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ABSTRACT E. coli is one of the most widely used organisms for understanding the principles of cellular and molecular ge-
netics. However, we are yet to understand the origin of several experimental observations related to the regulation of gene
expression in E. coli. One of the prominent examples in this context is the proportional synthesis in multiprotein complexes
where all of their obligate subunits are produced in proportion to their stoichiometry. In this work, by combining the next-gen-
eration sequencing data with the stochastic simulations of protein synthesis, we explain the origin of proportional protein syn-
thesis in multicomponent complexes. We find that the estimated initiation rates for the translation of all subunits in those
complexes are proportional to their stoichiometry. This constraint on protein synthesis kinetics enforces proportional protein
synthesis without requiring any feedback mechanism. We also find that the translation initiation rates in E. coli are influenced
by the coding sequence length and the enrichment of A and C nucleotides near the start codon. Thus, this study rationalizes
the role of conserved and nonrandom features of genes in regulating the translation kinetics and unravels a key principle of
the regulation of protein synthesis.
WHY IT MATTERS The components of multiprotein complexes in E. coli are produced in proportion to their
stoichiometry in the complex. This proportional protein synthesis maximizes the utilization of ribosomes and thus
ensures an efficient and balanced distribution of cellular resources. However, the origin of such a proportional protein
synthesis remains unknown. In this study, using the next-generation sequencing data we compute the gene-specific
translation initiation rates and codon translation rates. Using those measured rate parameters, we discover that the
proportional protein synthesis in multiprotein complexes, which are coded by a single operon, is enforced by balancing
the translation initiation rates. This means the translation initiation rate for each component within the multiprotein
complexes is directly proportional to its stoichiometric coefficient. Thus, this study enhances our understanding of how
protein synthesis is regulated at different levels.
INTRODUCTION

Proteins perform a wide range of biological functions,
including genome regulation, transport of chemical
species, inter- and intracellular communication, im-
mune response, energy transduction, etc. (1–5). Their
synthesis is tightly regulated because precise protein
levels are required in a cell to perform many essential
functions (6–10). One of the prime examples of such
fine-tuned regulation is the proportional synthesis of
all subunits in multiprotein complexes (6,11–15).
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The synthesis rate of obligate subunits in those com-
plexes is proportional to their stoichiometry. Any
disruption in proportional protein synthesis may result
in the loss of an essential function (16–18). Also, a
weak or no regulation of protein synthesis would
require more assistance from the degradation machin-
ery to maintain the required protein levels and stoichi-
ometry, leading to enormous wastage of cellular
resources (19). Therefore, nature favors proportional
synthesis rather than producing an excess amount
of unusable proteins (6,11,14,20). Proportional protein
synthesis is observed across a range of organisms,
including E. coli, S. cerevisiae, B. subtilis, etc.
(6,12,20). However, the exact mechanism for such pre-
cise control of protein synthesis is not fully under-
stood (6).
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The cellular protein abundance is regulated by a bal-
ance between the protein synthesis and proteolysis.
The synthesis of protein molecules is regulated at
two stages: transcription and translation (6,21–26).
An increase in mRNA copy number, which is controlled
at transcription level, leads to a corresponding in-
crease in protein production (22,23,27,28). Different
feedback mechanisms modulate mRNA copy number
according to physiological and cellular conditions to
attain the desired protein levels (21,29–31). At the
translation level, protein synthesis is regulated at the
initiation and elongation steps, providing additional
control points for fine-tuning the cellular protein abun-
dance (6,26,32). Thus, the knowledge of rate parame-
ters with which these two steps occur may offer a
detailed insight into the regulation of protein synthe-
sis. Specifically in bacterial multiprotein complexes
where an operon encodes all of its obligate subunits.
Therefore, there is no variation in the copy number of
mRNAs encoding those components, if none of them
are being encoded by other mRNA isomers. Thus,
the proportional synthesis can be managed at the
translational level (6,11,20).

