anticipation in explaining individual differences in cheating (4,
5). Here we investigated whether participants were motivated by

Honest Decision Cheated Decision

L TPJ R TPJPCC

MPFC

*
*

Fig. 6. (Top) Correlation between level of honesty (reverse cheat count) and functional connectivity between PCC and MPFC and PCC and left TPJ. (Bottom)
Connectome showing the correlation between level of honesty and the functional connectivity within the self-referential thinking network during (Left)
honest decisions and (Right) cheated decisions. The red lines represent a positive correlation between regions, whereas the blue lines represent a negative
correlation. Darker color represents stronger correlation. Orange stars indicate a significant correlation after correction for multiple comparisons (FDR at
P < 0.05).

Fig. 7. Using participants’ connectivity patterns within the self-referential thinking network during decision-making to classify participants as cheaters or
honest participants using support vector classifiers implemented with eightfold cross-validation.
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the possible rewards that could be obtained on each trial and
whether participants differentiated between the different mag-
nitudes, 5, 20, and 40 cents, of reward on the neural level. We
conducted a parametric modulation analysis where we used the
onsets of the level of difficulty phase of each trial and added the
magnitude of reward at each trial as a parametric modulator on
the first level. The analysis revealed that the magnitude of re-
ward modulated the activity in the bilateral Nacc significantly
(PFDR < 0.05; see Fig. 4A and SI Appendix, 6 for table with
clusters).
As the Nacc is well known for its role in processing the an-

ticipation of reward (34–36) this suggests that the participants
were indeed motivated by the potential rewards presented at the
beginning of the trial. Further, differences between levels of
reward magnitude were reflected in different levels of activity in
the Nacc, suggesting that participants were indeed differentiating
between the different reward magnitudes.
As the activated network in our second-level results highly

resembled the reward anticipation network, we conducted a
conjunction analysis with a metaanalytically derived reward an-
ticipation mask obtained from Neurosynth with FDR corrected
for multiple comparisons at P < 0.01 (33) (Fig. 4B and SI Ap-
pendix, 3) to test whether there is indeed neural overlap. Neural
overlap was found in the right Nacc (overlap [mm3] = 2,040) and
left Nacc (overlap [mm3] = 840) (Fig. 5C). We also conducted an
additional second-level analysis, in which we added the cheat
count as a covariate, in order to explore whether reward sensi-
tivity in the level of difficulty phase differed between subjects.
However, no significant differences were observed, indicating
that participants were equally sensitive to the rewards, inde-
pendent of how often they cheated.
Decision phase. To explore how the effect of reward anticipation,
as represented by activity in the Nacc, on cheating differs for
cheaters and more honest participants, we then used the ROIs
derived from the conjunction analysis between our parametric
modulation analysis and the Neurosynth map for reward
(Fig. 4C) and regressed mean Nacc activity per subject during
the anticipation and decision phase against the cheat count. This
analysis revealed that average Nacc activity significantly pre-
dicted cheat count (b = 18.29, SE = 7.01, P < 0.05; Fig. 4D)
during the decision phase, whereas no significant effect was
found during the level of difficulty phase (b = −8.89, SE = 14.2,
P = 0.54). This suggests that participants are equally sensitive to
reward during the level of difficulty phase when there is no moral
conflict; however, when making the decision to cheat (or be
honest), participants who cheat more seem to be driven more
strongly by anticipation of reward.

Investigating within-Subject Variation in Cheating: Trial-by Trial
Analysis. In order to further explore how self-concept, reward,
and cognitive control influence decisions to cheat, we conducted
a trial-by-trial analysis, which allowed us to investigate the neural
mechanisms that determine why the same person may cheat on
some occasions and remain honest on others. As a first step, we
extracted average trial-by-trial activation from individual regions
within the reward, cognitive control, and self-referential thinking
network, using the conjunction between our second-level results
and the Neurosynth maps (Figs. 2C, 3C, and 4C), resulting in one
data matrix where the rows represent trials and the columns
represent the regions of interest. Given the nested structure of
our data (trials within different number of differences and re-
wards within participants) we then conducted a multilevel anal-
ysis for each of the networks (self-referential thinking, cognitive
control, and reward). The dependent variable was the binary
response with a logit link (cheating = 1, honest = 0). The aver-
aged activity within the obtained regions of interest served as
trial-level predictors, whereas the cheat count served as a

