
Awan et al. BMC Bioinformatics (2020) 21:406
https://doi.org/10.1186/s12859-020-03720-1

SOFTWARE Open Access

ADEPT: a domain independent
sequence alignment strategy for gpu
architectures
Muaaz G. Awan* , Jack Deslippe, Aydin Buluc, Oguz Selvitopi, Steven Hofmeyr, Leonid Oliker
and Katherine Yelick

*Correspondence: mgawan@lbl.gov
Lawrence Berkeley National
Laboratory, 1 Cyclotron Road,
Berkeley, USA

Abstract
Background: Bioinformatic workflows frequently make use of automated genome
assembly and protein clustering tools. At the core of most of these tools, a significant
portion of execution time is spent in determining optimal local alignment between
two sequences. This task is performed with the Smith-Waterman algorithm, which is a
dynamic programming based method. With the advent of modern sequencing
technologies and increasing size of both genome and protein databases, a need for
faster Smith-Waterman implementations has emerged. Multiple SIMD strategies for the
Smith-Waterman algorithm are available for CPUs. However, with the move of HPC
facilities towards accelerator based architectures, a need for an efficient GPU
accelerated strategy has emerged. Existing GPU based strategies have either been
optimized for a specific type of characters (Nucleotides or Amino Acids) or for only a
handful of application use-cases.

Results: In this paper, we present ADEPT, a new sequence alignment strategy for GPU
architectures that is domain independent, supporting alignment of sequences from
both genomes and proteins. Our proposed strategy uses GPU specific optimizations
that do not rely on the nature of sequence. We demonstrate the feasibility of this
strategy by implementing the Smith-Waterman algorithm and comparing it to similar
CPU strategies as well as the fastest known GPU methods for each domain. ADEPT’s
driver enables it to scale across multiple GPUs and allows easy integration into software
pipelines which utilize large scale computational systems. We have shown that the
ADEPT based Smith-Waterman algorithm demonstrates a peak performance of 360
GCUPS and 497 GCUPs for protein based and DNA based datasets respectively on a
single GPU node (8 GPUs) of the Cori Supercomputer. Overall ADEPT shows 10x faster
performance in a node-to-node comparison against a corresponding SIMD CPU
implementation.

Conclusions: ADEPT demonstrates a performance that is either comparable or better
(Continued on next page)

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative
Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made
available in this article, unless otherwise stated in a credit line to the data.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-020-03720-1&domain=pdf
http://orcid.org/0000-0003-1233-1862
mailto: mgawan@lbl.gov
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Awan et al. BMC Bioinformatics (2020) 21:406 Page 2 of 29

(Continued from previous page)

than existing GPU strategies. We demonstrated the efficacy of ADEPT in supporting
existing bionformatics software pipelines by integrating ADEPT in MetaHipMer a
high-performance denovo metagenome assembler and PASTIS a high-performance
protein similarity graph construction pipeline. Our results show 10% and 30% boost of
performance in MetaHipMer and PASTIS respectively.

Keywords: Bioinformatics, GPU, Alignment, Protein, DNA

Background
Sequence alignment lies at the core of most bioinformatics applications. Aligning two
sequences determines a degree of similarity which may yield homology of the proteins
or genes and their functional information. Local sequence alignment has been used in de
novo sequence assembly to determine how different regions of a genome are connected
[1, 2] and for determining overlapping regions of long reads [3]. It has been used to deter-
mine conserved regions in proteins and genes, which has applications in evolutionary
biology and functional genomics [4].
Smith-Waterman is a sequence alignment algorithm that scores all possible local align-

ments between two sequences using a dynamic programming method and outputs the
optimal alignment [5]. Gotohmodifications enable the algorithm to account for gap open-
ings and extensions [6]. Because of its exhaustive nature, the Smith-Waterman algorithm
has a worst-case time and space complexity ofO(nm)where n andm represent the lengths
of two sequences to be aligned. Its quadratic time complexity makes performing large
number of alignments or aligning long sequences time consuming. As a solution, heuristic
based strategies were presented in the form of BLAST and Gapped BLAST which speed
up the process considerably with the trade-off being an approximate solution [7, 8].
In this paper we present ADEPT, a novel domain independent sequence alignment

strategy for GPU architectures and demonstrate it by implementing a GPU-accelerated
complete Smith-Waterman algorithm for the use case of pairwise sequence alignments.
ADEPT derives its performance from architecture specific optimizations and is perfor-
mant regardless of the type of sequence. Our analysis shows that ADEPT out-performs
similar CPU approaches and either closely matches or out-performs domain specific
existing GPU approaches. ADEPT provides an added advantage of built in capability
of scaling across multiple GPUs with minimal effort from the developer. It can effec-
tively be used as a drop-in replacement for CPU libraries. For the rest of this paper, the
acronym ADEPT will be used interchangeably for the ADEPT-based implementation of
the Smith-Waterman algorithm and the proposed strategy in general.

Prior work

With the introduction of multi-core and GPU devices, multiple parallel strategies for
exploiting modern architectures were introduced. Parallelizing the Smith-Waterman
algorithm is particularly challenging because of the inter-cell dependencies in the
dynamic programming matrix [9]. Computation of each cell depends on the cell above,
diagonally above and on the left, as shown in Fig. 1. These strategies can be classified into
two major categories 1) Intra-Task Parallelism, where fine-grained parallelism is intro-
duced for aligning two sequences and 2) Inter-Task Parallelism, where each sequence

Awan et al. BMC Bioinformatics (2020) 21:406 Page 3 of 29

Fig. 1 Arrow heads point towards the cell being computed while arrow tails lie in the cells that computation
depends upon. At a given time, only the cells along the anti-diagonal can be calculated by the algorithm in
parallel. Three shaded region show different parts of the algorithm: in the yellow region the parallelism
increases with each iteration, in the orange region it remains constant, while in the red region it starts to
decrease

alignment is considered as an independent task and performed in parallel. The first cat-
egory includes wavefront parallelism, where the cells along the anti-diagonals can be
computed in parallel as shown in Fig. 2 (B.1). This strategy has been implemented for
CPU SIMD units by Wozniak and a GPU version was implemented in CUDAlign, which
targets the use case of Megabase (DNA) alignment where the sequences to be aligned are
very long [10, 11]. Another intra-task approach of computing the cells along the query
sequence (as shown in Fig. 2(B.2)) was introduced and implemented by Rognes et. al [12]
for CPU SIMD units, the same colored boxes show how the regions of table are mapped
to SIMD units. Currently, there is no known GPU implementation for this method. In
2006 Michael Farrar introduced another intra-task approach in the form of the Striped
Smith-Waterman algorithm for CPU SIMD units, as shown in Fig. 2 (B.3) [13]. This strat-
egy proposed computing the cells in a striped manner parallel to the query sequence,
while ignoring certain dependencies and making up for that by including an error correc-
tion loop for ensuring correctness. There is also no known GPU implementation for the
Striped strategy.
Inter-task parallelism strategies translate to embarrassingly parallel approaches that

compute multiple alignments in parallel. One such implementation, which has been dis-

Awan et al. BMC Bioinformatics (2020) 21:406 Page 4 of 29

Fig. 2 In this figure, similarly colored boxes are computed in parallel. A) Shows the typical inter task
parallelism strategy where multiple DP tables are constructed in parallel. B.1) Shows the wavefront
parallelism strategy. B.2) Shows Rognes’ Intra task approach. B.3) Shows Farrar’s striped approach

cussed by Rognes [9], involves mapping a sequence alignment per processing unit such
that multiple DP tables are constructed in parallel (for different alignments) and cells of
each are computed concurrently (see Fig. 2 (A)). The basic idea of this strategy, accom-
panied by some device and application specific optimizations, has yielded good results
for GPU developers. For instance, CUDASW [14] utilizes a hybrid method consist-
ing of wavefront parallelism and an embarrassingly parallel method to perform protein
sequence alignments. Depending upon the sequence lengths CUDASW switches algo-
rithms between wavefront and inter-task approaches. It also utilizes a query profile, a
common optimization strategy for protein database alignments to minimize memory
accesses [13]. Another protein specific GPU implementation has been discussed in [15],
which also implements the embarrassingly parallel approach where each CUDA thread
aligns a protein sequence from a database, with the query protein. The authors used opti-
mizations to better exploit GPU architectures, such as ensuring that consecutive threads
perform almost same amount of work and clustering together data accesses to minimize
cachemisses. Amore recent approach in the same category is GASAL2 [16], which imple-
ments an inter-task parallelism approach to perform pairwise DNA alignments. GASAL2
targets the use-case of short read alignments, and has been optimized for DNA sequences
only. It uses domain specific optimizations such as encoding DNA bases using only four
bits to maximize memory bandwidth utilization. GASAL2 is the fastest GPU implemen-
tation for aligning DNA short reads [16]. However, GASAL2 does not support protein
alignment.

