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Decoding unconstrained arm 
movements in primates using 
high-density electrocorticography 
signals for brain-machine interface 
use
Kejia Hu   1,2,3, Mohsen Jamali1, Ziev B. Moses1,7, Carlos A. Ortega6, Gabriel N. Friedman1, 
Wendong Xu2 & Ziv M. Williams1,4,5

Motor deficit is among the most debilitating aspects of injury to the central nervous system. Despite 
ongoing progress in brain-machine interface (BMI) development and in the functional electrical 
stimulation of muscles and nerves, little is understood about how neural signals in the brain may be 
used to potentially control movement in one’s own unconstrained paralyzed limb. We recorded from 
high-density electrocorticography (ECoG) electrode arrays in the ventral premotor cortex (PMv) of a 
rhesus macaque and used real-time motion tracking techniques to correlate spatial-temporal changes 
in neural activity with arm movements made towards objects in three-dimensional space at millisecond 
precision. We found that neural activity from a small number of electrodes within the PMv can be used 
to accurately predict reach-return movement onset and directionality. Also, whereas higher gamma 
frequency field activity was more predictive about movement direction during performance, mid-band 
(beta and low gamma) activity was more predictive of movement prior to onset. We speculate these 
dual spatiotemporal signals may be used to optimize both planning and execution of movement during 
natural reaching, with prospective relevance to the future development of neural prosthetics aimed at 
restoring motor control over one’s own paralyzed limb.

Motor paralysis can be secondary to a disruption in the neural pathways between the brain and muscle with-
out disrupting normal cognitive ability. Indeed many patients suffer from diseases, such as spinal cord injury, 
amyotrophic lateral sclerosis and cerebral palsy, but retain motor cortical circuitries necessary for planning and 
orchestrating movement1,2. Brain-machine interface (BMI) techniques can provide an indirect bridge between 
the brain and intact limbs and/or an external prosthetic device. By partially restoring lost motor function, BMIs 
may improve a patients’ ability to directly interact with their environment and provide a higher quality of life3,4.

Most previous BMI approaches have focused on the primary motor cortex (M1) as an area of brain sig-
nals for recording neural activity during movement, at it has been found to be directly relevant to movement 
execution and motor imagery5–8. BMIs that use signals recorded in M1 have yielded promising results for the 
control of robotic arms or even in patients’ own paralyzed limbs through functional electrical stimulation9–12. 
Unconstrained functional movements are involved in higher level cognitive aspects of motor control such as 
decision making, movement selection, and planning, and require complex interactions between multiple sensory, 
cognitive, and motor areas. Comparatively, the premotor cortex (PMC) may be an alternative cortical area of 
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particular interest13. The PMC receives input containing sensory and volitional information from the prefrontal 
cortex (PFC) and posterior parietal cortex, and it produces output that goes to M1, which in turn sends motor 
commands for execution14.

As a specialized subarea of the PMC, the ventral premotor cortex (PMv) has been shown to relate to both 
motor output and cognition, including the cognitive functions of motor planning, spatial perception, and action 
organization15. Neurons recorded from monkey PMv contain representations of spatial goal-directed wrist move-
ments16 and play crucial roles in transforming the three-dimensional visual properties of grasping movements17. 
In a human fMRI experiment, activation of PMv areas was observed during actions involving the arm reaching 
to grasp18. Therefore, while the prospective use of the PMv for BMI control may be high19,20, little is understood 
about how brain signals from the PMv alone may be used to control unconstrained reach-return arm movements 
in free-space. In particular, compared with neural spiking activity, whether or not this information can be accu-
rately extracted from field potentials remains poorly understood.

Electrocorticography (ECoG) recordings have been widely used both in humans and non-human primates21, 
and provide a ‘midway level’ for abstracting brain signals between scalp EEG and intracranial single-neuron 
recordings. Compared with non-invasive EEG, ECoG recordings have higher spatial resolution and signal ampli-
tude, broader recording bandwidth, and less interference from artifacts. On the other hand, ECoG signals also 
provide long-term stability and less invasive surgical procedures than surgeries to implant microelectrodes, which 
require penetrating the cortex to obtain single-unit neuron activity and local field potentials22. However, com-
monly used standard clinical ECoG grids, which help localize epilepsy foci intracranially, cover a relatively large 
area of cortex and each electrode is spaced a centimeter apart, thus making it challenging to spatially distinguish 
small nearby areas of neuronal activity23. Consequently, movements may be characterized with significant con-
fusion and thus may be deemed inadequate for multi-degrees-of-freedoms (DOF) decoding, which is crucial to 
restoring functionally unconstrained movement.