subject-level predictor. The models allowed for random inter-
cepts and random slopes within participants.
Assessing the relative importance of the networks. To investigate
which of the networks is most important in predicting cheating
on the trial level, we performed variable selection for generalized
linear mixed models by means of L1-penalized estimation. This
was implemented using the glmmlasso package in R, which im-
plements a gradient ascent that allows us to maximize the pe-
nalized log-likelihood, yielding models with reduced complexity
(37). The lasso regression adds a penalty term to the equation
which shrinks less important coefficients in the model to zero
and thus reduces complexity of the model and multicollinearity
of predictors (38). In this way it also selects the most important
predictors in the model. This analysis revealed that the ACC (b =
0.13, SE = 0.06, P = 0.02), the left IFG (b = 0.42, SE = 0.06, P <
0.001), the cheat count (b = 1.59, SE = 0.07, P < 0.001), and the
interaction effect between the left IFG and the cheat count
(b = −0.38, SE = 0.06, P < 0.001) were most important in pre-
dicting cheating (Table 1). These results suggest that the cogni-
tive control network is most important in predicting cheating on
the trial level. Inspecting the plot of the interaction effect
(Fig. 5), we see that for participants who cheat a lot (light blue
lines), higher levels in the left IFG are associated with lower
probabilities of cheating, whereas for more honest participants
(dark blue lines), higher activity in the left IFG is associated with
higher probability of cheating. These findings suggest that the
effect of the left IFG on cheating depends on whether a par-
ticipant has the general tendency to cheat or to be honest.
Testing the predictive accuracy of the model. As the cognitive control
regions were found to be most predictive of cheating, we used
these predictors to test the prediction accuracy of our model. In
order to do this, we used the trial-level activation in the ACC and
left IFG, excluding the cheat count, obtained from the con-
junction analysis and trained a multilevel logistic regression
model, with random slopes and intercepts, on a training set (70%
of the data). Subsequently, we tested the model on the left-out
30% of the data. As the dependent variable, cheating, was im-
balanced, we used two accuracy metrics that are insensitive to
the class imbalance, namely, the area under the curve (AUC)
and the F1 score, which is the harmonic mean of the precision
and recall. Statistical significance was estimated using permuta-
tion tests where the dependent variable (cheating) was permuted
5,000 times and the classification metrics were estimated based
on random permutations. We found that we were able to sig-
nificantly predict cheating based on unseen data from activity in
the cognitive control network (AUC = 76%, F1 = 89%,
P < 0.001).

Individual Differences in Functional Connectivity during
Decision-Making.
Connectivity within the self-referential thinking network. In order to
further explore how the different areas resulting from the dif-
ferent contrasts described above interact with each other during
decisions to cheat, we investigated the functional connectivity
between these areas during the decision phase of the

Fig. 8. One trial of the spot-the-differences paradigm. Participants view a
screen indicating the difficulty and value of the trial, then the image pair
appears for 6 s, and then participants have to indicate whether or not they
spotted all three differences.
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spot-the-difference task. To avoid the problem of activation-
induced correlations we implemented beta-series correlations
(39) (see Method for details). The beta-series correlation analysis
revealed that functional connectivity within nodes of the self-
referential thinking network were more strongly connected for
honest participants than for cheaters when making honest deci-
sions. Specifically, correlations between honesty and functional
connectivity were found between the PCC and left TPJ (r = 0.51,
padj < 0.05) and between PCC and MPFC (r = 0.55, padj < 0.05;
Fig. 6). No significant correlations between honesty and func-
tional connectivity were found for cheated decisions. In addition,
the correlation between honesty and functional connections be-
tween PCC and left TPJ and between PCC and MPFC during
honest decisions were significantly different from the correlation
during cheated decisions (both comparisons z > 2, padj < 0.005).
Thus, the nodes within the self-referential thinking network,
particularly between MPFC, left TPJ, and PCC, seem to be more
intimately connected to promote honesty particularly for honest
participants, whereas when the connectivity between these nodes
breaks down, honest participants tend to cheat.
Classification of cheaters vs. honest participants based on functional
connectivity patterns. To test whether there is sufficient informa-
tion in the connectivity patterns within the self-referential
thinking network reported above to predict individual differ-
ences in honesty, a support vector classifier (40, 41) with linear
kernel (C = 1) was trained on the functional connectivity pat-
terns of each participant to determine whether a participant was
a cheater or an honest participant (categorized by median split).
In order to avoid overfitting and inflated prediction accuracy
(42) this was done using eightfold cross validation (Fig. 7). Sig-
nificance was estimated using permutation testing (n = 5,000).
The classification analysis revealed that we could significantly
classify an unseen participant as a cheater or an honest indi-
vidual based on the connectivity patterns within the self-
referential thinking network (accuracy = 71%, F1 = 75%,
P < 0.05).