In this paper, to understand the regulation of pro-
tein synthesis, we extract the translation initiation
and codon translation rates in E. coli using ribosome
profiling and RNA-seq data (6,33). We find that the
estimated initiation rates in E. coli are influenced by
coding sequence (CDS) length, mRNA structure near
the start codon, and the number of A and C nucleo-
tides in the 50 untranslated regions (UTRs). Then, by
simulating protein synthesis using the estimated
translation rate parameters, we show that translation
initiation is the rate-limiting step of protein synthesis
and is one of the main determinants of cellular pro-
tein levels in E. coli (34,35). We also explain the origin
of proportional protein synthesis in multiprotein com-
plexes encoded by a single operon. We observe that
the initiation rate of translation for all obligate sub-
units in these complexes is directly proportional to
their stoichiometry. This constraint on protein syn-
thesis kinetics ensures that their synthesis occurs
proportionally. These findings demonstrate that pro-
portional protein synthesis within these complexes
is an inherent genetic feature, requiring no feedback
mechanisms to maintain the necessary protein
levels.
METHODS

Calculation of initiation rate

We used a previously developed chemical-kinetic method to extract
the gene-specific translation initiation rates in E. coli (26). This
method is based on the following mathematical relation between
the initiation rate and ribosome occupancy.
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aðiÞ ¼ rðiÞðLðiÞ � 1Þ
TðiÞ

�
1 � P11

k ¼ 2
rðk; iÞ

� (1)

In Eq. 1, a(i) is the initiation rate of the ith transcript. L(i) is the num-
ber of codons in the coding sequence, and T(i) is the mean transla-
tion time taken by a ribosome to complete the synthesis of a single
protein molecule. r(k,i) is the average ribosome occupancy at kth

codon of the ith transcript and r(i) is the average ribosome density
on the transcript. r(k,i) is defined as the fraction of times a ribo-
some's A-site occupies a specific codon from a large number of in-
dependent configurations, and lies between 0 and 1.

A ribosome spans 10 consecutive codon positions and initiates
protein synthesis by positioning its A-site at the second codon posi-
tion (36). Consequently, any ribosome present at codon positions 2
to 11 (i.e., the ribosome A-site) will act as a physical barrier, hinder-
ing other ribosomes from initiating protein synthesis. Due to this
steric interaction, the sum of average ribosome occupancy r(k,i)
from codon positions 2 to 11 of the transcript will always be less

than 1. Therefore, the denominator ð1 � P11
k¼2rðk; iÞÞ in Eq. 1 is al-

ways positive. The details of how we calculated rðiÞ; rðk; iÞ, and
TðiÞ are explained in the subsequent subsections.
Calculation of codon translation time

We use the same chemical kinetic method to calculate the average
translation time of a codon (26). This method computes the average
codon translation time by using the following expression that re-
quires ribosome profiling reads as input parameters.

tði; jÞ ¼ Nði; jÞ
PLðiÞ
j ¼ 2

Nði; jÞ
TðiÞ (2)

In Eq. 2, N(i,j) is the number of Ribo-seq reads that are aligned to
the jth codon position of the ith transcript.
Estimation of N(i,j)

We calculate N(i,j) by using the ribosome profiling data reported in (33)
and (6) with NCBI accession numbers GSE72899 and GSE53767,
respectively. We start by trimming off the adapter sequence
(CTGTAGGCACCATCAAT) from the raw ribosome profiling reads by us-
ing the software CUTADAPT 3.4 (37). Next, we filter out the low-quality
readsusingPRINSEQ-lite0.20.4, since thesequenceddatamaycontain
fragments coming from rRNAmolecules (26). Therefore, we also align
those RNA fragments to the rRNA sequences (38) using the software
BOWTIE 2.3.5.1 (39). The remaining unaligned RNA fragments are the
ribosome footprints. We then determine the coordinates of those foot-
prints using TOPHATv2.1.1 on E. coli (strainMG1665) (40). A ribosome
is an extended object that spans around 10 successive codons but
translates the codon present at its A-site (26,32). Therefore, we next
identify the position of the ribosome A-site on all ribosome footprints.
For this, we used a fixed offset of 11 nucleotides from the 30 end of
the fragment (41,42). The total number of A-sites assigned to the jth