High-density ECoG grids have been developed to improve clinical epilepsy localization precision, while also 
attempting to yield more accurate signals that better resolve extremity movements. High-density ECoG-based 
BMIs have been used to classify individual finger movements24, decode grasping force25, and provide robust 
control of a 3D cursor26. However, little is understood about how these signals may be used to potentially control 
unconstrained movements in free space, which needs movement planning, spatial perception, and a much higher 
level of multi-DOF decoding. There is also no information on how high-density ECoG signalsmay be potentially 
used in the PMv for BMI control.

Since patients’ paralyzed limbs cannot move, the awake-behaving non-human primate model is a good 
pre-clinical model for developing such a cortically-controlled movement paradigm. The purpose of this study was 
to explore the possibility of using high-density ECoG recordings from the PMv to identify functionally uncon-
strained reach-return arm movements performed by rhesus macaques. More specifically, we try to identify fea-
tures in the ECoG signals that may help us determine the type and direction of movement.

Results
Two rhesus macaques were trained to perform the functionally unconstrained reach-return arm movements, 
while high-density ECoG or local field potential (LFP) signals were recorded from the PMv area (Fig. 1, see 
Methods). Overall, the food reach-return accuracy of the two monkeys was 99.4%, the reach duration was 
1050 ± 290 ms, and the return duration was 590 ± 200 ms. Through the time-frequency analysis of ECoG 
and LFP oscillations, the entire frequency spectrum was divided into three frequency bands according to the 
similar characteristic modulation during the movement tasks: (1) low-frequency band (less than 9 Hz); (2) 
intermediate-frequency band (9–40 Hz); and (3) high-frequency band (greater than 40 Hz).

Using the ECoG signal from monkey T, we observed a longer-lasting reduction of power amplitudes 
(event-related desynchronization, ERD) starting well before and ending after reach-return movements, in the 
intermediate-frequency band range (9–40 Hz). In a broad band of high-frequency signals from 40 Hz up to 
200 Hz, a consistent amplitude increase (event-related synchronization, ERS) was observed before the movement 
onset during the movement period (Fig. 2).

Next, we identified active channels as those exhibiting significant power changes during pre-movement 
or movement periods (Fig. 3). Here, we find that the average detectable times before movement onset are 
531.68 ± 55.15 ms for the intermediate-frequency band and 460 ± 134.89 ms for the high-frequency band. Thus, 
the intermediate-frequency band power changes can be detected significantly earlier than the high-frequency 
band (P = 0.012).

Lastly, when we further separated movements into left and right reach directions (Fig. 4), we observed the 
same reduction of power amplitudes in the intermediate-frequency band and increase of power amplitudes in the 
high-frequency band for both directions of reach movement.

Regretfully, in this study only monkey T had been implanted with the high-density ECoG array. Therefore, 
we validated our finding in the same PMv area of monkey P, using the LFP signals from a floating microelectrode 
array (FMA) recording. We found consistent and similar spectral power changes with ECoG signals in the inter-
mediate and high frequency bands (Fig. S1).

Prediction of reach movement onset and left-right directionality.  Here, when comparing the active 
channels using the ECoG signal from monkey T, we find that intermediate-frequency band neural activity from 
28 of 32 channels and high-frequency band neural activity from 23 of 32 electrodes within the PMv could be used 
to accurately predict reach movement onset during the pre-movement period (Fig. 5).

When comparing left-right directionality, intermediate-frequency bands continue to remain more predictive. 
In both left and right directions, intermediate-frequency bands had more active channels (Fig. 6) and significantly 
earlier detectable times than high-frequency bands (Fig. 7).
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Movement preforming representation.  During movement execution, the high-frequency band 
was more informative of the planned movement, with 31 channels becoming active during the reach com-
ponent and 12 channels during the return, compared with only 18 and 0 active channels when using the 
intermediate-frequency band, respectively (Fig. 5). Similar results were observed when directionality of the 
movements was taken into account (Fig. 6), with 31 channels becoming active during leftward movement and 32 
during rightward movement in the high-frequency band. In both directions the high-frequency band resulted in 
significantly more active channels than when the intermediate-frequency band was used (left, 16 channels; right, 
23 channels).

Movement differentiation by SNR.  Next, we asked how differentiable ECoG activity is for unconstrained: 
(1) reach movements between left and right directions; (2) the reach and return movements during movement 
execution.