Discussion
In this study we explored how neural mechanisms associated with
reward anticipation, self-referential thinking, and cognitive
control determine the (dis)honesty of individual decisions. Using
the spot-the-difference task to study trial-by-trial cheating be-
havior we found that the effect of cognitive control depends on a
participants’ inclination to be honest or dishonest, in other
words, on their moral default.
We found that more honest participants engaged a network of

brain regions associated with self-referential thinking when ex-
posed to the opportunity to cheat. Particularly, participants who
were generally honest exhibited higher activity in the self-
referential thinking network composed of the PCC, the bilat-
eral TPJs, and the MPFC. We provided further evidence that our
results indeed reflect self-referential thinking processes by means
of a conjunction analysis with Neurosynth data. Exploring the
functional connectivity within the self-referential thinking net-
work, we also found that more honest participants exhibited
stronger connectivity during honest decisions between all nodes
in this network, whereas this connectivity within the self-
referential network broke down during cheated decisions. Col-
lectively, these findings highlight the importance of our moral
self-concept and related self-referential thinking processes in
promoting honesty.
In line with previous research (4, 5), we found that cheaters

exhibited stronger sensitivity to reward during decision-making.
Our results revealed that all participants were anticipating re-
ward and were sensitive to differences in magnitude of reward
during the initial phase of the trial, where the potential reward
for finding the differences between the two images is presented,
without any presence of moral conflict. However, cheaters, as

compared to more honest participants, were more strongly
driven by reward when making the decision whether to cheat or
not. Specifically, cheaters exhibited higher neural activation in
the Nacc, which is an area that has been consistently linked to
reward anticipation (34–36), during the decision phase. Thus,
whereas all participants are sensitive to differences in the mag-
nitude of reward in the absence of moral conflict, particularly the
cheaters are driven by the anticipation of reward when making
the decisions to cheat.
Importantly, our study suggests that the function of cognitive

control depends on a person’s moral default. Particularly, we
found that for honest participants, more cognitive control, as
represented by higher activity in the left IFG, was needed to
cheat, whereas for participants who cheated frequently, control
was needed in order to be honest. While honest participants
needed cognitive control to overcome their inclination of being
honest in order to cheat, cheaters had to exert control to over-
ride their greedy tendencies in order to be honest. Thus, our
analyses indicated that the role of cognitive control depends on a
person’s moral default.
In the literature, there has been a debate between proponents

of the Will hypothesis and the Grace hypothesis. Research
supporting the Will hypothesis (17, 20, 43) suggests cognitive
control is needed to be honest. In direct opposition to this, an-
other stream of research has accumulated evidence in favor of
the Grace hypothesis (for metaanalyses, see refs. 18, 24–27),
advocating that cognitive control is required for dishonesty.
Our findings help reconcile this conflict as they suggest that

people are distributed along a continuum, from individuals who
are generally honest to participants who can be considered
cheaters. Participants on one side of the spectrum have a default
inclination to be honest which is associated with more self-
referential thinking when given the opportunity to cheat. In
contrast, individuals on the other side of the spectrum have a
default inclination for dishonesty, and their decisions seem to be
driven more strongly by rewards. In order to achieve and main-
tain a subjectively justifiable balance where one can occasionally
profit from cheating but still maintain a positive self-image,
people on both sides of the spectrum sometimes need to over-
come their initial impulse and default behavior. A generally
honest person will need to overcome the default of being honest
in order to profit from cheating from time to time, whereas a
cheater needs to inhibit the predominant selfish response in
order to occasionally be honest and maintain their self-concept.
Thus, it appears that the effect of cognitive control depends on

our moral default. For honest people the Grace hypothesis ap-
plies: honesty results from the absence of temptation, and re-
sponse inhibition is needed to cheat. In contrast, for cheaters the
predictions of the Will hypothesis apply, and active resistance of
temptation in the form of inhibition is needed to be honest.
Extending findings from cognitive psychology to the social/moral
domain, our results suggest that cognitive control seems to serve
the purpose of overriding our default behavior. We show that
cognitive control processes, well established through previous
research on response inhibition (44–46), can serve different
purposes for different people in the context of (dis)honest
decision-making. Our study thus contributes to the reconciliation
of the controversy on the role of cognitive control in moral
decision-making.
In addition, our findings also point to the importance of self-

referential thinking processes and the maintenance of a positive
self-concept. Whereas previous neuroimaging research has
mainly focused on the role of cognitive control and reward
sensitivity in cheating behavior, our study finds neural evidence
in favor of the self-concept maintenance theory (13). Our results
indicate that besides reward and control processes, self-
referential thinking as represented by activation in the PCC,
MPFC, and bilateral TPJs was engaged, particularly in honest
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participants, when they were tempted to cheat and more strongly
functionally connected when making honest decisions. Thus, our
neural evidence suggests that when exposed to an opportunity to
cheat, particularly honest people do value their moral self-
concept and its maintenance enough to forgo potential
financial gains.
Our interpretation of the activation in the PCC, MPFC, and

bilateral TPJs in terms of self-referential thinking was supported
by the observed overlap with a metaanalytically derived activa-
tion map. In addition, it has been found that functional con-
nectivity between these areas (14, 15) during rest is associated
with higher-level metacognitive operations such as self-reflection
and introspection (47). Moreover, resting-state functional con-
nectivity between these areas correlates positively with ratings of
internal awareness (48). Based on these findings, we can be fairly
confident that the observed network of brain areas can indeed be
viewed as neural correlates of the self and self-referential
thinking (49).
Nonetheless, it has to be noted that the same network of re-