Problem statement

A very common scenario in bioinformatics applications requires pairwise sequence align-
ments where one-to-one alignments are performed between two given sets of sequences
[1, 16]. This problem is different than all-to-all approaches presented in [14, 15] and

Awan et al. BMC Bioinformatics (2020) 21:406 Page 5 of 29

requires a different approach. A typical all-to-all approach is that of a protein database
where each query sequence is compared against all the possible targets in the reference set
[13], which would lead toNM total alignments, whereN andM are sizes of query and ref-
erence sets respectively. One-to-one alignment deals with aligning only those sequences
which are present at same indices in two sets of sequences, i.e. given that total sequences
in query and reference sets are N, then total alignments would also be N.
Use cases of one-to-one pairwise alignments are quite common in short-read DNA

mapping [17, 18] and in DNA assemblers [19, 20]. In these cases all-to-all alignments
are not required; in fact selected sets of reads are aligned with selected sets of target
candidates, which can be achieved using one-to-one pairwise alignment.
Similarly, one-to-one pairwise alignments play an important role in inferring homol-

ogous proteins. The detection of homologous proteins is fundamental to several appli-
cations such as functional annotation (assigning functions to unknown proteins), gene
localization (identifying genes that are of a particular functionality of interest), or identi-
fying protein families (the proteins that descend from a common ancestor). For example,
a common method for the identification of protein families is (i) to first perform a sim-
ilarity search [21, 22] in a filtered set of amino acid sequence pairs by running a batch
of pairwise local or global alignments, (ii) then use this alignment information to form
a protein similarity network, and (iii) finally cluster [23–25] this network to discover the
protein families. Here, the information obtained from pairwise alignments include met-
rics such as identity, score, coverage, etc. and they are used in determining the structure
of the protein similarity network. The batch pairwise alignment usually constitutes the
most time-consuming step and it is important for this step to benefit from accelerators to
enable identification of families in large protein datasets.
However, the available GPU implementations employmethods which are either domain

specific, such as query profile construction for protein database search [14] and use of
bit-encoding for DNA sequences [16], or use-case specific, such as the Megabase use-
case [11]. These methods do not allow for performance portability across all domains
and applications of bioinformatics and are highly specialized. By contrast, CPU SIMD
libraries like Seqan [26] and SSW-Library [27] are domain-independent and derive their
performance by better exploiting the hardware architecture rather than relying on domain
specific optimizations.
This leaves a gap for a parallel strategy that leverages a GPU’s hardware to derive perfor-

mance rather than relying on application specific approaches. Such amethod could enable
offloading of sequence alignments to the GPU regardless of the type of sequence (Protein
or DNA). Such libraries are widely available for CPUs and have enabled the develop-
ment of numerous tools due to their generic nature. In an attempt to mitigate this gap, in
this paper we introduce ADEPT, a parallelization strategy that can exploit a GPU’s archi-
tecture for performance, to provide a consolidated GPU-accelerated sequence-alignment
library.

Smith-waterman algorithm

Consider two sequences Q and R to be aligned; Q is a query sequence represented as
Q = {q1, q2, q3, , , qn} and R is a reference sequence represented as R = {r1, r2, r3, , , rm},
where n = |Q| andm = |R|. In this paper we consider the case of one-to-one alignments
where, given two sets of sequences, A and B, each sequence in set A will be aligned to one

Awan et al. BMC Bioinformatics (2020) 21:406 Page 6 of 29

sequence in set B located at the same index. The total number of sequences in set A is
equal to the number of sequences in set B.
Given the sequences Q and R, Smith-Waterman with Gotoh scoring computes three

scoring tables E, F and H, following the equations below:

Eij = Max(Ei,j−1 + Gext ,Hi,j−1 + Ginit) (1)

Fij = Max(Fi−1,j + Gext ,Hi−1,j + Ginit) (2)

Hij = Max(Ei,j, Fi,j,Hi−1,j−1 + S(qi, ri), 0) (3)
In the above equations, matrix E and F are used for keeping track of gap insertions in

reference and query sequences. A gap insertion in query sequence can be seen as a dele-
tion in reference sequence or vice versa. Gap insertion/deletion or collectively known as
indels enable accurate alignment of two sequences even if they are not of equal lengths.
Without matrices E and F it is not possible to penalize gap insertion separately. Matrix
H keeps track of alignment extensions. Ginit is the gap initialize penalty, Gext is the gap
extend penalty and S(a, b) is the match or mismatch score based on how closely char-
acters a and b match. The algorithm starts by initializing the first row and column of
tables E, F and H with zeroes. The first phase involves computing each cell of table
H with the help of tables E and F, using the above equations. While scoring the table
H, information is maintained to keep track of the highest scoring cell (from Eq. 3) in
each iteration. After populating the scoring matrix H, the second phase involves obtain-
ing the highest scoring cell hi,j from table H. Indices i and j of this cell indicate the
ending location of the optimal alignment. The third phase involves performing a trace-
back step starting from the highest scoring cell and following the optimal path until
a cell with a score of zero is reached; this gives the starting location of the optimal
alignment.

Graphics processing units

Graphics Processing Units (GPUs) were introduced as dedicated graphics processing
devices, but with the development of advanced programming tools and improvement
in GPU hardware, they have rapidly emerged as accelerators of choice across the High-
Performance Computing community. A typical CPU-GPU computing setup involves
selecting a computationally intensive portion of an application and offloading it to GPU.
This involves offloading the data to the GPU’s Global Memory, launching a kernel to run
on the GPU, and then moving the results back from the GPU to the CPU. CPU and GPU
communication happens via a PCI express connection.
GPU hardware consists of multiple Streaming Multiprocessors (SM), where each SM

contains multiple Floating-Point units, Integer operation units and inmore recent devices
Tensor operation units. All the cores collectively provide GPUs with their massively par-
allel nature. For instance, NVIDIA’s V100 GPU contains a total of 80 SMs and 64 FP32
units giving a total of 5,376 computing cores. GPUs traditionally have an on-chip memory
resource, termed Shared Memory, and off-chip Memory or Global Memory [28]. Typi-
cally, Global Memory is of the order of gigabytes and is the primary location where data
is offloaded from the CPU for processing. In comparison, Shared Memory is quite scarce
and is usually on the order of kilobytes. A portion of the sharedmemory can be configured

Awan et al. BMC Bioinformatics (2020) 21:406 Page 7 of 29

to be used as an L1 cache to improve compiler aided optimizations or be used as shared
memory or a programmer controlled cache. An L2 cache is also present to improve mem-
ory re-use but is not controlled by the programmer. To understand typical sizes of these
memories, consider the NVIDIA V100 GPU, which has 16GB of Global Memory, 96KB of
Shared Memory/L1 cache per SM and 6144KB of L2 cache in total. The register file size
for each SM is 256 KB. A better use of a GPU’s memory hierarchy can yield considerably
better application performance [29].

CUDA platform overview

CUDA is a parallel programming platformwhich enables the use of CUDA-enabled GPUs
for general purpose computing. CUDA provides lower level software access to the com-
putational elements of GPUs and enables a programmer to write kernels for offloading
computational load to GPUs. The CUDA programming model provides two levels of
parallelism in the form of a grid of CUDA blocks, where each CUDA block consists of
multiple threads. CUDA Threads are the basic computational unit; each thread can be
identified by a unique thread id and a block id representing its parent block. Inter-thread
communication can take place either via the Shared Memory or using register-to-register
data transfers. Inter-block communication can happen only via the Global Memory. In
NVIDIA hardware, the threads of a block are scheduled on to the SMs in groups of
32 known as warps. Depending upon the resource availability, multiple warps may be
scheduled on the same SM.

Implementation
Initialization

Our ADEPT implementation has two parts: a driver and a kernel. The driver initializes the
GPUmemory, packs the sequences into batches, and once enough sequences are available
to saturate the GPU global memory, transfers all this data to the GPU. Additionally, the
driver also detects different GPUs available on the node and balances the amount of work
across all the available GPUs as shown in Fig. 3.
Batched sequences are stored in two arrays, one for query sequences and the other for

reference sequences. The number of sequences in the query and reference arrays are the
same, and sequences located at the same indices are aligned with each other. For instance,
if there are N query sequences and N reference sequences, a total of N alignments will be
performed. Each alignment is mapped to a unique CUDA block. Then, inside each CUDA
block amore fine-grained approach is implemented. From here on, all the implementation
details are per-block and the same algorithm is replicated across each CUDA block.