codon of gene i isN(i,j) (Eq. 2). Notewell, to reduce the statistical uncer-
tainty in our computation, we only selected the genes that have high
RPKM (reads per kilobase per million mapped reads) values (Ribo-
seq RPKM > 10 for (33) data set and RNA-seq RPKM > 45 and Ribo-
seq RPKM > 25 for (6) data set). This minimizes the statistical uncer-
tainty associated with estimating the codon translation rate.



Estimation of r(i) and r(i,j)

Accurate estimation of translation initiation rate using the chemical
kinetic method requires the average ribosome density of E. coli tran-
scripts (Eq. 1). We get the average ribosome density of a transcript
using the polysome profiling data reported in (43). However, this
data set contains the average ribosome density of only 732 genes.
Therefore, to get the average ribosome density of remaining genes,
we use the following linear relationship between the average ribo-
some density and translation efficiency (26).

rðiÞ ¼ xTEðiÞ (3)

In Eq. 3, TE(i) is the translation efficiency of the ith transcript, which
is the ratio of RPKM values of Ribo-seq with RNA-seq. x in Eq. 3 is a
proportionality constant that was obtained by measuring the slope
of the best fit line between r(i) and TE(i), which is 0.042 and
0.0095 (Figs. S1 and S2) for the data sets (Ribo-seq and RNA-seq)
reported in (6,33) and (Ribo-seq and RNA-seq) reported in (6). The
average occupancy of a codon is determined by using the formula

rði; jÞ ¼ Nði;jÞrðiÞðLðiÞ�1Þ
NðiÞ , where N(i) is the number of Ribo-seq reads

aligned to the ith transcript (26). Note, to reduce the statistical uncer-
tainty in our computation, we only selected the genes that have high
RPKM values (Ribo-seq RPKM > 10 for (33) data set and RNA-seq
RPKM > 45 and Ribo-seq RPKM > 25 for (6) data set).
Calculation of T(i)

Calculation of average codon translation rate using Eq. 2 also re-
quires the average time a ribosome takes to make the full-length pro-
tein. We calculate this using a scaling relation reported in (26,44).
According to this relation, T(i) can be approximated as the product
of average codon translation time and the number of codons in
the mRNA molecule. We used the average codon translation time
of 62.5 ms to calculate the T(i) for all E. coli transcripts (45–47).
Protein synthesis simulations

We performed protein synthesis simulations using the TASEPmodel
(48–53). In this model, an mRNA is conceptualized as a linear open
lattice, with each site representing a codon. Thus, the number of
sites in this one-dimensional lattice is equal to the total number of
codons in the mRNA sequence. A ribosome in this model is like an
extended rod covering 10 successive codons with the location of
A-site at the sixth lattice site from the 50 end. In this model, the initi-
ation of protein synthesis occurs as ribosome subunits assemble at
the start codon of the transcript i, with a rate denoted by a(i). Then,
the ribosome starts moving from 50 to 30 end by taking one step at a
time. In each of such steps, it jumps to the following codon and ex-
tends the nascent protein by adding one amino acid subunit. The
movement of the ribosome from codon position j to jþ 1 takes place
with rate u(j,i), if the (j þ 10) codon is not occupied by other down-
stream ribosomes. We simulated the TASEP model of protein syn-
thesis by using Gillespie's algorithm described in (54).
RESULTS

Transcriptome-wide estimation of gene-specific
initiation rates

In prokaryotes, translation initiates when 30S ribo-
somal subunit binds at the start codon of an mRNA,
which is later joined by 50S subunit, forming the trans-
lation initiation complex (55–57). We calculated the
rate with which this step occurs in E. coli transcripts
by using a chemical kinetic method (26). This
approach requires RNA-seq, Ribo-seq, and polysome
profiling data to calculate the gene-specific translation
initiation rates. In this study, first we use the Ribo-seq
and RNA-seq data reported in (33) and (6), respec-
tively, whereas polysome profiling data were from
(43). Note, the Ribo-seq experiment in (33) and the
RNA-seq experiment in (6) were performed under
similar conditions. The details of how we estimated
the translation initiation rates using those data sets
are provided in the methods. The mean and median
of the estimated initiation rates of 1708 E. coli tran-
scripts are 0.18 and 0.14 s�1, respectively (Fig. 1 A)
and the numerical values of gene-specific translation
initiation rates are provided in the supporting material.