gions has also frequently been associated with other psycholog-
ical processes, most notably theory of mind (50–52) and mental
time travel (53, 54). While these two processes are distinct from
self-referential thinking, they may nonetheless share the com-
mon underlying mechanism of perspective taking, as they all
require projection of one’s self to an alternative perspective of
time or person (55). In our study it seems unlikely that the ac-
tivity in this network of regions reflects theory-of-mind processes
as our task was designed so that there is no identifiable victim of
the dishonest decisions that can be empathized with. Similarly, it
seems less plausible that (particularly honest) participants were
recollecting past experiences or made plans for the future while
making honest decisions. Therefore, we surmise that in our ex-
periment, the observed areas reflect perspective-taking that is
required for self-referential thinking.
To examine the generalizability of our findings, we also tested

the predictive power of the cognitive control regions in pre-
dicting cheating on a trial-by-trial basis using cross-validation.
We found that we could significantly predict with high accuracy
on unseen data whether on a given trial participants would be
honest or would cheat. Moreover, to assess whether connectivity
patterns between the different networks contained relevant in-
formation about individual differences in honesty, we used sup-
port vector classifiers trained on participants’ connectivity
patterns to discriminate cheaters from honest participants and
found that we could indeed accurately classify whether a par-
ticipant is a cheater or not. Combining the two models did not
significantly increase trial-by-trial prediction of cheating (SI
Appendix, 9). From the perspective of scientific rigor, cross-
validation is a more conservative way to infer the presence of a
brain–behavior relationship as compared to correlation or re-
gression, as it is designed to protect against overfitting by testing
the strength of the association in a new sample. This increases
the probability of successful replication in future studies.
Nevertheless, participants who cheated or were honest on our

task may not act similarly in a different context. Their (dis)
honesty, as measured in our task, may thus not reflect a stable
moral trait. A recent study using resting state fMRI, however,
seems to support the notion that the observed individual dif-
ferences in honesty may generalize (56). That study shows that
(dis)honesty, as observed in our task, is represented in stable
functional connections at rest, within the self-referential thinking
network and between the self-referential thinking and the reward
and cognitive control network. Resting-state functional connec-
tivity has been shown to be robust and reliable over time and
across tasks, which may suggest that the observed correlation
with cheating behavior may generalize as well. Further, these
individual differences in cheating were also found to be strongly

correlated with stable personality characteristics related to
impulsivity.
In order to rule out alternative explanations for our findings,

we conducted several control analyses. First, in order to test
whether neural differences during the decision phase were not
driven by differences in levels of engagement with the task, we
explored the neural processes during the visual search phase of
each trial. As expected for a visual search task, we found that
participants showed increased activation in areas related to vi-
sual and cognitive processing, working memory, and navigation
while searching for the differences (SI Appendix, 7). Importantly,
no significant differences in neural activations during visual
search were found between honest participants and cheaters.
This eliminates the possibility that our neural findings were
confounded by processes related to differences in engagement or
effort during visual search. Second, we also conducted an ex-
ploratory factor analysis, which revealed that regions of interest
used in our trial-by-trial and functional connectivity analyses
indeed belonged to three separate networks that could be clearly
identified as the control, reward, and self-referential thinking
network (SI Appendix, 8).
In reference to previous neuroimaging research on moral

decision-making, our findings align with the early work using
hypothetical moral dilemmas (57), instructed lying paradigms
(58, 59), and work using the die-roll task (18) in highlighting the
importance of the cognitive control network, including areas
such as the ACC and IFG, in moral decision-making. As stated
above, our findings are also in line with those of Abe and Greene
(5), converging on the conclusion that a more sensitive and re-
sponsive reward network is associated with higher levels
of cheating.
It is worth noting, however, that reward does not always in-

crease cheating. While higher payoffs were found to increase
cheating in sender–receiver games and to some extent in the
coin-flip task, they did not have an effect on the die-roll or matrix
task (for review, see ref. 60). An explanation for this inconsis-
tency may be that reward size may have different, perhaps op-
posing effects for different individuals (61). This aligns with our
findings, suggesting that while for cheaters, higher rewards
mainly increase the temptation to cheat, for honest participants
they may increase the moral cost and associated guilt of cheating,
due to the increase in magnitude of the transgression (13, 60).
With regard to neural processes linked to self-referential