Tracking inter-thread dependencies

As discussed in the Background section, to compute each cell Hij of the dynamic pro-
gramming table H, cells Hi−1,j, Hi,j−1, and Hi−1,j−1 need to have been computed. Because
of this aspect of the algorithm, parallelism is restricted only along the ant-diagonal of the
matrix as shown in Fig. 1. It can be further observed in the figure that first the amount of
parallel work increases as the algorithm progresses, then remains constant for some iter-
ations, and finally starts to decrease near the bottom right triangle of the matrix (shown
in red). The maximum number of cells that can be calculated in parallel at any given time
is equal to the length of the shorter of the two sequences. This poses the unique challenge

Awan et al. BMC Bioinformatics (2020) 21:406 Page 8 of 29

Fig. 3 The overall pipeline of the ADEPT strategy. ADEPT’s driver detects all the available GPUs and their
available memory. Based on this, it determines the amount of work that can be dispatched to each GPU. A
separate CPU context is created for each GPU. On the CPU side, the batch size is determined based on the
GPU’s available memory or the batch size can also be fixed by the user. To overlap the data preparation step,
data transfers and the GPU computation, multiple CUDA streams are used. Immediately after making the
GPU to CPU transfer call, the CPU returns to the data preparation step while kernel execution is still going on
at the GPU side. This asynchronous behavior overlaps the CPU and GPU parts of the computation

of keeping track of dependencies for different cells and masking out the threads for which
dependencies are not ready.
To calculate the scoring table H, we start by assigning one CUDA thread per column

(as in Figure 1) such that it computes all the scoring cells within that column. Here we
assume that of the two sequences being aligned, the longer sequence is mapped along
the column and is referred to as R. As discussed before, because of dependencies, not all
the threads can progress together. To tackle this problem, we introduce a Binary Masking
Array (BMA) for masking out threads in each iteration for which dependencies are not
ready. The BMA has a length b, where b is equal to 3 ∗ |Q| and BMA is initialized as:

xi =
{
0, if(i < |Q|)or(i > 2 ∗ |Q|)
1, otherwise

(4)

Awan et al. BMC Bioinformatics (2020) 21:406 Page 9 of 29

Fig. 4 The zero/one array in this figure represents the Binary Masking Array (BMA) in the yellow region of the
algorithm for the DP table in Fig. 1. With each iteration the array shifts to the right, activating one additional
thread per iteration (given that the condition C is valid)

In the above equation, xi is the ith element of BMA. The number of threads that need to
track their state is equal to the size of query sequence. Since each thread needs to track
its state in three different phases of algorithm, the length of BMA is fixed to three times
the size of query sequence.
Figure 4 shows the BMA array for a query of length 6. Here, each thread keeps track

of an element in BMA. After each iteration, if the algorithm is in the yellow region (see
Figure 1), the array shifts to right, activating one more thread. ConditionC is used to keep
track of the region which the algorithm is in.

C = I < |Q|orI >= |R| (5)

In the above equation, I is the iteration number, which also corresponds to the diagonal
being computed. It can be observed in Fig. 4 that initially no CUDA thread was active and
as the algorithm progresses more and more threads are activated to perform the work.
Once the algorithm reaches the orange region, the condition C becomes false and the
array stops shifting until the algorithm enters the red region. Here again the array starts
shifting to the right (as shown in Fig. 5) with each iteration, but this time threads are
getting masked out with each iteration because of the decreasing diagonal size, this can

Fig. 5 The zero/one array in this figure represents the Binary Masking Array (BMA) while the algorithm is in
the red region for the DP table in Fig. 1. With each iteration the array shifts to the right, deactivating one
additional thread per iteration (given that the condition C is valid)

Awan et al. BMC Bioinformatics (2020) 21:406 Page 10 of 29

be observed in Fig. 1. Pseudo code in Algorithm 1 shows the usage of BMA in keeping
tracking of algorithm’s state.

Dynamic programming table storage andmemory access issues

To compute the highest scoring cell a pass over the complete table H is required. Since
the total number of cells that are computed in the table H are n ∗ m, if we use 2 bytes
to store each cell, storing the complete dynamic programming table in memory requires
N ∗ (2 ∗ mn) bytes. Where N is the size of a batch. This yields a total global memory
requirement of several hundred GBs for a million alignments, and even top of the line
GPUs have global memory of only a few GBs.
Apart from the storage size of the dynamic programming table, another challenge that

occurs often on GPUs is that of non-coalesced global memory accesses. The Global mem-
ory accessed by threads of a CUDA warp is bundled into the minimum number of cache
loads, where L1 cache line size is 128 bytes. Thus if the two threads are accessing a mem-
ory location that is more than 128 bytes apart, the memory accesses will be un-coalesced.
It can be observed in Fig. 6 that while performing a write back to global memory to store
the table H, memory accesses are about 2 ∗ (n − 1) bytes apart, which can be more than
200 bytes apart if n is larger than 100.
It can be seen in Fig. 1 that to compute a given anti-diagonal using the proposed par-

allel approach only the two recent most anti-diagonals are required. Apart from com-

Fig. 6 When reading or writing along the anti-diagonals of a matrix that has been stored in a column major
way, consecutive elements of an anti-diagonal are placed 2 ∗ (|Q| − 1) bytes apart. This leads to
un-coalesced global memory accesses in GPU

Awan et al. BMC Bioinformatics (2020) 21:406 Page 11 of 29

puting the maximum scoring cell at the end of scoring phase, there is no reason for stor-
ing the complete scoring matrix, except for the two most recent diagonals. As a solution
to the problem of computing the maximum scoring cell, we modified our implementa-
tion so that each thread can maintain a running maximum score for the column it has
been assigned; this can be kept in the thread’s register. Thus, we can effectively discard
the scoring matrix beyond the two most recent diagonals. Since this requires storing only
a portion of the matrix, this can be done inside thread registers thus avoiding the problem
of non-coalesced memory accesses.
Once all the cells have been computed we use CUDA’s warp shuffle intrinsics to

implement a block-wide reduction for obtaining the highest scoring cell as shown in
Algorithm 1. Our implementation of block-wide reduction has been adopted from
NVIDIA’s own reductionmethod [30] withmodifications introduced to obtain the indices
of the highest scoring cell along with the score.

Algorithm 1: Per thread pseudo Code for ADEPT Smith-Waterman Kernel
Result: ref_end, que_end, best_score
Input: ref_sequene, que_sequence
initialize_registers();
initialize_shared_mem();
initialize_BMA();
initialize_state(alg_state, thread_state);
for each diagonal do

p_prev_E = prev_E, prev_E = curr_E, curr_E = 0;
p_prev_F = prev_F, prev_F = curr_F, curr_F = 0;
p_prev_H = prev_H, prev_H = curr_H, curr_H = 0;
thread_state = BMA_Shift(state);
if !(thread_state) or inter_warp_comm then

spill_registers();
else

end
if thread_state then

curr_F = compute_F(prev_F);
if src_thread_valid then

curr_E = compute_E(register_shuffle);
curr_H = compute_H(register_shuffle);

else
curr_E = compute_E(shared_mem);
curr_H = compute_H(shared_mem);

end
max_score = compute_max(curr_E, curr_F, curr_H);
col_max = update_col_max();

else

end
end
que_end, ref_end, best_score = warp_shuffle_reduction(col_max);

Awan et al. BMC Bioinformatics (2020) 21:406 Page 12 of 29

Efficient inter thread communications

Figure 1 shows the mapping of CUDA threads to columns of the scoring matrix. It can be
observed in the figure that because of the cell-dependencies there is inter-thread commu-
nication required between the two consecutive threads. For a thread j to compute the cell
Hi,j it requires values from cellsHi−1,j ,Hi,j−1 andHi−1,j−1. In the figure it can be observed
that the cell Hi−1,j is computed by thread j while the other two cells are computed
by thread j − 1. For this inter-thread transfer we explored two methods of data shar-
ing between threads i.e. communication using shared memory and register-to-register
memory transfer.
CUDA’s warp shuffle intrinsics allow threads to perform direct register-to-register data

exchange without performing any memory loads and stores, while use of shared memory
involves going through the on-chip shared memory. Due to much faster performance we
opted for the register-to-register data exchange method.
However, register-to-register transfers are only allowed among the non-predicated

threads of the same warp. This introduces several edge cases, for example in the CUDA
platform where a warp is 32 threads wide, a communication between thread (32 ∗ q) − 1
and 32 ∗ q (where q > 0) would not be possible through register-to-register transfers
because these do not belong to same warp. For instance, in Figure 1, threads 3 and 4
belong to different warps (assuming that a warp is three threads wide), so they cannot
communicate via the register exchange method. For such cases, the last thread of each
warp spills its registers to the shared memory every iteration so that first thread of the
next warp can retrieve that data.
Similarly, while computing the scores for cells Hm,j, the threads j-1 would have been

predicated (in Fig. 1, each thread is masked after it has computed the last cell of the col-
umn it is assigned to) and a register-to-register transfer would not be possible. To cater
for these edge cases, we use shared memory arrays to spill the values of thread registers
whenever such edge cases occur. Using the BMA method discussed in previous section,
it becomes quite straight forward to determine if a certain thread will be predicated in
the next iteration so that its registers are timely spilt to shared memory and then any
dependent threads can access the required values from shared memory.
Using the above method provides fast inter-thread communication along with freeing

up significant amount of shared memory, which helps improve GPU utilization and also
helps avoid shared memory bank conflicts. A bank conflict occurs when multiple threads
access same bank of shared memory, this enforces sequential access to that portion of
memory and results in performance degradation.
An overall step by step kernel pseudo code for forward phase has been provided in

Algorithm 1.