During the pre-movement period, both intermediate-frequency and high-frequency bands had only two 
active channels which revealed significant SNR between left and right directions (Fig. 6). However, when ana-
lyzing all active channels, no significant difference (P = 0.390) was found in the mean SNR when comparing the 
intermediate frequency band of 3.014 ± 0.195 with the high-frequency band of 2.545 ± 0.578.

During the movement period, there were many more active channels of left-right SNR in the intermediate 
frequency band. The mean SNR of all active channels during this period was 3.141 ± 1.043, which is significantly 
higher than that found when using the high-frequency band (P = 0.046). In contrast, the SNR of reach and return 
periods had more active channels in the high-frequency band and significantly higher SNR (31 active channels, 
6.464 ± 2.392) than in the intermediate-frequency band (24 active channels, 3.996 ± 1.049) (P < 0.001) (Fig. 6).

Figure 1.  Overview of the experimental design and 3D rendered illustration of unconstrained arm movements. 
(A) The position of high-density ECoG array in the monkey’s left hemisphere. Red dots represent the 32 
electrodes; the black line indicates the central sulcus (CS) of the left hemisphere. (B) Schematic diagram 
showing the experimental configuration of the reach-return task, where monkey was trained to reach for food 
offered by the experimenter in three-dimensional space without explicit cues; top-down view depicts the body-
centered X-Y coordinates; the Z coordinate is perpendicular to the horizontal plane. Movement trajectories 
from XZ and YZ planes were recorded using two cameras, respectively. The wireless recording system received 
the ECoG signals from the monkey’s head stage, and transmitted these signals to the data acquisition system. 
(C) Starting position of the monkey’s right arm while perched. (D) Leftward reaching movement. (E) Rightward 
reaching movement. xyz scale values are in inches. Colorful dots were used to distinguish the distal (wrist joint 
with green color), middle (elbow joint with red color), and proximal portions (shoulder joint represent by 
triceps with blue color) of the right upper limb of monkey. The lines connected dots represent the forearm and 
the upper arm abstractly.
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Decoding results.  We used a linear discriminant analysis (see Methods) to quantify the degree to which 
different components of ECoG/LFP signals were informative of the monkey’s movement type (reach vs. return) 
as well as the directionality of the reach movements (left vs. right). We were able to accurately and informatively 
decode movement related behaviors from the PMv area including all the channels from ECoG and LFP signals. 
Using the intermediate- and high- frequency bands, the reach and return movements could be identified accu-
rately during movement execution, and the high-frequency band decoding accuracy is higher than that of the 
intermediate-frequency bands (Table 1).

In monkey T with high-density ECoG signal, the decoding performance using intermediate- and 
high-frequency bands exceed the chance level to identify the direction of the reach movement during the 
pre-movement and movement execution periods, and the high-frequency region is slightly more informative 
than the mid-range frequency (Table 2). In contrast, the prediction of movement’s laterality in monkey P using 
LFP signal is less accurate.

Discussion
Our results suggest that using high-density ECoG-based wireless recording from the non-human primate PMv 
could provide a range of signal components for decoding both the movement state and laterality of functionally 
unconstrained naturalistic reach-return arm movements. On a coarse scale, intermediate and high-frequency 
components of EcoG signals seem to play distinctive roles during movement. While the power in the 
intermediate-frequency bands provided most of the information for predicting reach-return movement onset, 
it was power in the high-frequency bands (in particular the “high-gamma” band) that carried more information 
about reach-return movement execution. While limited by the use of an individual primate, we believe that this 
data provides important technical and conceptual advancements into the prospective use of the PMv for BMI use.

Achieving volitional unconstrained functional movement has been an important goal in the field of BMI 
development, as BMI control should be self-initiated and work in natural conditions. Goal-directed reaching 
movement has been widely used to study upper extremity motor control for developing BMI. Several studies 
have used compliant planar paths to simplify the kinematics and dynamics of arm movement when motion is 
constrained by external contact (i.e. two-dimensional movement)27–31, which facilitates movement selection and 

Figure 2.  Spectrograms showing the time- and frequency-resolved amplitude spectra of reach-return 
movement from one representative PMv channel (Channel 10). The spectral power was averaged over all trials 
of reach-return movements for frequencies from 0–200 Hz and shown as a function of time relative to the event 
onset (dashed lines; left graph: onset of the reach movement, right graph: onset of the return movement).
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planning. Also, for monkeys, even simple tasks usually rely on very specific movements and over-training may 
then contribute to diminished differences in cortical representation.