thinking, an fMRI study by Greene et al. (62) found that a
network of regions including the MPFC, PCC, and bilateral TPJ
were involved in making judgements about more personal as
opposed to abstract hypothetical moral dilemmas, which they
attributed to general emotional processes. More recently, a
metaanalysis on neuroimaging research on moral decision-
making conducted by Lisofsky et al. (63) reported that experi-
mental deception paradigms that involved an identifiable victim
and consequently perspective taking were associated with in-
creased activation in the right temporal parietal junction and the
bilateral temporal pole, which have been associated consistently
with theory of mind processes (64) as compared to less interac-
tive deception and cheating studies. Based on these findings,
Lisofsky et al. (63) argue that, particularly in studies involving
social interaction and an identifiable victim, not only control
processes but also perspective-taking and moral reasoning pro-
cesses are important. Our findings add to their conclusion by
demonstrating that also in contexts without an identifiable vic-
tim, a similar network of regions, involving the TPJ but also the
MPFC and PCC, is crucial in determining the outcome of moral
decisions. This suggests that similar neural mechanisms may
underlie self-referential thinking and perspective-taking pro-
cesses in the context of moral decision-making.
To conclude, we used a task that allows measuring cheating on

the trial level in an fMRI environment. Using this task, we found
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that not only reward sensitivity but also the extent to which
someone engages self-referential thinking processes determines
whether someone is a cheater or tends to be honest most of the
time. Importantly, we also found that the role of cognitive con-
trol in (dis)honesty depends on a person’s moral default. These
findings may prove to be useful for developing interventions
targeted at reducing cheating and dishonesty. Considering the
huge economic costs caused by dishonest behavior, such as tax
evasion, music piracy, or business scandals such as the Volks-
wagen emission fabrications, reducing dishonest behavior effec-
tively is of great relevance to policy-makers and our economy
in general.
Taken together, we showed that the neural mechanisms en-

gaged in (dis)honest decisions, ranging from neural activation in
reward, self-referential thinking, and control networks to func-
tional connectivity patterns, differ fundamentally between honest
and dishonest participants. Specifically, we found that cognitive
control overrides a person’s moral default. Cognitive control
allows honest people to cheat at times, whereas it enables
cheaters to sometimes be honest. These insights contribute to a
deeper understanding of the neural correlates of individual dif-
ferences in moral decision-making. Future research may explore
whether neural markers associated with dishonesty are also ob-
servable in more stable neural measures such as resting state
functional connectivity or structural brain differences.

Method
Participants. The reported analyses are based on 40 participants (30 females;
age 18 to 35 y; M = 23.7, SD = 3.2) recruited from an online community for
university students, where students can sign up for experiments. An initial
screening interview ensured that all participants were right-handed with
normal or corrected to normal vision, spoke English fluently, were not on
any psychoactive medication influencing cognitive function, and had no
record of neurological or psychiatric illness. The study was approved by the
Erasmus Research Institute of Management (ERIM) internal review board
and was conducted according to the Declaration of Helsinki.

Task and Stimuli.
Spot-the-difference task. In the spot-the-difference task, participants were
presented with pairs of images and were told that there were always three
differences between the image pairs. Differences consisted of objects that
were added to or removed from an image or objects that differed in color
between images. However, images could actually contain one, two, or three
differences. Participants were asked to find three differences between the
images. Because reward (see below) was contingent on participants
reporting that they had found all three differences, without having to point
them out, this design encouraged cheating behavior (i.e., reporting having
found all three, even when objectively fewer than three differences were
present in the images).

Participants were told that the purpose of the study was to investigate the
underlying neural mechanisms of visual search for marketing purposes such
as searching for a product in an assortment or information on a webpage. In
order to increase credibility of this cover story a simple visual search task was
added at the beginning of the experiment (SI Appendix, 1), which was also
performed in the scanner while participants were undergoing localizer
scans. Further, participants were instructed that the neurocognitive effect of
motivation, elicited by monetary reward, on speed and accuracy of visual
search was investigated. Although participants were told that there were
three differences in all trials, in 25% of the trials, there were only two dif-
ferences, and in 25%, there was only one difference. All stimuli were stan-
dardized in size and were presented on a white background on a computer
screen. The ratio of 50 to 50% (three differences vs. fewer than three dif-
ferences) was chosen based on the results of pilot studies that indicated this
ratio to be optimal in reducing suspicion that the pairs did not always
contain three differences.

Trials were further categorized into normal (50%), hard (25%), and very
hard trials (25%), for which participants could receive 5, 20, and 40 cents,
respectively. All of the trials with three differences (the filler trials) were
categorized as normal trials, whereas trials with fewer than three differences
(the trials of interest) were randomly categorized as hard or very hard trials.
Consequently, the reward was independent of the number of differences in
the image pair for the trials of interest, which is important in order to be able

to disentangle the effects of reward and cheating magnitude (the actual
number of differences) on cheating behavior. The different levels of difficulty
were added to reduce suspicion about the real purpose of the task. It was
assumed that if trials are labeled as hard or very hard, it would be more
credible to the participant that the image pair actually contained three
differences, but theywere just too hard to spot. In addition, levels of difficulty
were introduced to eliminate possible demand effects: we wanted partici-
pants to cheat for monetary reward and not to prevent seeming incompe-
tent, which may be associated with different underlying neural mechanisms
and consequently confound the analysis.