Reverse scoring

The third phase of the Smith-Waterman algorithm involves performing a traceback start-
ing from the highest scoring cell and ending when the score drops to zero or the top left
end of the matrix is reached. This requires maintaining the traceback pointers, which can
be stored in the form of two matrices, one for storing the indices of the query sequences
and the other for storing the indices of the reference sequences. However, storing these
matrices yields two sets of challenges. First, the amount of memory required to store
traceback matrices equals 2 ∗ N ∗ (n ∗ m), which can be several hundred GBs when N

Awan et al. BMC Bioinformatics (2020) 21:406 Page 13 of 29

is close to a million alignments and unlike the scoring phase we cannot discard parts of
the traceback matrices because that may lead to missing optimal alignments. The second
challenge is that of un-coalesced memory accesses, as mentioned before. The write-back
to the traceback matrices occurs along the anti-diagonals and since the matrices are laid
down in the global memory in row-major indexing, this leads to un-coalesced memory
accesses as shown in Fig. 6.
However, in most of the practical Smith-Waterman applications, complete alignment

details are rarely required. The majority of the applications only require the optimal
alignment score and the optimal alignment start and end indices [1, 13, 27]. Details of
insertions and deletions are typically not required when the Smith-Waterman algorithm
is being used as a part of a computational pipeline, in particular for the case of pair-
wise alignments. Considering this practical reason, rather than performing a detailed
traceback, we use a reverse scoring phase.

Reverse scoring phase

To obtain the start positions of the alignment we make use of the symmetric nature of
the optimal alignment. An optimal alignment is symmetrical i.e. scoring two sequences
forward or with their directions reversed yields the same optimal alignment.
For reverse scoring, we make use of this property as previously done in [27] and com-

pute a reverse scoring matrix with both the sequences flipped from the indices of the
highest scoring cell in the forward scoring matrix. When scoring in reverse, the highest
score will correspond to the same alignment as the one in the forward scoring phase as
shown in Fig. 7.
Using the indices of the highest scoring cell in the reverse scoring phase, we can com-

pute the start index of alignment. Using the reverse scoring phase enables us to avoid
storing traceback matrices and helps free up GBs of space. The reverse scoring kernel
follows the same implementation as the forward scoring kernel that has been shown in
Algorithm 1, hence we re-use that implementation by providing flipped sequences at the
input. It must be noted that the reverse scoring matrix in most of the cases ends up having
less total work because of known end positions.

Fig. 7 Sequences are flipped in the reverse scoring phase and the same kernel is used as the forward phase.
The highest scoring cell in the reverse phase then provides the start location of alignment

Awan et al. BMC Bioinformatics (2020) 21:406 Page 14 of 29

Support for protein alignment

Thus far, ADEPT has not required any domain specific optimizations, and the Smith-
Waterman implementation discussed above has been oblivious of the types of sequence.
The difference between aligning protein sequences and DNA sequences is between the

scoring methods. When aligning DNA sequences, if two of the same nucleotide bases
align, that is considered a match and a fixed match score is used for computing the total
score; similarly if the bases do not match, a mismatch score is used instead.When aligning
protein sequences, two aligning amino acids need to be scored based on their chemical
similarity. Similarity scores for all possible comparison of amino acids are characterized
and available in the form of a scoring matrix [31]. Instead of a match/mismatch score for
protein sequencing a user needs to provide a scoring matrix.
Since a scoring matrix needs to be accessed very frequently, in our implementation we

move the static scoring matrix to the GPU’s shared memory to reduce the overhead asso-
ciated with multiple accesses. For simplifying the scoring matrix lookups and minimizing
shared memory usage, we use a decoding matrix to index into the scoring matrix. Typ-
ically, the scoring matrix is indexed by the amino acid characters, which leads to large
amount of memory being reserved for the matrix. In this implementation, we first index
a with the ASCII code associated with the amino acid character to retrieve an encoded
index, which is then used to access the scoring matrix.
Underlying kernel for protein and DNA alignment still remains the same, for protein

alignment the only difference is that instead of a match/mis-match score and similar-
ity score is obtained from the scoring matrix, everything else remains the same as in
Algorithm 1.
In order to make the switch between protein kernel and DNA kernel easy for the user,

we provide two different kernels for protein alignment and DNA alignment. The DNA
kernel accepts match, mismatch, gap open and gap extend scores at input while the pro-
tein kernel accepts a scoring matrix along with gap open and gap extend scores at compile
time.

Multi-GPU asynchronous pipeline

In a typical CPU-GPU setup, the CPU prepares a batch of data that is offloaded to a GPU
and launches a GPU kernel to process that data; once the data is processed, the results
are moved back to CPU. However, with the evolution of GPU technology, a widespread
adoption of GPUs has taken place, and instead of having one GPU per node, a typical GPU
system has several GPUs on each node. For instance, the Summit supercomputer [32]
has six GPUs per node and the upcoming Perlmutter supercomputer is planned to have
four GPUs per node [33]. This calls for a software setup which would determine the type
and memory capacity of each GPU on a node dynamically and divide the work among all
GPUs accordingly. As a solution, ADEPT contains a driver component which manages
all the communication, load balancing and batch size determination for the GPU kernels
while keeping the developer oblivious of these intricacies.
ADEPT’s driver gathers hardware information about all the GPUs installed on a node

and then divides the work equally among them. A separate context is created for each
GPUwhere a unique CPU thread is assigned to a particular GPU. This CPU thread divides
the total computational load into smaller batch sizes depending on the memory capacity
of the GPU assigned to it. Each batch is then prepared and packed into a data structure

Awan et al. BMC Bioinformatics (2020) 21:406 Page 15 of 29

which is then passed to a GPU kernel call. Using CUDA streams, the GPU kernel call and
the data packing stage are overlapped so that CPU and GPU work can be carried out in
parallel. An overview of ADEPT’s design can be seen in Fig. 3.
ADEPT’s driver makes it easier for the developers to integrate ADEPT in high per-

formance bioinformatics software pipelines by reducing the complexities of dealing with
multiple GPUs, and requiring just one call to the driver function. Effectively, making
ADEPT a drop-in replacement for existing CPU libraries, whereas existing GPU libraries
require significant amount of work in order for them to be included in an existing software
pipeline.

Results
We evaluate the performance of ADEPT against two of the popular CPU libraries which
can perform both Protein and DNA alignments. Among existing GPU implementations
we chose GASAL2 for comparison because it is the fastest known GPU library for per-
forming DNA pairwise alignments [16]. The only known GPU alignment library that can
perform pairwise protein alignments is NVBIO [34], so we compared ADEPT against the
protein alignment tool of NVBIO. The libraries we are evaluating ADEPT against include:

SSW-library

Striped Smith Waterman or SSW-Library [27] is an implementation of Farrar’s algo-
rithm [13] and is one of the fastest known CPU implementations of the Smith-Waterman
algorithm. SSW-Library leverages the CPU’s vector instruction set.

Seqan library

Seqan Library is a widely used CPU sequence alignment library [26]. For this paper we
use the Seqan test suit developed by the authors of the Seqan library [35]. For these exper-
iments we made use of align_bench_par program as it performs pairwise alignments. We
used the build option for AVX2 instructions with scoring range set at 16 bit for optimized
performance.