Natural volitional movements, however, are three-dimensional and unconstrained. When subjects are not 
required to perform a straight movement or follow a specific trajectory, the spatiotemporal characteristics, control 
strategies and execution of the unconstrained movements become fundamentally different32. For a BMI system to 
have wide-ranging use in humans, it is necessary to train the decoding algorithm without large constraints such as 
those imposed when subjects just perform a specific motor task (e.g. moving a joystick) or simply 2-D movement 
(e.g. controlling a cursor on the screen), both of which can only achieve very limited functionality. Our results 
suggest a range of possible ECoG signal components from the PMv area that can be used for decoding functional 
unconstrained naturalistic reach-return arm movements, which may be of particular value in advancing the field 
of BMI development towards designs aimed at self-sufficiency for paralyzed patients.

ECoG signals have emerged as a potential control for BMI applications and they stand to gain wider adoption 
due to their unique ability to balance signal quality with implant invasiveness. Standard ECoG grids have been 
used in epilepsy patients to decode kinematics of arm movements in 3D space and classify movement and rest33. 
Our study has demonstrated that using high-density ECoG signals from a comparatively small brain area can 
accurately represent movement intention and execution. Control analysis also demonstrated that the decoding 
advantage of high-density over standard ECoG grids is manifest in the improved decoding accuracy34. The advan-
tage is realized not by having a larger number of channels or covering a larger brain area but may be due to the 
higher electrode density and enhanced signal fidelity, which directly increases the probability that electrodes lie 
closer to or are directly over cortical generators of movement35. This hypothesis was supported by our analyses 
which showed that decoding performance can be significantly affected by electrode channel choices. Therefore, 
the development of computationally efficient algorithms for channel selection will also be an important issue for 
real-time applications in our future work.

Neuronal event-related oscillations that exist in the brain correspond to a wide range of frequencies and are 
usually categorized into five frequency bands: delta (1–3 Hz), theta (4–8 Hz), alpha (9–12 Hz), beta (12–30 Hz),  
and gamma (>30 Hz). These different frequencies are thought to reflect different sensorimotor or cognitive 
cortical processing36. Aforementioned ECoG studies mapping human sensorimotor cortex have shown that 
higher-frequency power amplitudes typically increase in association with actual or imagined movements, 
whereas the spectral power of lower frequency bands typically decrease in amplitude37–40.

In our intermediate-frequency band, the ERD components were mostly consistent with alpha and beta bands. 
Compared with data that alpha-band oscillations are related to working memory and short-term memory reten-
tion41, the functional significance of beta-band oscillations at present seems to be less known42. In the motor 
system, although beta bands have been classically understood as signals related to the maintenance of the current 
motor set at rest, recent theories have proposed that beta bands may involve an active process that promotes the 
existing motor set while considering neuronal processing of new movements43,44. Several studies have shown that 

Figure 3.  The relative power change in intermediate-frequency and high-frequency bands when compared 
with the baseline during reach-return movement for all 32 electrodes. For each channel a normalized (i.e., 
Z-scored) power change relative to the baseline power is plotted as a function of time. The dotted lines 
represent power changes equal to two standard deviations (2σ) away from that of the mean baseline value. Red: 
intermediate-frequency band; Blue: high-frequency band. Note that active channels for each frequency bands 
were highlighted using darker colors.
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beta bands in motor and premotor cortex can change depending on the expectancy of a forthcoming event. Using 
MEG, Donner et al.45 showed that choice-predictive activity changes of beta bands reflect a decision about an 
upcoming action already several seconds before it is executed while people watch a stimulus in a perceptual detec-
tion task. Rubbino et al.46 found when monkeys performed point-to-point instructed-delay reaching movements, 
the power of beta oscillation from LFP signals is enhanced around the visual stimulus cue onset and attenuated 
around the movement onset. It is not surprising, therefore, that in our study, the intermediate-frequency bands 
were more predictive of movement onset (more informative and earlier) compared with high-frequency bands.