The accurate estimation of translation initiation
rates allows to identify the molecular factors that
can influence and regulate them (54). To this end, first
we test how the CDS length affects the translation
initiation rate in E. coli. We test this because the start
and stop codons remain in proximity of each other in
shorter transcripts (58,59). Therefore, ribosomes that
terminate protein synthesis at the stop codon can
readily diffuse to the start codon of that specific tran-
script. As expected, we find a statistically significant
correlation between E. coli translation initiation rates
and CDS length (Fig. 1 B, R ¼ �0.20). An mRNA struc-
ture near the start codon could also influence transla-
tion initiation rate. This is because a stable mRNA
structure near the start codon can make it inacces-
sible for translation initiation (25,60–62). Indeed,
many gene optimization methods minimize the stabil-
ity of mRNA structure near the start codon for
enhancing the translation efficiency in heterologous
gene expression (63–66). However, the stability of
which specific portion of the 50 UTR and coding region
has the strongest influence on initiation rates remains
unclear (6,67). To address this, we consider a portion
of 20 nucleotides for each of the transcripts, vary its
starting position from �50 to þ10 nucleotide with a
step size of 10 nucleotides, and measure the folding
energy of each portion using the Vienna package
(68). Then, for each starting point, we measure the
Pearson and Spearman's correlation between the
mRNA stability and initiation rates. We repeat this pro-
cedure by varying the size of the window ranging from
20 to 130 nucleotides with a step size of 5 nucleo-
tides. The correlation for each of the cases is provided
in Table S1 (see supporting material). We find that the
strongest correlation was obtained when the window
size was 125 nucleotides and the starting point was
40 nucleotides upstream of the AUG codon (Fig. 1 C).
Biophysical Reports 3, 100131, December 13, 2023 3



FIG. 1 Estimation of translation initiation
rates in E. coli and molecular factors that
may influence them. Probability distribution
of the estimated E. coli initiation rates is
plotted in (A). E. coli initiation rates are plotted
against the CDS length, mRNA stability near
the start codon, and Shine-Dalgarno (SD) sim-
ilarity score in (B), (C), and (D), respectively. In
(D), blue color data points are the average initi-
ation rates at different SD similarity scores.
The ribosome binding site (RBS) is a sequence of
around 10 nucleotides that helps to recruit ribosomes
for translation initiation (69,70). The RBS is comple-
mentary to an rRNA sequence that plays a crucial
role in the binding of the ribosome to an mRNA tran-
script. In E. coli, it is AGGAGG and is known as Shine-
Dalgarno (SD) sequence (71,72). However, how
strongly the SD sequence affects translation efficiency
remains controversial (6,35,67,73). For example,
despite the conserved nature of the SD sequence, Saito
et al. (35) show it to have no effect on translation effi-
ciency, whereas many codon optimization methods
rely on optimizing RBS to enhance translation effi-
ciency (69,70). To resolve this conundrum, first we
scan 50 UTR of a transcript and measure the similarity
with SD sequence between �13 and �8 nucleotides.
Similar to their study (35), we did not find any correla-
tion between translation initiation rates calculated us-
ing the Ribo-seq data reported in (33) and SD similarity
(Fig. 1 D). Taken together, these results show that the
SD sequence present between �13 and �8 nucleo-
tides may not influence translation initiation rate.