GASAL2

GASAL2 is a recently developed GPU implementation for short read DNA analysis that
performs pairwise alignments. The authors of GASAL2 have comprehensively demon-
strated that GASAL2 is the fastest GPU implementation for pairwise alignments [16].
Hence, to avoid redundancy, we only use GASAL2 among GPU libraries for performance
comparison. GASAL2 has been optimized only for DNA sequences and does not support
protein alignments.

NVBIO

NVBIO is a GPU based library developed by NVIDIA developers which provides multiple
algorithms implemented for accelerating bioinformatics pipelines. For this paper we used
the proteinsw program provided with the NVBIO library. Here, it needs to be considered
that NVBIO has not been maintained for some time now and we found out that with the
same scoring conditions, using the same dataset, NVBIO’s protein alignment output does
not match with the well known Smith-Waterman implementations. An issue has been
opened at their github page regarding this. The NVBIO-based experiments in this paper
were performed assuming that the library still computes the complete scoring matrix,

Awan et al. BMC Bioinformatics (2020) 21:406 Page 16 of 29

Table 1 This table shows features of three datasets that were generated using a UPC++
implementation of MetaHipMer assembler for evaluating performance for DNA based applications

Dataset Query Set Reference Set Total Alignments

Min. Size Max. Size Min. Size Max. Size

DNA-1 150 200 99 779 31,071,476

DNA-2 201 250 99 979 8,892,748

DNA-3 251 300 99 1,131 16,308,186

but because of a bug in the protein scoring function the results do not match with other
libraries.

Experimental data

To evaluate the performance of ADEPT against existing methods we identified use cases
in genomics and proteomics that require performing large numbers of pairwise align-
ments. For each of these use-cases we obtained real world datasets, which were then
processed to form three curated sets of Query and Reference sequences. Below we discuss
in detail the data generation process for DNA and Protein evaluation datasets.

DNAData

For the alignment of DNA sequences, we used a set of 29 million FASTQ reads, of lengths
from 150 to 300, from the SYNTH64 dataset [36] as the query sequences. For the refer-
ence sequence set, we used a collection of 283842 contigs assembled from the reads, using
the MetaHipMer [19] assembler. The sequences in the resulting query and reference sets
were then binned based on the length of the query sequence to obtain three different
datasets i.e. DNA-1, DNA-2 and DNA-3. Details of these datasets are available in Table 1.

Protein data

For the alignment of protein sequences, we use a curated (a combination of automatic and
manual curation) dataset called SCOPe (Structural Classification of Proteins - extended)
[37]. The current version of this dataset (2.07) contains around 244k proteins, of which
we select the unique 77,040. The pairwise alignments are constructed within a protein
family identification pipeline [38]. In this pipeline, a set of candidate pairs are filtered
and passed to the aligner to obtain various alignment information. The number of pairs
filtered by this pipeline is 54.5 million. The obtained alignment information is then used
to construct the protein similarity network.
For all the pairwise alignments we assumed the longer sequence is the reference and

the shorter sequence is the query. These sequences were then binned based on the length
of the query sequences into three different datasets: Protein-1, Protein-2 and Protein-3.
Details are provided in Table 2.

Table 2 This table shows the features of three datasets that were generated using most recent
version of PASTIS for evaluating performance for protein based applications

Dataset Query Set Reference Set Total Alignments

Min. Size Max. Size Min. Size Max. Size

Protein-1 20 200 200 1,664 31,846,093

Protein-2 20 400 400 1,664 38,610,219

Protein-3 20 600 600 1,664 12,148,680

Awan et al. BMC Bioinformatics (2020) 21:406 Page 17 of 29

Comparison with existing methods

For each of the above discussed datasets we performed three experiments to evalu-
ate ADEPT’s performance against existing approaches. First we compare the Giga Cell
Updates Per Seconds (GCUPS) for each approach, which was done by running all the
methods in only forward scoring phase to obtain only the highest score. Then we com-
pute the total cells (of the DP table) that were processed for that dataset and divide that
by the total runtime, which is given by:

GCUPS = Total Cells
Forward Scoring Time

(6)

In the second experiment, we turn on the reverse scoring phase for all the algo-
rithms (algorithms which do not support a reverse scoring phase were omitted from this
experiment) and evaluate the total execution time for obtaining the score, start and end
positions of the optimal alignment.
Finally, we repeat the above experiments by running all of the algorithms on complete

CPU andGPUnodes of the Cori Supercomputer [39] to evaluate the ability of these imple-
mentations to support multiple numbers of GPUs, as is expected by high-performance
bioinformatics pipelines.

Experimental conditions

For all the CPU runs we made use of the Cori Supercomputer’s Haswell nodes [40], each
of which consists of two sockets of Intel Xeon Processor E5-2698 v3, operating at 2.3 GHz
with 16 CPU cores each, with a total of 32 cores per node. All the CPU libraries were built
using GCC version 8.3.0 with optimizations turned on. For GPU runs we made use of
the Cori Supercomputer’s GPU nodes [41], each of which consists of eight NVIDIA V100
GPUs. Each V100 GPU consists of 16 GB of Global Memory, 96KB of SharedMemory/L1
cache per SM and 6144KB of L2 cache in total. For computations, each V100 GPU con-
tains a total of 80 Streaming Processors (SMs) and 64 FP32 units, giving a total of 5,376
computing cores. The GPU libraries were built using CUDA version 10.2.89.
For DNA alignments we used the same scores for all algorithms, i.e. match-score of 6,

mismatch penalty of 4, gap open penalty of 4 and gap extension penalty of 1. For Protein
alignments we used the Blosum 62 matrix [31], with a gap open penalty of 6 and gap
extension penalty of 1. Typically, ADEPT’s driver determines the batch size at runtime
but for these experiments we fixed the batch size to 20,000 since that provides optimal
performance for the V100 GPUs. The batch size is a user configurable parameter.

Performance on DNA alignments

We first compared the total GCUPS for all algorithms for DNA alignment datasets. As
discussed before, this was done by turning off the reverse scoring feature and only using
one socket of a Haswell Node (16 CPU cores) for CPU libraries and one V100 GPU
for GPU libraries. It can be observed in Fig. 8 that for shorter queries (DNA-1), the
GASAL2 library out-performs all the algorithms, but for the remaining datasets where
query lengths are longer, ADEPT starts performing better because of its intra-sequence
parallelization strategy. This is because, as the size of the query increases, the number
of elements that can be computed in parallel also increases, and this results in ADEPT

Awan et al. BMC Bioinformatics (2020) 21:406 Page 18 of 29

Fig. 8 This figure shows total GCUPS (higher is better) for each algorithm when processing the DNA datasets
in Table 1 using 1 CPU socket and 1 GPU

closely matching GASAL2’s performance for the DNA-1 and DNA-2 datasets. For a single
GPU, ADEPT gives a peak performance of about 66 GCUPS.
To evalute the high-performance computational capability for large scale systems, we

repeated the above runs, but this time for the CPU libraries we used all the available CPU
cores on a Cori Haswell node (32 CPU cores). And for GPU codes, we performed analysis
for 2 GPUs, 4 GPUs and full node runs with all 8 GPUs. GASAL2 does not have support
for multiple GPUs, hence it was not included in these experiments. It can be observed in
Fig. 9 that ADEPT scales quite well for an increasing number of GPUs and can provide

Fig. 9 This figure shows total GCUPS (higher is better) for each algorithm when processing the DNA datasets
in Table 1 while using complete nodes

Awan et al. BMC Bioinformatics (2020) 21:406 Page 19 of 29

a peak node performance of 497 GCUPS. An overall, node-to-node speedup of 11x and
10x was achieved over the SSW library and Seqan library respectively.
To compare overall performance, we turned on the reverse scoring feature for all algo-

rithms so that each can compute the start position of the alignment as well. The Seqan
benchmarking suite did not have an option of obtaining the start position using reverse
scoring and instead performs a complete traceback which is a very slow, so in the interests
of fairness, we did not include Seqan in these experiments. These experiments were again
performed using a single socket (16 CPU cores) and a single GPU first and then repeated
for full nodes to evaluate their ability for large scale bioinformatics tools.
It can again be observed in Fig. 10, that GASAL2 performs better for the DNA-1 dataset

where query lengths are limited to only 200 bases long. As wemove onto the datasets with
longer query sequences, ADEPT’s intra-sequence approach starts catching up owing to
increased fine-grained parallelism. For full node runs we did not includeGASAL2 because
it does not provide multi-GPU support. Figure 11 shows that ADEPT out-performs the
SSW-Library by about 10x in node-to-node comparisons and scales well for an increasing
number of GPUs, even with the reverse scoring phase turned on.