ECoG recording allows for the direct recording of brain activity and with its high signal-to-noise ratio, it is 
particularly suited for the examination of higher gamma-band oscillation activity above 30 Hz. Gama-band oscil-
lations are thought to play a crucial role in information processing, perceptual formation and object representa-
tion in cortical networks47. It is worth mentioning that the biggest power change of our high-frequency bands 
was above 80 Hz, the so called “high-gamma” band (80–200 Hz), which has been consistently observed in several 
cortical areas, suggesting independent functions and mechanisms47,48. High gamma-band synchronization in the 
sensorimotor cortex has been further studied using ECoG-signals in epilepsy patients. Pfurtscheller et al.38 showed 
self-placed movement in humans was induced by gamma ERS in the 60–90 Hz frequency band; Miller et al.49 found 
a spatially focal increase in power in a broad high-frequency band (76–100 Hz) during movement compared with 
rest. In our study, higher gamma-band oscillations displayed a sustained response and increased even prior to the 
onset of the movement to its cessation, which may reflect its unique response properties in the PMv.

Determining a person’s intent from brain signals, the where and when of movement, is a crucial component 
of BMI implementation50–52. Since paralyzed patients cannot move, to elicit specific patterns of neural activity 
signifying movement onset, patients are often asked to think about moving their arms or to have them observe 
an effector as it moves under computer control and imagine that they are moving it in the same way5,53. Lebedev 
et al.54 found directional selectivity in fast oscillations from premotor cortex can reflect specific aspects of an 
intended action. Interestingly, epochs of high attention to motor performance have been found to be associated 
with increases of synchrony between neurons. However, since a change of visual stimulus immediately precedes 
reach movement onset, this raises the possibility that the spectral power change may reflect the visual event 
changes instead of the reach onset55. Watanabe et al.56 also demonstrated beta oscillations from ECoG signals that 

Figure 4.  Spectrograms showing the time- and frequency-resolved amplitude spectra between leftward and 
rightward reach movement from one representative channel from PMv (Channel 10). The spectral power was 
averaged over all trials of left/right reach movements for frequencies from 0–200 Hz and shown as a function of 
time relative to the onset of movements (dashed lines; Left column: Leftward reach movement, Right column: 
Rightward reach movement).



www.nature.com/scientificreports/

7SCIeNTIFIC RepOrts |  (2018) 8:10583  | DOI:10.1038/s41598-018-28940-7

were not strictly phase-locked to any of EMG onsets of muscle contractions but related more so to the attentive 
state and external cues.

In our experiment, we excluded the possibility of visual stimulation by using self-paced reach-return move-
ment in the awake-behaving monkey, and found that the ECoG spectrum power changes were time-locked to the 
movement onset. By relying on internal choices for each trial in our study, the timing of the movement sequence 
was self-paced and the onset of movement was made by the subject. Therefore, we decoded signals generated by 
the subjects’ own intentions and actions, rather than by external commands.

The execution onset was observed in active channels approximately 0.5 s before movement initiation through a 
decrease in the spectral power in the intermediate-frequency bands while the power in the high-frequency (espe-
cially in higher-gamma) bands increased as the state transitioned from reach-return movement intention to overt 
movement execution. These results corroborate that the ECoG spectral change in the PMv is a robust indicator 
for movement prediction and can be used for BMI control.

Another important step is to examine whether ECoG signals from PMv can hold information about 
the status and directionality of movement. During movement execution, differentiating limb movements 
is critical and fundamental for BMI design. High-frequency bands showed better decoding performance 
than intermediate-frequency bands in separating reach and return movement components. Interestingly, 
intermediate-frequency bands were more informative at distinguishing left and right directionality during reach-
ing execution.

Figure 5.  The layout of active channel patterns across all 32 recording electrodes during reach-return 
movements. Active channels corresponding to low-, intermediate-, and high-frequency bands before (left 
panels) and after (right panels) the onset of the movement (middle line). Channels are arranged to match 
the topographic map of ECoG electrodes (dorsal-to-ventral from left-to-right) shown at the bottom-left. The 
copper color bar 0-1 represents how strongly the relative power deviates from the baseline activity; 0 correspond 
to |Z-Score| of 2 whereas 1 represents |Z-score| ≥3. The number of active channels is reported below each panel. 
(Upper row: Reach, Middle row: Return, Lower row: Reach-Return movement SNR).

Figure 6.  The layout of active channel patterns across all 32 recording electrodes during leftward and rightward 
reach movement. Active channels corresponding to low-, intermediate-, and high-frequency bands before 
(left panels) and after (right panels) the onset of the movement (middle line). Channels are arranged to match 
the topographic map of ECoG electrodes (dorsal-to-ventral from left-to-right) shown at the bottom-left of 
Fig. 5. The copper color bar 0-1 represents how strongly the relative power deviates from the baseline activity; 
0 correspond to |Z-Score| of 2 whereas 1 represents |Z-score| ≥3. The number of active channels is reported 
below each panel. (Upper row: Leftward, Middle row: Rightward, Lower row: Left-Right state SNR).
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There has only been scarce evidence that ECoG signals can give information about direction prior to move-
ment. Wang et al.57 demonstrated that the onset of intended 2-D cursor movements and their direction could 
be detected using standard ECoG signals in intractable epilepsy patients, but not all the experimental subjects 
achieved good performance. In our study, we identified a few channels with significant SNR changes that could 
distinguish movement directionality before movement onset. The addition of signals that increase the dimension-
ality of information for left and right movements may be essential for restoring unconstrained 3D movement in 
paralyzed patients.