To further reduce suspicion about the purpose of the study, ∼10% of all
trials were point-and-click trials. In these trials, participants had to click on
the location in the images where they spotted the differences using a joy-
stick. As a consequence, cheating was not possible on the point-and-click
trials. Participants always knew prior to the start of a trial whether it was a
point-and-click trial indicated by a screen requesting participants to click on
the image. This ensured that participants would not refrain from cheating
on all other trials, while still reducing the suspicion about the real purpose of
the study. Participants were told that only 10% of trials were point-and-click
trials because it would take too much time to point out the differences for
every pair. Further, participants were instructed that excessive movement by
manipulating the joystick would interfere with the brain signal. In sum,
there were 144 regular trials (of which 72 cheatable trials) and 12
point-and-click trials. The maximum amount of money earned, in case a
participant cheated on all cheatable trials, was ∼ V35, whereas in case a
participant would not cheat at all, he or she would earn ∼ V7.50. After
completion of the full study, participants were debriefed that the purpose of
the study was to investigate the underlying neural mechanisms of (dis)
honest decision-making. They were informed that the number of differences
between pictures and level of reward were manipulated to encourage
cheating. To be fair to all participants, they were all paid out the maximum
amount, irrespective of their actual cheating behavior. In addition, partici-
pants received a flat fee of V10 for participation in the scanning session.

Each trial started with a fixation cross which was presented for a variable
amount of time between 1 and 3 s (Fig. 8). Subsequently, the level of dif-
ficulty screen was presented for 2 s informing the participants about the
level of difficulty of the upcoming trial. This screen also displayed how much
money could be earned on that trial. As a result, participants were con-
stantly aware of the potential gains of cheating. Next, an image pair was
presented for 6 s, a length determined by the behavioral pilots, and par-
ticipants engaged in the visual search. Afterward, the participants were
asked whether they spotted all three differences (yes/no response). On this
decision phase screen, again the potential reward for this trial was pre-
sented, in order to make the reward more salient and increase cheating
behavior. After 3 s, the response phase started in which participants’ re-
sponses were recorded. In the decision phase and the response phase the
current balance was also shown, which was done to demonstrate to the
participants that if they stated that they had found the three differences,
their current balance increased immediately. It was assumed that this direct
noticeable effect of behavior on the increase of the current balance would
further motivate participants to cheat.

The decision phase and response phase were separated to isolate the
decision frommotor responses. This was important for the fMRI analysis as we
wanted to isolate the neural mechanisms underlying decision-making from
possible neural confounds related to button presses. Besides that, the but-
tons corresponding to “yes” and “no” were switched across trials to further
reduce confounding effects and to reduce the response bias for the domi-
nant hand. Once the participants responded, the choice was highlighted by
a blue box for 500 ms to indicate that the response was recorded, and the
trial ended. If no response was made, the trial ended after 3 s. In addition,
there were five practice trials, in which participants could get acquainted
with the task. Stimulus presentation and behavioral data acquisition was
performed using Presentation software (Version 18.0, Neurobehavioral
Systems, Inc., www.neurobs.com).

The main advantage of our experimental design is that it allowed tracking
on which trials the participants cheated. As we knew how many differences
there were in each image pair, we knew precisely whether the participants
cheated or not. Further, by varying the number of differences, this design
enabled us to assess the magnitude of cheating (i.e., cheating when only one
vs. two differences were found). It is therefore a behavioral paradigm that
allows us to assess cheating behavior inconspicuously on a trial-by-trial basis
in the scanner.

Stimuli. Stimuli for the task consisted of 144 spot-the-difference image pairs
that were downloaded from the Internet. Cartoon images of landscapes
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containing several objects were selected, to make them engaging and
challenging enough for the participants. Landscapes were chosen as they
generally satisfied the necessary criterion of containing several different
objects. The stimuli consist of pairs of images that are identical apart from a
certain number (one to three) of differences that were created using Adobe
Photoshop. Differences consisted of objects added to or removed from the
landscape picture or changed colors of objects. Differences were fully ran-
domized across all pairs of images, which means that all image pairs could be
presented with either one, two, or three differences. To make sure that
participants would be able to find the differences between the images in a
reasonable amount of time and to minimize the chance of participants be-
lieving that they had seen a difference when they had not (false positives),
we ran a pilot study on Amazon’s Mechanical Turk (n = 205) to test the
difficulty to spot the differences between the images and to determine the
optimal duration of picture presentation (SI Appendix, 2).
Experimental procedure. Before the experiment started, participants were in-
troduced to the cover story, the tasks, and the scanner environment, and they
signed the informed consent form. They were then informed about and
checked on the safety requirements for MRI scanning and completed practice
trials for both visual search tasks outside of the scanner. Subsequently, they
were guided into the scanner and completed the simple visual search task (5
min) followed by the spot-the-difference task which took ∼45 min. Scans for
the spot-the-difference task were acquired in six separate runs to allow
participants short periods of rest in order to reduce head movements during
the scans and to ensure that participants were attentive throughout the
task. After completing the two tasks in the scanner, participants were taken
to a separate room in absence of the experimenter and filled out a short
questionnaire including questions about their thoughts on the purpose of
the task.