Performance on protein alignments

We repeated the same experiments for Protein datasets; for these experiments we do
not include GASAL2 library because it does not support protein alignments. Figure 12
shows that for single GPU ADEPT out-performs NVBIO by about 8x for the Protein-1
dataset and consistently performs better than NVBIO for the remaining datasets. With
CPU Libraries utilizing 16 CPU cores, ADEPT out performs them for the Protein-1
and Protein-2 dataset but for the Protein-3 dataset the SSW-Library catches up. This is
because the SSW-Library uses a heuristic based approach and performs less work over-
all, so with increasing sequence lengths we see an improvement in the performance of the
CPU Libraries. However, the true potential of the GPU accelerated approach is observed
when performing node-to-node analysis, as typically an HPC cluster has more GPUs per

Fig. 10 Total execution times (lower is better) for each algorithm when processing the DNA datasets in
Table 1 with reverse scoring turned on, when using single CPU socket and single GPU

Awan et al. BMC Bioinformatics (2020) 21:406 Page 20 of 29

Fig. 11 Total execution times (lower is better) for each algorithm when processing the DNA datasets in
Table 1 with reverse scoring turned on, when using complete nodes

node than CPU sockets. In Fig. 13, we perform a node-to-node analysis with the CPU
libraries making use of all the 32 CPU cores on each Haswell node of the Cori Super-
computer, while ADEPT utilizes all 8 GPUs available on a Cori GPU node. It can be
observed that for complete node-to-node analysis, ADEPT dominates and gives a peak
performance of 360 GCUPS when using all eight GPUs. Since NVBIO does not provide
a driver program like ADEPT to support multiple GPUs, we did not include it in these
experiments.
To evaluate the performance for protein alignments with reverse scoring phase turned

on, we compared only the SSW-Library and ADEPT because the Seqan test suite and

Fig. 12 This figure shows total GCUPS (higher is better) for each algorithm when processing the protein
datasets in Table 2 using 1 CPU socket and 1 GPU

Awan et al. BMC Bioinformatics (2020) 21:406 Page 21 of 29

Fig. 13 Total GCUPS (higher is better) for each algorithm when processing the protein datasets in Table 2
while using complete nodes

NVBIO do not have the reverse scoring feature. For single socket (16 CPU core) vs single
GPU comparison, ADEPT out-performs SSW for the Protein-1 and Protein-2 datasets
(Fig. 14). But for the larger sequence dataset (Protein-3), the SSW Library catches up
owing to its heuristic based scoring algorithm.
But for node level analysis, ADEPT (Fig. 15) out performs SSW-Library by almost 8x.

Application use cases
To demonstrate ADEPT-SW’s effectiveness in preparing large-scale bioinformatics soft-
ware pipelines for GPU-heavy systems, we chose two applications from different domains.

Fig. 14 Total execution times (lower is better) for each algorithm when processing the protein datasets in
table 2 with reverse scoring turned on, using single CPU socket and single GPU

Awan et al. BMC Bioinformatics (2020) 21:406 Page 22 of 29

Fig. 15 Total execution times (lower is better) for each algorithm when processing the protein datasets in
Table 2 with reverse scoring turned on, using complete nodes

The first isMetaHipMer [19, 42], which is a large-scalemetagenome assembly pipeline for
performing denovo assembly of metagenomic data sets, and the second is PASTIS [38], a
distributed protein network construction pipeline. ADEPT-SW was integrated into both
these pipelines to accelerate the portion which makes use of the Smith-Waterman local
alignment algorithm. Based on the design of these pipelines, different approaches were
adopted to take advantage of the GPU-accelerated ADEPT-SW library.

Use-case: metagenome assembly

MetaHipMer is a specialized version of a large scale denovo genome assembler HipMer
[2]. Metagenome assembly involves processing a DNA dataset obtained from a micro-
bial colony into a complete representation of the underlying genome. MetaHipMer has
been designed for large scale supercomputers using a partitioned global address space
(PGAS) programming model which enables it to run on a shared memory computer as
well as a large-scale distributed machine. An overview of the MetaHipMer pipeline can
be seen in Fig. 16. The fourth step highlighted in red is the alignment phase of MetaHip-
Mer where the input reads are aligned against target sequences that have been built in
the stages before. At the core of alignment step, MetaHipMer uses a CPU-based kernel
of a Smith-Waterman Library called SSW [27], which has also been discussed before in
section Results.
A simplified overview of the alignment phase of MetaHipMer can be seen in Fig. 17.

MetaHipMer uses multiple processes on each node to take advantage of the underlying
parallel hardware. Each process parses a set of reads independently, performs a candidate
lookup in the distributed index and obtains a set of possible candidates to which that read
might align. The target and read pair is then passed to SW-Kernel on the CPU to process
the alignment.

ADEPT-SW integration

We modified the MetaHipMer pipeline so that instead of performing a SW alignment
immediately after the lookup, it adds it to a batch of alignments. Once the batch size

Awan et al. BMC Bioinformatics (2020) 21:406 Page 23 of 29

Fig. 16 An overview of MetaHipMer pipeline. The alignment step (highlighted in red) makes use of
Smith-Waterman alignments to map short reads to longer target sequences

is large enough, a call is made to the ADEPT-SW kernel which then takes control. The
ADEPT-SW kernel detects the number of available GPUs and the number of processes
running on the CPU and then performs a mapping from CPU to GPU in a round-robin
fashion. If the number of GPUs is smaller than the number of processes on the node,
multiple processes may be mapped to a same GPU. During the mapping the ADEPT-SW
kernel ensures that if a GPU is shared by more than one process, the global memory of the

Fig. 17 MetaHipMer’s alignment phase using the CPU Smith-Waterman Kernel. Each rank gets a set of target
sequences which are used to construct a global seed index stored in shared memory. Each process then
performs a lookup in the distributed seed index and obtains a set of possible target candidates. A pair of
target and read candidates are then passed to the SSW Kernel

Awan et al. BMC Bioinformatics (2020) 21:406 Page 24 of 29

GPU is divided among the processes such that there is no overlap. The ADEPT-SW driver
then launches GPU kernels as shown in Fig. 3. The modified version of the mteaHipMer
alignment phase can be seen in Fig. 18.

Results

For this study a UPC++ based version ofMetaHipMer was used. All the experiments were
performed on Cori GPU Nodes [41]; each GPU node consists of eight NVIDIA V100
GPUs and two sockets of Intel Xeon Gold 6148 (Skylake) processors, where each socket
consists of 20 CPU cores, making a node total of 40 CPU cores. We used ArcticSynth
dataset for these experiments [42].
Figure 19 shows the performance comparison between MetaHipMer and ADEPT

integrated MetaHipMer. The Smith-Waterman portion improves by 2.9x which gives
the alignment phase a performance boost of 36% and an overall pipeline performance
improvement of 10% was observed for a single node run.

Use-case: protein similarity graph construction

PASTIS [38] is a distributed-memory software for performing large-scale protein sim-
ilarity search. Its goal is to facilitate the fast construction of huge protein similarity
graphs, which are then usually utilized in a clustering phase to discover similar pro-
teins. It encodes protein sequence information within distributed sparse matrices and
relies on sparse matrix operations to discover candidate protein sequence pairs for fur-
ther alignment. The main components of PASTIS are illustrated in Fig. 20. The alignment
of candidate protein sequence pairs is performed after discovering overlapping protein
sequence pairs and it constitutes one of the most computationally expensive components.
In PASTIS, the alignments performed by a process are independent from the alignments
performed by other processes, i.e., they are performed locally by each individual process.
Hence, although ADEPT-SW does not support distributed memory parallelism, PASTIS
can still make use of it as the alignment component is local to each process.

Fig. 18 MetaHipMer’s alignment phase is modified so that instead of calling the CPU SSW kernel, the read
and target pair is added to a batch. This batch is then passed to the ADEPT-SW driver, which then takes over
and performs a CPU-process to GPU mapping and balances the load so that each GPU is performing an equal
amount of work

Awan et al. BMC Bioinformatics (2020) 21:406 Page 25 of 29

Fig. 19 This figure shows the runtime breakdown of MetaHipMer pipeline with and without ADEPT-SW
integration while processing the ArcticSynth dataset [42]. It can be observed that Smith Waterman
(sw_kernel in legend) portion of pipeline speeds up by 2.9x giving alignment portion a speedup of 36%.
Overall, MetaHipMer pipeline shows 10% performance improvement with ADEPT-SW integration

PASTIS needs certain information regarding the aligned sequence pairs in the con-
struction of the protein similarity graph. These information include average nucleotide
identity, raw alignment score, coverage, etc. The alignments that do not meet certain
criteria are eliminated and they are not included in the protein similarity graph. Note
that each aligned sequence pair corresponds to a possible edge in the protein similar-
ity graph, where the weight of the edge signifies the strength of similarity between the
aligned sequence pair. For that purpose, PASTIS canmake use of either average nucleotide
identity or normalized raw alignment score.