Nakanishi et al.58 decoded three-dimensional arm trajectories based on standard ECoG signals recorded from 
sensorimotor cortex of epilepsy patients. They reported the low frequency beta band had the highest and the high 
frequency gamma (50~90 Hz) bands had relatively high values for arm trajectories prediction. Nakanishi et al.59 
also using the same methods predicted fingertip motions, claimed ECoG signals from the upper part of senso-
rimotor cortex included information concerning finger motions enough to control neuroprosthesis. Shin et al.60  
chronically implanted ECoG arrays over the left M1, which had a diameter of 1 mm and an inter-electrode 

Figure 7.  The average power change and the average detectable time of all active channels for leftward and 
rightward reach movement. The average normalized (i.e., Z-scored) power change relative to the baseline power 
across all active channels is plotted as a function of time for leftward (A) and rightward (B) reach movements. 
Bar graphs in (C) show the average time before the movement onset at which the power significantly differ from 
the baseline. Red: intermediate-frequency band; Blue: high-frequency band.

Reach vs. Return

Signals

(Movement Onset to 500 ms)

Frequency Bands Intermediate High

Monkey T HD-ECoG 93.52 97.84

Monkey P LFP 90.91 97.87

Table 1.  The accuracy of classification of reach and return movement (%).

Left vs. Right Reach

Signals

Before (−500ms to 0 ms) Movement 
Onset

After (0 ms to 500 ms)

Frequency Bands Intermediate High Intermediate High

Monkey T HD-ECoG 57.20 62.29 55.23 63.27

Monkey P LFP 53.41 56.53 51.96 Chance Level

Table 2.  The accuracy of prediction and classification of Left and right reach movement laterality (%).



www.nature.com/scientificreports/

9SCIeNTIFIC RepOrts |  (2018) 8:10583  | DOI:10.1038/s41598-018-28940-7

distance of 3 mm center-to-center. They verified that ECoG signals are effective for predicting muscle activi-
ties in time varying series when performing sequential movements. Chen et al.61 implanted the ECoG electrode 
arrays (1 mm diameter electrodes with inter-electrode distances of 3.0 mm) on the gyrus between the CS and the 
arcuate sulcus (AS) in the M1 area of monkeys’ left hemisphere. They decoded 3D hand trajectories and showed 
that most effective electrodes were concentrated at the lateral areas and areas close to the CS, especially in the 
δ (1.5∼4 Hz) and high γ (90∼150 Hz) bands. Compared with studies above, our results were not completely 
consistent. However, our implant contained 0.3 mm diameter platinum electrodes with inter-electrode distances 
of 3.0 mm, and we uniquely implanted the grid in the monkey’s ventral premotor cortex. Our study also demon-
strated the viability of a wireless headstage system in the acquisition and transmission of ECoG. Carmena et 
al.62 reported that neuronal activity recorded from M1 showed greater efficacy than that from dorsal premotor 
cortex, supplementary motor cortex, posterior parietal cortex, and primary somatosensory cortex, but notably 
didn’t compare with vPMC. In turn, we believe our results provide a potential supplementary signal source for 
brain-machine interfaces applications.

Our study also demonstrated the viability of a wireless headstage system in the acquisition and transmission 
of ECoG. Existing wired ECoG recording systems use cables connecting the electrodes placed on the cortex with 
an external apparatus. This approach requires multiple percutaneous connections, thus increasing the risk of 
bleeding and infection, and allows for only short-term recording while the animal is physically connected. The 
advantages of fully implantable wireless ECoG recording systems derive from the absence of connecting cables 
thereby improving safety, subject comfort, and recording longevity63.

Behavioral studies often require many trials as well as stability in animals’ performance. Movement artifact 
is a common type of signal contamination in tethered recordings. Wireless technology has been shown to mini-
mize the conventional unavoidable artifacts observed during in vivo electrophysiological recordings64,65, remove 
potential distractions and mechanical disturbances from cables, and allow for animals to move quickly during 
the execution of the task66. These sources of noise were shown to be minimized in our wireless recording system.