Using the variants of four different E. coli tran-
scripts, Saito et al. have shown that an enrichment
of A and C nucleotides near the start codon increases
and decreases the ribosome occupancy, respectively
(35). We test whether this modification in ribosome oc-
cupancy is a consequence of the changes in the trans-
lation initiation rates. To address this, we scanned the
portions of mRNA molecules between �25 and þ10
nucleotides to find whether the enrichment of any
4 Biophysical Reports 3, 100131, December 13, 2023
nucleotide in this region influences the translation
initiation rate. The details of the boundaries of the
mRNA portions we choose for this analysis and the
correlation of the number of A, U, C, and G nucleotides
in those regions with the translation initiation rate are
given in the supporting material. For the A nucleotide,
the strongest correlation was obtained when it was
counted between the start codon and five nucleotides
upstream of it. For the C nucleotide, it was the region
between the start codon and 13 nucleotides upstream
of it that gave the strongest correlation (Fig. 2;
Table S2). One possible explanation for this is that
the enrichment of A nucleotides in the 50 UTR may
tend to decrease the stability of any structure in this
region, thus increasing the initiation rate. Similarly,
the enrichment of C nucleotides in this region may
have the opposite effect on initiation rate (35). In addi-
tion to that, the interactions between the small ribo-
somal subunit and A and C nucleotides in the
vicinity of the start codon may also influence the for-
mation of a ribosome-mRNA complex at the start
codon, which requires further investigation. However,
the number of U and G nucleotides did not show any
significant correlation with translation initiation rate
(Table S2). These results show that the enrichment
of A and C nucleotides increase and decrease the initi-
ation rates, respectively, and thus modulates ribo-
some occupancy.

We also calculated initiation rates using the Ribo-
seq and RNA-seq data as reported in (6) and found
similar results (see supporting material, Figs S3 and



FIG. 2 Enrichment of A and C nucleotides
near the start codon influences the initiation
rate. Translation initiation rates are plotted
against the number of A and C nucleotides be-
tween the start codon and 5 and 13 nucleo-
tides upstream of it in (A) and (B),
respectively. Blue colored points in both fig-
ures are the average initiation rates at
different number of A and C nucleotides in
(A) and (B), respectively.
S4). In addition, we observed a robust correlation be-
tween the initiation rate calculated from Ribo-seq in
(33) and (6), respectively, whereas, in both the cases
RNA-seq data were from (6) (Fig. S5, R ¼ 0:90).

In summary, we have calculated gene-specific trans-
lation initiation rates for E. coli transcripts. We also
show that the CDS length, mRNA structure near the
start codon, and the repeats of A and C nucleotides
near the start codon influence the initiation rates in
E. coli transcripts.
FIG. 3 The average codon translation rate at which a specific
codon is translated by the ribosome is influenced by the concentra-
tion of its corresponding cognate tRNA molecule.
Estimation of individual codon translation time

We calculate the translation time of all sense codons
in E. coli by using a chemical kinetic method (26).
The method requires ribosome profiling data to calcu-
late the average translation time of a codon. In this
study, first we use the ribosome profiling data reported
in (33) and calculate the translation time of all E. coli
codons. The calculated mean and median translation
time of E. coli codons are provided in the supporting
material. We also find a significant variation in the
translation time of a codon type at different locations
in the transcriptome (Fig. S6).

We then explore how different mRNA features influ-
ence average codon translation time. To this end, we
plot the codon translation rate as a function of
cognate tRNA abundance and find a statistically sig-
nificant correlation between them (Fig. 3, R ¼ 0.29).
The reason for this dependence is that the amino
acids can be easily delivered to ribosomes at a rela-
tively higher cognate tRNA concentration (74–77).

We also calculate the codon translation rate using
the ribosome profiling data reported in (6) and find
similar results (supporting material, Fig. S7). The esti-
mated codon translation rates are provided in the sup-
porting material.