Adept-sw integration

PASTIS originally relies on Seqan C++ library (The Library for Sequence Analysis) [26]
for alignment. Its representation of protein sequences via matrices allows easy integra-
tion. In the matrix produced by PASTIS at the end of the overlap detection component

Fig. 20 Components of PASTIS

Awan et al. BMC Bioinformatics (2020) 21:406 Page 26 of 29

Fig. 21 This figure shows the runtime breakdown for PASTIS pipeline with and without ADEPT-SW
integration while processing the SCOPe dataset [37] . PASTIS with ADEPT integeration sees about 2.7x
reduction in Smith Waterman alignments duration (sw_kernel in legend). Overall 30% improvement in the
performance of PASTIS is observed

in Fig. 20, each process stores a distinct rectangular block of this matrix. Each non-
zero element in this block signifies an alignment to be executed by the aligner. Hence,
at each process, we traverse these elements in batch by storing them in necessary struc-
tures required by ADEPT. Then, the control passes to ADEPT driver component, which
performs alignments across all the GPUs available on the node and produces output infor-
mation required by PASTIS. Specifically, PASTIS uses the raw score and coverage of each
alignment computed by ADEPT in the formation of the protein similarity graph.

Results

In the evaluation of PASTIS, we follow a similar setting to that of MetaHipMer. The
experiments are performed on a single node of Cori GPU Nodes [41]. We used SCOPe
(Structural Classification of Proteins - extended) [37] dataset for PASTIS. For the align-
ment component, we tested out Seqan’s Smith-Waterman alignment algorithm and
ADEPT-SW.We turned off trace-back component of Seqan, as is the case for ADEPT-SW.
For PASTIS, we used a k-mer size of 6 and 10 substitute k-mers. This results in around
31.2 million sequence pairs that need to be aligned by Seqan or ADEPT-SW.
Figure 21 shows the runtime dissection of PASTIS when run with Seqan and ADEPT-

SW. The alignment constitutes almost half of the execution time of PASTIS when it is
run with Seqan (indicated with the legends sw_kernel and align_internal). A compar-
ison of performance in Fig. 21 shows that PASTIS with ADEPT integration performs
Smith Waterman alignments about 2.7x faster than Seqan (compare the values for legend
sw_kernel) and improves the performance of overall pipeline by 30%.

Awan et al. BMC Bioinformatics (2020) 21:406 Page 27 of 29

Conclusions
Aligning two biological sequences is fundamental to a majority of computational
pipelines in modern bioinformatics. Applications such as homology, the study of pro-
teins and genes, protein database search, protein clustering, de novo genome sequencing,
metagenome analysis and functional genomics and proteomics, frequently make use of
sequence alignment algorithms at their core. Optimal sequence alignment algorithms like
Smith-Waterman are based on dynamic programming approaches which makes them
computationally intensive and difficult to parallelize owing to their convoluted dependen-
cies. With the move of supercomputing facilities towards heterogeneous architectures, a
lot of effort is being made to port existing bioinformatics workflows to the new architec-
tures. In this process, sequence alignment algorithms have emerged as a computational
as well as an implementation challenge. Existing GPU libraries employ domain and appli-
cation specific strategies for optimizing an algorithm’s performance on GPUs, but such
strategies are not generic and have restricted use-cases. This called for a domain inde-
pendent strategy that targeted the hardware for speed and not the data, similar to the
methods widely available for CPUs.
As a way forward through this problem, we have introducedADEPT in this paper, which

is a domain independent strategy for sequence alignment that leverages the GPU’s archi-
tecture for accelerating dynamic programming based sequence alignment algorithms.We
introduced a novel data structure to tackle the inter-thread dependencies and utilized
register-to-register data transfers for efficient communication between CUDA threads.
We demonstrated the performance of this strategy by implementing the Smith-Waterman
algorithm, an optimal local alignment algorithm, and comparing its performance with
similar approaches for CPU SIMD units and the existing fastest GPU implementations
available for DNA and Protein alignment. ADEPT has shown performance that either
closely matches or is better than existing CPU and GPU methods. We used a variety
of real world datasets, ranging from proteins and DNA sequences with varying refer-
ence and query lengths, to rigorously evaluate the performance of ADEPT. For DNA and
protein use-cases, ADEPT demonstrated a peak speed up of 10x and 7x respectively in
node-to-node analysis against CPU libraries, while out-performing or closely matching
the performance of existing GPU libraries. We also demonstrated the usability of ADEPT
by integrating it into existing bioinformatics software pipelines and demonstrate a 10%
and 30% boost in performance of MetaHipmer and PASTIS softwares.
ADEPT is a generic strategy and can be easily extended for other dynamic

programming-based sequence alignment algorithms such as those used for global and
semi-global alignments. We hope ADEPT’s capability of exploiting a GPU’s architecture
to provide a unified solution to GPU sequence alignment, its ability to scale across multi-
ple GPUs and ease of use will enable it to take a central role in future high-performance
bioinformatics application development and porting.

Availability and requirements
Project Name: ADEPT based implementation of Smith-Waterman
Project home page: https://github.com/mgawan/GPU-BSW
Operating System: Linux
Programming Language: C++, CUDA
Other requirements: CUDA 10 or later

Awan et al. BMC Bioinformatics (2020) 21:406 Page 28 of 29

License:OSS
Any restrictions to use by non-academics: use the included license

Abbreviations
CUDA: Compute Unified Device Architecture; GPU: Graphics Processing Unit; CPU: Central Processing Unit; GCUPS: Giga
Cell Updates Per Seconds; DNA: Deoxyribonucleic acid; SIMD: Single Instruction Multiple Data; ASCII: American Standard
Code for Information Interchange

Acknowledgments
We would like to acknowledge Francesco Peverelli, Alberto Zeni and Richard Barnes for all the sharing of knowledge and
ideas.

Authors’ contributions
MGA designed and developed the software, carried out the relevant study and wrote the manuscript. OS and SH
performed kernel integration in software pipelines and wrote relevant portions of manuscript. JD, AB, LO and KY
proposed the initial idea, supervised the research and reviewed the manuscript. All the authors have read and approved
the manuscript.

Funding
This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of two U.S.
Department of Energy organizations (Office of Science and the National Nuclear Security Administration) responsible for
the planning and preparation of a capable exascale ecosystem, including software, applications, hardware, advanced
system engineering, and early testbed platforms, in support of the nation’s exascale computing imperative.

Availability of data andmaterials
Software developed as part of this manuscript has been made available at the repository above with an open source
license. Openly available datasets were used for evaluation of this software, original sources of datasets have been
referenced in the section Experimental data.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 20 May 2020 Accepted: 21 August 2020

References
1. Georganas E, Buluç A, Chapman J, Oliker L, Rokhsar D, Yelick K. meraligner: A fully parallel sequence aligner. In:

2015 IEEE International Parallel and Distributed Processing Symposium. Hyderabad International Convention Centre,
Hyderabad: IEEE; 2015. p. 561–70.

2. Georganas E, Buluç A, Chapman J, Hofmeyr S, Aluru C, Egan R, Oliker L, Rokhsar D, Yelick K. Hipmer: an
extreme-scale de novo genome assembler. In: SC’15: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. Austin: IEEE; 2015. p. 1–11.

3. Ellis M, Guidi G, Buluç A, Oliker L, Yelick K. dibella: Distributed long read to long read alignment. In: Proceedings of
the 48th International Conference on Parallel Processing. ACM; 2019. p. 1–11.

4. Ba A, Yeh B, Van Dyk D, Davidson A, Andrews B, Weiss E, Moses A. Proteome-wide discovery of evolutionary
conserved sequences in disordered regions. Sci Signal. 2012;5(215):1–1.

5. Smith T, Waterman M, et al. Identification of common molecular subsequences. J Mol Biol. 1981;147(1):195–7.
6. Gotoh O. An improved algorithm for matching biological sequences. J Mol Biol. 1982;162(3):705–8.
7. Altschul S, Madden T, Schäffer A, Zhang J, Zhang Z, Miller W, Lipman D. Gapped blast and psi-blast: a new

generation of protein database search programs. Nucleic Acids Res. 1997;25(17):3389–402.
8. Madden T. The NCBI Handbook [Internet]. 2nd Edition: National Center for Biotechnology Information (US); 2013.

https://www.ncbi.nlm.nih.gov/books/NBK143764/.
9. Rognes T. Faster smith-waterman database searches with inter-sequence simd parallelisation. BMC bioinformatics.