FMRI Acquisition. The fMRI images were collected using a 3T Siemens Verio
MRI system. Functional scans were acquired by a T2*-weighted gradient-
echo, echo-planar pulse sequence in descending interleaved order (3.0 mm
slice thickness, 3.0 × 3.0 mm in-plane resolution, 64 × 64 voxels per slice, flip
angle = 75°). TE was 30 ms, and TR was 2,030 ms. A T1-weighted image was
acquired for anatomical reference (1.0 × 0.5 × 0.5 mm resolution, 192 sag-
ittal slices, flip angle = 9°, TE = 2.26 ms, TR = 1,900 ms).

fMRI Analysis.
Preprocessing. The fMRI data were preprocessed using fMRIPrep version 1.0.8,
a Nipype based tool (65). The reason for choosing fMRIPrep was that it
addresses the challenge of robust and reproducible preprocessing as it au-
tomatically adapts a best-in-breed workflow to virtually any dataset, en-
abling high-quality preprocessing without the need of manual intervention
(66). Each T1w volume was corrected for intensity nonuniformity and skull-
stripped. Spatial normalization to the International Consortium for Brain
Mapping 152 Nonlinear Asymmetrical template version 2009c (67) was
performed through nonlinear registration, using brain-extracted versions of
both T1w volume and template. Brain tissue segmentation of cerebrospinal
fluid (CSF), white matter (WM), and gray matter was performed on the
brain-extracted T1w. Field map distortion correction was performed by
coregistering the functional image to the same-subject T1w image with in-
tensity inverted (68) constrained with an average field map template (69).
This was followed by coregistration to the corresponding T1w using
boundary-based registration (70) with 9 degrees of freedom. Motion-
correcting transformations, field distortion correcting warp, blood-oxygen-
level–dependent images-to-T1w transformation, and T1w to template Mon-
treal Imaging Institute (MNI) warp were concatenated and applied in a single
step using Lanczos interpolation. Physiological noise regressors were extracted
applying CompCor (71).

Principal components were estimated for the two CompCor variants:
temporal (tCompCor) and anatomical (aCompCor). Six tCompCor compo-
nents were then calculated including only the top 5% variable voxels within
that subcortical mask. For aCompCor, six components were calculated within
the intersection of the subcortical mask and the union of CSF and WMmasks
calculated in T1w space, after their projection to the native space of each
functional run. Frame-wise displacement (72) was calculated for each func-
tional run using the implementation of Nipype. For more details of the
pipeline, see https://fmriprep.org/en/latest/workflows.html.
Statistical analyses. For each participant we estimated a general linear model
(GLM) using regressors for onsets of the decision phase for cheated trials,
honest trials, cheatable trials (trials with fewer than three differences), and
noncheatable trials (trials with three differences). The duration of the epoch
for the decision phase was 3 s, and the beginning of the decision phase was
used as onset time. The decision phase was used as it provides all of the