Our assessment of decoding performances was based on offline analyses. Real-time closed-loop decoding 
based on these signals might achieve higher performance than demonstrated here. Our immediate future work 
will focus on developing a classifier that will enable us to perform the classification while the task is being exe-
cuted. This will particularly benefit development of real-time BMI applications. As noted above, the present 
experiments were aimed at providing a conceptual advancement and proof-of-concept, but how it scales with 
more wide-ranging movements and animal participants will require further investigation.

Conclusion
Collectively, our findings suggest that using wireless high-density ECoG recording from PMv provide a range 
of signal frequency bands that can be used to decode the state and onset of natural self-placed reach-return 
movements. We demonstrated the ability to predict the onset and laterality of reach-return movements in a 
non-human primate model. These ECoG signal components can serve as potential candidates for future use 
in an ECoG-based BMI technology that would allow for the neuronal control of unconstrained movements in 
paralyzed people.

Methods
Subjects and Materials.  Two adult male Rhesus macaques (monkey T and P), aged eight and ten years 
old, were included in this study in accordance with our institutional IACUC guidelines and approved by the 
Massachusetts General Hospital Institutional Review Board. The monkeys were previously implanted with 
titanium head fixation posts for head stabilization. A 32-multichannel high-density ECoG electrode array 
(NeuroNexus, USA) was chronically implanted in the subdural space of monkey T’s left hemisphere covering 
the PMv (Fig. 1A). The implant contained 0.3 mm diameter platinum electrodes with inter-electrode distances 
of 3.0 mm. Two 16-contacts floating microelectrode arrays (FMAs) (NeuroNexus Technologies Inc., MI) were 
surgically implanted in areas of the PMv of Monkey P, to record LFP signals.

The correct placement of ECoG arrays and FMAs were confirmed using inspection of sulcal and gyral 
anatomy. Electrical cables leading from the ECoG and micro-electrodes array were connected to an interface 
(Omnetics, USA) affixed to the skull with titanium screws and dental cement.

Behavioral and Neurophysiological Recordings.  Next, to demonstrate that these techniques could be 
potentially used in unconstrained individuals, experiments were performed using a wireless headstage transmit-
ter and data acquisition system (TBSI, USA) that fed neural signals into a customized multiacquisition proces-
sor system (Plexon, USA). ECoG signals were recorded at a sampling rate of 1KHz per channel. For FMAs, we 
confirmed that no single-units were present on LFP channels by thresholding and principal component analysis.

As detailed further below, the monkeys’ arm was unconstrained. Here, arm movements were captured using 
two video cameras placed in an orthogonal manner to provide three-dimensional trajectories. Offline analysis of 
movement was performed using customized software (Panlab, Harvard Apparatus, USA). The day prior to the 
experiment the monkeys’ right arms were painted using water-soluble dye to distinguish the distal (wrist joint 
with green color), middle (elbow joint with red color), and proximal portions (shoulder joint represent by triceps 
with blue color) of the upper limb. These different color circles represent three-dimensional markers for the 
motion capture system, which provided the needed fiducials to track the unconstrained limb.

Experimental procedure.  The monkeys were seated head-fixed in a custom primate restraint chair facing 
the experimenter (Fig. 1B). The animals could chew the apple pieces; however, they could not have other head 
movements during the experiments. The wireless headstage was connected and both video recording and neural 
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signal acquisition were synchronized with the use of an analog signal trigger. The monkeys were trained to rest 
their right hands on a perch bolted to their chairs. Prior to initiating a movement to retrieve food items in free 
space, the monkeys’ non-acting hands were restrained on an arm rest with Velcro bands. After retrieving the 
food, the monkeys were free to consume the reward and a new trial was initiated with placement of their hands 
back on the perch. The monkeys were trained to only use the hand contralateral to the implanted hemisphere. 
A pseudo-randomized set of left and right locations was chosen prior to each experiment in order to ensure an 
adequate number of trials in each direction (Fig. 1C–E). The experiment was repeated over 10 days, with a min-
imum of 80 trials/day. The trial time was 5 s and the experimenter waited for the monkeys to finish the chewing 
before starting the next trial, which normally took 10–20 s, whereas the whole session took about 30 minutes. A 
small piece of apple was used for every trial, which was one of the two monkeys’ favorite food. The approximate 
size of each apple given was 0.5 cm*0.5 cm*0.5 cm. Trials were excluded from analysis if one of the following 
criteria was met: (1) The monkey reached inaccurately (e.g. missed the targets); (2) The monkey didn’t finish 
the reach-grasp-return period during the trial; (3) During the present trial, the monkey accidently chewed the 
residual food from prior trials.