2011;12(1):221.
10. Wozniak A. Using video-oriented instructions to speed up sequence comparison. Bioinformatics. 1997;13(2):145–50.
11. Edans FdO, Miranda G, de Melo A, Martorell X, Ayguadé E. Cudalign 3.0: Parallel biological sequence comparison in

large gpu clusters. In: 2014 14th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing.
Chicago: IEEE; 2014. p. 160–169.

12. Rognes T, Seeberg E. Six-fold speed-up of smith–waterman sequence database searches using parallel processing
on common microprocessors. Bioinformatics. 2000;16(8):699–706.

13. Farrar M. Striped smith–waterman speeds database searches six times over other simd implementations.
Bioinformatics. 2007;23(2):156–61.

14. Liu Y, Wirawan A, Schmidt B. Cudasw++ 3.0: accelerating smith-waterman protein database search by coupling
cpu and gpu simd instructions. BMC bioinformatics. 2013;14(1):117.

15. Manavski S, Valle G. Cuda compatible gpu cards as efficient hardware accelerators for smith-waterman sequence
alignment. BMC bioinformatics. 2008;9(S2):10.

https://www.ncbi.nlm.nih.gov/books/NBK143764/

Awan et al. BMC Bioinformatics (2020) 21:406 Page 29 of 29

16. Ahmed N, Lévy J, Ren S, Mushtaq H, Bertels K, Al-Ars Z. Gasal2: a gpu accelerated sequence alignment library for
high-throughput ngs data. BMC bioinformatics. 2019;20(1):520.

17. Li H. Aligning sequence reads, clone sequences and assembly contigs with bwa-mem. arXiv preprint
arXiv:1303.3997. 2013. q-bio.GN.

18. Langmead B, Salzberg S. Fast gapped-read alignment with bowtie 2. Nat Methods. 2012;9(4):357.
19. Georganas E, Egan R, Hofmeyr S, Goltsman E, Arndt B, Tritt A, Buluç A, Oliker L, Yelick K. Extreme scale de novo

metagenome assembly. In: SC18: International Conference for High Performance Computing, Networking, Storage
and Analysis. Dallas: IEEE; 2018. p. 122–34.

20. de la Bastide M, McCombie W. Assembling genomic dna sequences with phrap. Curr Protoc Bioinforma. 2007;17(1):
11–4.

21. Steinegger M, Söding J. Mmseqs2 enables sensitive protein sequence searching for the analysis of massive data
sets. Nat Biotechnol. 2017;35(11):1026.

22. Buchfink B, Xie C, Huson D. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12(1):59.
23. Wittkop T, Emig D, Lange S, Rahmann S, Albrecht M, Morris J, Böcker S, Stoye J, Baumbach J. Partitioning

biological data with transitivity clustering. Nature methods. 2010;7(6):419.
24. Azad A, Pavlopoulos G, Ouzounis C, Kyrpides N, Buluç A. HipMCL: A high-performance parallel implementation of

the Markov clustering algorithm for large-scale networks. Nucleic Acids Res. 2018;46(6):33–33.
25. Enright A, Van Dongen S, Ouzounis C. An efficient algorithm for large-scale detection of protein families. Nucleic

Acids Res. 2002;30(7):1575–84.
26. Reinert K, Dadi T, Ehrhardt M, Hauswedell H, Mehringer S, Rahn R, Kim J, Pockrandt C, Winkler J, Siragusa E, et al.

The seqan c++ template library for efficient sequence analysis: A resource for programmers. J Biotechnol. 2017;261:
157–68.

27. Zhao M, Lee W-P, Garrison E, Marth G. Ssw library: an simd smith-waterman c/c++ library for use in genomic
applications. PLoS ONE. 2013;8(12):.

28. NVIDIA T. V100 GPU architecture: NVIDIA; 2017. https://images.nvidia.com/content/volta-architecture/pdf/volta-
architecturewhitepaper.pdf.

29. Awan M, Eslami T, Saeed F. Gpu-daemon: Gpu algorithm design, data management & optimization template for
array based big omics data. Comput Biol Med. 2018;101:163–73.

30. NVIDIA. NVIDIA Developer Blog. https://devblogs.nvidia.com/faster-parallel-reductions-kepler/. Accessed 06 Apr
2020.

31. Pearson W. Selecting the right similarity-scoring matrix. Curr Protoc Bioinforma. 2013;43(1):3–5.
32. Oak Ridge National Laboratory. Summit, Specifications and Features. https://www.olcf.ornl.gov/olcf-resources/

compute-systems/summit/. Accessed 22 July 2020.
33. National Energy Research Scientific Computing Center. Perlmutter. https://www.nersc.gov/systems/perlmutter/.

Accessed 22 July 2020.
34. NVIDIA. NVBIO Library. https://developer.nvidia.com/nvbio. Accessed 22 July 2020.
35. Rahn R, Budach S, Costanza P, Ehrhardt M, Hancox J, Reinert K. Generic accelerated sequence alignment in seqan

using vectorization and multi-threading. Bioinformatics. 2018;34(20):3437–45.
36. Shakya M, Quince C, Campbell J, Yang Z, Schadt C, Podar M. Comparative metagenomic and rRNA microbial

diversity characterization using archaeal and bacterial synthetic communities. Environ Microbiol. 2013;15(6):
1882–99. https://doi.org/10.1111/1462-2920.12086.

37. Fox N, Brenner S, Chandonia J. SCOPe: Structural Classification of Proteins–extended, integrating SCOP and ASTRAL
data and classification of new structures. Nucleic Acids Res. 2014;42:304–9. Database issue.

38. Selvitopi O, Ekanayake S, Guidi G, Pavlopoulos G, Azad A, Buluç A. Distributed many-to-many protein sequence
alignment using sparse matrices. In: Proceedings of the 2020 ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis. SC ’20. 3001 in press. https://sc20.supercomputing.org/
presentation/?id=pap572&sess=sess152.

39. Doerfler D, Austin B, Cook B, Deslippe J, Kandalla K, Mendygral P. Evaluating the networking characteristics of the
cray xc-40 intel knights landing-based cori supercomputer at nersc. Concurr Comput Pract Exp. 2018;30(1):4297.

40. National Energy Research Scientific Computing Center. Cori Configurations. https://docs.nersc.gov/systems/cori/.
Accessed 02 May 2020.

41. National Energy Research Scientific Computing Center. Cori GPU Nodes, Hardware Info. https://docs-dev.nersc.gov/
cgpu/hardware/. Accessed 02 May 2020.

42. Hofmeyr S, Egan R, Georganas E, Copeland A, Riley R, Clum A, Eloe-Fadrosh E, Roux S, Goltsman E, Buluç A, et al.
Terabase-scale metagenome coassembly with metahipmer. Sci Rep. 2020;10(1):1–11.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://images.nvidia.com/content/volta-architecture/pdf/volta-architecturewhitepaper. pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecturewhitepaper. pdf
https://devblogs.nvidia.com/faster-parallel-reductions-kepler/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
https://www.nersc.gov/systems/perlmutter/
https://developer.nvidia.com/nvbio
https://doi.org/10.1111/1462-2920.12086
https://sc20.supercomputing.org/presentation/?id=pap572&sess=sess152
https://sc20.supercomputing.org/presentation/?id=pap572&sess=sess152
https://docs.nersc.gov/systems/cori/
https://docs-dev.nersc.gov/cgpu/hardware/
https://docs-dev.nersc.gov/cgpu/hardware/

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Prior work
	Problem statement
	Smith-waterman algorithm
	Graphics processing units
	CUDA platform overview

	Implementation
	Initialization
	Tracking inter-thread dependencies
	Dynamic programming table storage and memory access issues
	Efficient inter thread communications
	Reverse scoring
	Reverse scoring phase

	Support for protein alignment
	Multi-GPU asynchronous pipeline

	Results
	SSW-library
	Seqan library
	GASAL2
	NVBIO

	Experimental data
	DNA Data
	Protein data

	Comparison with existing methods
	Experimental conditions
	Performance on DNA alignments
	Performance on protein alignments

	Application use cases
	Use-case: metagenome assembly
	ADEPT-SW integration
	Results

	Use-case: protein similarity graph construction
	Adept-sw integration
	Results

	Conclusions
	Availability and requirements
	Abbreviations
	Acknowledgments
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	References
	Publisher's Note