necessary information to make the decision and is free of brain activity re-
lated tomotor responses. In addition, regressors were added for the onsets of
the level of difficulty phasewith a separate regressor for each level of reward.
For the level of difficulty phase the duration was 2 s. This phase was used to
test whether participants are indeed sensitive to differences in potential
gains, as it provided information about the possible reward without any
moral conflict. Besides that, in order to ensure that there were no significant
differences in engagement or motivation in the spot-the-difference task
between conditions or subjects, regressors were added for the onsets of the
visual search phase in which the image pairs were presented on the screen.
The duration of the visual search phase was 6 s (Fig. 1). Last, regressors for
the button presses were added. Average background, WM and CSF signal,
framewise displacement, six head motion regressors, and six aCompCor re-
gressors, all obtained from fMRIprep, were entered as regressors of no in-
terest. All regressors were convolved with the canonical hemodynamic
response function. A smoothing kernel of 5 mm full width at half maximum
was applied. Linear contrasts were computed between honest and cheating
decisions and between cheatable and noncheatable trials. These contrasts
were then subjected to a random effects analysis to compute main effects
(one sample t test) and to regression analyses with behavioral data (i.e., total
amount of cheating for each participant) as regressors.
Cheatable vs. noncheatable trials. To identify the neural correlates associated
with the opportunity to cheat, we contrasted the neural activation during
cheatable trials (trials with fewer than three differences), against activation in
noncheatable trials (trials with three differences) in both directions. Subse-
quently, using the contrast images obtained for each subject, one-sample
t tests were conducted on the group level to explore the average effect of
being exposed to the opportunity to cheat across participants. We also
added the cheat count, which is a measure how often each participant
cheated in total on the spot-the-difference task, as a group-level covariate
to explore whether there are individual differences in the neural mecha-
nisms when exposed to the opportunity to cheat, between individuals who
cheat a lot vs. those who rarely cheat. The threshold applied to the group
level statistical maps was a voxel-wise FDR of P < 0.05 to correct for multiple
comparisons. Clusters of activation resulting from the thresholding were
characterized in terms of their peak voxels in the MNI coordinate space.
Honest decisions vs. cheating. To explore the neural mechanisms underlying the
decision to cheat, we contrasted neural activation in the decision phase on
trials on which participants cheated against trials in which they did not, in
both directions. For each of these contrasts we then conducted one-sample
t tests on the group level to explore the average effects of each of these
contrasts across participants. In addition, we also entered the total cheat
count for each participant as covariate on the group level to investigate the
correlation between behavior and neural activation in the contrasts of in-
terest. Based on the resulting beta images, second-level random-effects
group contrast maps were then created in both directions (i.e., positive
and negative correlation between activation and cheat count). The thresh-
old applied to the group-level statistical maps was a voxel-wise FDR of P <
0.05 to correct for multiple comparisons. Clusters of activation resulting
from the thresholding were characterized in terms of their peak voxels in
the MNI coordinate space. Due to the fact that participants engaged in
spontaneous, voluntary, and deliberate cheating, the proportion of cheated
and honest trials was not balanced for most of the participants. To account
for possible confounding statistical effects of this imbalance, we under-
sampled the majority class for each participant to create a perfect balance
when estimating the contrasts (73).
Single-trial activation estimation. An important contribution of our task is that it
allows us to assess cheating behavior on a trial-by-trial basis. That is, we are
able to assess why a person who is generally honest decides to cheat on
some trials and why a cheater might refrain from cheating on some occa-
sions. To explore which neural mechanisms underlie this within-subject
variability, we extracted the neural activation from the ROIs identified in
the analyses described above during decision-making for each trial for each
subject. These trial-by-trial activations could then be fed into multilevel
models to explore which neural mechanisms may explain within subject
variability.

To obtain single-trial neural activations for the trial-by-trial multilevel
models, individual time series were modeled using a double γ hemodynamic
response function in a single-trial GLM design using FMRIB Software
Library’s fMRI Expert Analysis Tool. Specifically, one GLM fitted a hemody-
namic response function for each trial, following the least-squares all ap-
proach (74), using the decision phase and level of difficulty phase of each
trial, resulting in parameter estimates of sustained activations for each trial
for each participant. The resulting β values were converted to t values (75),
resulting in a whole-brain map of t values for each trial. The duration of the
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epoch was 3 s for the decision phase and 2 s for the level of difficulty phase.
As for the previous analyses, average background, WM and CSF signal,
framewise displacement, six head motion regressors, and six aCompCor re-
gressors, all obtained from fMRIprep, were entered as regressors of no in-
terest. All regressors were convolved with the canonical hemodynamic
response function. Multilevel modeling was conducted with custom R scripts
in combination with the lme4 package for linear mixed-effects models (76)
and the glmmlasso package for variable selection for generalized linear
mixed models by L1-penalized estimation (37). fMRI analyses were con-
ducted using custom Python scripts, which will be made publicly available.
Beta-series correlations. In order to further explore how the different areas
resulting from the different contrasts described above interact with each
other during decisions to cheat, we investigated the functional connectivity
between these areas during the decision phase of the spot-the-difference
task. To avoid the problem of activation-induced correlations we imple-
mented beta-series correlations (39). We used the single-trial activations
obtained as explained above by fitting a model that includes a separate
regressor for each trial. We then correlated the parameter estimates from
these regressors (the beta series) for honest decisions and cheated decisions
separately between all of the regions found to be significantly related to our
contrast of interest, in order to examine the degree to which they show
similar trial-by-trial activations, as is expected when these regions were
functionally connected. The beta-series model is particularly useful in event-

related fMRI studies where the spacing between trials is relatively long
(more than 8 to 10 s), which is the case in our paradigm (77). After obtaining
the correlation matrix for each of the participants for honest and cheated
decisions, we then also correlated the functional connectivity between each
of the regions with the cheat count (individual differences in total cheating)
in order to examine how functional connectivity differed for cheaters and
more honest participants. To compare functional connectivity between
honest and cheated decisions, correlations were transformed to z values
using the Fisher r-to-z transformation. Significance was estimated by means
of permutation testing where the cheat count was randomly shuffled at
each iteration (n = 5,000). The resulting empirical P values were then cor-
rected for multiple comparisons at FDR < 0.05.

Data Availability. Data, scripts, and images used in the task are available in
Figshare (https://datarepository.eur.nl/articles/To_cheat_or_not_to_cheat_
Cognitive_control_processes_override_our_moral_default/12287807).
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