Data collection and analysis.  The monkeys’ reach-return movements were self-paced, and the reach 
(including directionality) and return movements were identified on a trial-by-trial basis. The components of a 
trial were defined as follows: (1) reach onset as the time when the monkey’s hand left the perch which was identi-
fied by a pressure sensor; (2) return onset as the time when the monkey withdrew his hand from the food target, 
which was identified by looking back at the videos frame by frame and extracting the detailed frame time, with 
knowledge that the frame rate of the videos was 29.97 frames/second. Three periods which all consisted of inter-
vals of 0.5 s were observed: (1) a baseline period (from 1.15 s to 0.65 s before movement onset; that is, the reference 
value that was used to calculate the relative power changes); (2) a pre-movement period (from 0.5 s to 0 s before 
movement onset); (3) a movement performing period (from 0 s to 0.5 s after movement onset).

All ECoG activity data was referenced to a common ground. The average voltage of each channel over the 
whole block was subtracted to prevent possible drift, and the signal from each channel was divided by its standard 
deviation over the entire block to normalize for systematic differences in amplitudes.

Then, a time-frequency analysis of the ECoG signals was performed. The power spectrum of the ECoG signals 
was analyzed for each channel and each type of movement. Discrete Meyer wavelet analysis was used to isolate 
frequency components of event-related spectral power changes and identify the characteristics of activities. Due 
to decreasing power with increasing frequencies, and in order to present spectral modulations over a large fre-
quency range and to examine the large variations in spectral power, each frequency band was divided by the 
trial- and time-averaged amplitude value during the baseline period to account for the large variations in spectral 
power over different frequencies.

We identified three frequency power bands with characteristic modulation during the movement tasks: (1) a 
low-frequency band (less than 9 Hz); (2) an intermediate-frequency band (9–40 Hz); (3) a high-frequency band 
(greater than 40 Hz). These frequency bands are determined from the center frequency of the Meyer wavelet, 
decomposition scale, and sampling frequency.

For the comparison of time- and frequency-resolved ECoG amplitudes from the movement types and direc-
tions, we used the signal-to-noise ratio (SNR) to assess the strength of a specific signal relative to the noise caused 
by trial-to-trial variability when performing the task. The SNR is defined by the difference of the class means (as 
an estimate of the signal) divided by the average trial-by-trial fluctuations (as an estimate of noise);

SNR
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1 2
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where μ1 and μ2 are the means of the two classes or directions of movements; σ1 and σ2 are their standard devi-
ations across trials.

A channel was considered active for a certain frequency band if the mean power during the pre-movement 
or movement period was significantly different than the baseline. The Kolmogorov-Smirnoff test was used to 
test whether the data were normally distributed. Normally distributed data was expressed as mean ± standard 
deviation, and skewed data was expressed as median (interquartile range). F-test was used for homogeneity of 
variance, independent samples t-test for equal variance, and non-parametric test was used for unequal variance. 
P < 0.05 was considered statistically significant. The detectable time is defined as the earliest time at which the 
power change was different from that of the baseline before movement onset.

The power changes of active channels were visualized with Z-score. More than two standard deviations (2σ) 
away from that of the mean baseline value was considered as statistically significant change, which is equal to 
|Z-score| (absolute value or modulus of Z-score) >2.

Decoding Algorithm.  A Fisher’s discriminant analysis was used to quantify the degree to which ECoG or 
LFP signal components were informative of the monkey’s movement type (reach vs. return) and its direction (left 
vs. right). We quantitatively measured the ratio of the variance in ECoG neuronal activity between the group 
options (reach vs. return/left vs. right reach) to the variance within the groups based on:

S S v v (2)w
1

B λ=−

whereby Sw and SB are the within group scatter matrices and between group scatter matrices, respectively. The pre-
diction vector v, corresponds to the largest eigenvalue of the matrix on the left-hand side of the equation. The pre-
diction vector defines a projection of the recorded activity into a scalar unit that is then compared to a threshold, 
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θ, and to predict the trial choice. For validation, we divided the data into a training set consisting of 75% of the 
trials and tested the accuracy of the prediction on the remaining 25% of trials. This operation was repeated 1000 
times using a random sampling of the total trials.
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