We also test the accuracy of the estimated average
codon translation times. To this end, we carry out an
in silico ribosome profiling experiment. In this experi-
ment, we simulated protein synthesis on each E. coli
transcript using the computed translation rate parame-
ters (see methods). These simulations provided multi-
ple uncorrelated snapshots of the gene translation
system, each containing information about the ribo-
someA-site positions across the transcript.We treated
each ribosome in these snapshots as separate Ribo-
seq reads.We continued capturing such snapshots un-
til the number of in silico Ribo-seq reads matched the
in vivo reads reported in (33). This process ensured
that the in silico ribosome profiles have a similar level
of uncertainty as the in vivo profiles. We repeated this
procedure for each transcript, quantifying the Pearson
correlation between the normalized in vivo and in silico
ribosome density. The distribution of the transcrip-
tome-wide Pearson correlation is shown in Fig. S8.
We observed that the Pearson correlation between
different transcripts ranged from 0.35 to 0.96, with a
median value of 0.71. The observed correlations in
each of the transcripts were comparable with those re-
ported in previous studies (26,49). Thus, these results
reinforce the accuracy and validity of the computed
codon translation rates.
Translation initiation is the rate-limiting step

After the estimation of translation initiation and codon
translation rates we ask what determines the rate of
Biophysical Reports 3, 100131, December 13, 2023 5



protein synthesis from an E. coli transcript. To under-
stand this, first we test the accuracy of the estimated
translation initiation and codon translation rates.
Therefore, we perform protein synthesis simulations
on all 1708 E. coli transcripts and measure the rate
of protein synthesis, f(i), for each of the transcripts.
In these simulations, we use translation initiation
and codon translation rates computed from Ribo-seq
and RNA-seq data reported in (33) and (6), respec-
tively. See methods for details of how we simulated
protein synthesis using Gillespie's algorithm. Then,
we calculate the overall protein production rate, F(i),
for each E. coli protein by multiplying f(i) with mRNA
copy number reported in (78). We find that the protein
production rate computed from our model strongly
correlates with the experimentally measured rates in
(6) (Fig. 4 A, R ¼ 0.83). This shows the high accuracy
of the translation rate parameters we measured in this
study. Therefore, now we can use our simulation data
for understanding what determines cellular protein
levels.

In yeast, the process of translation initiation serves
as the primary rate-limiting step in protein synthesis
(25,26,32,79,80). Therefore, we also test how strongly
translation initiation affects overall protein synthesis
in E. coli. We plot the protein synthesis rate as a func-
tion of translation initiation rate and find a strong cor-
relation between them (Fig. 4 B). We also observe that
the initiation rate puts an upper bound to the rate of
protein synthesis, and the difference between the
rate of protein synthesis and initiation rate is less
than 13% in more than 70% of the total transcripts.
Taken together, these observations clearly show that
translation initiation is the main determinant of the
rate of protein synthesis from an E. coli transcript.
Then, next we plot the product of mRNA copy number
and initiation rate with E. coli protein abundance re-
ported in (81) and find a strong correlation between
FIG. 4 Translation initiation and mRNA copy number determines the ce
from our simulations (F) are plotted against the ones reported in experim
plotted as a function of translation initiation rate (discrete data points).
are plotted against the product of the mRNA copy number and initiation

6 Biophysical Reports 3, 100131, December 13, 2023
them (Fig. 4 C, R ¼ 0.86). These results suggest that
translation initiation rate and mRNA copy number
are the two main determinants of cellular protein
abundance. This means that the regulation of protein
synthesis at the transcription and translational levels
are managed by mRNA copy number and translation
initiation rates, respectively. We find similar results
when we carry out protein synthesis simulations by
using the translation initiation and codon translation
rates computed from the Ribo-seq and RNA-seq data
reported in (6) (supporting material, Fig. S9).
Predicting translation initiation rate using mRNA
sequence features

The estimated translation initiation rates in this study
have shown statistically significant correlations with
folding energy, CDS length, and the number of A and
C nucleotides in the 50 UTR (Figs. 1, 2, S3, and S4).
To further gain deeper insights into the individual
and combined impacts of these variables on transla-
tion initiation rates, we employed a random forest-
based multivariable regression model. The model
was trained by using the 333 transcripts for which
the numerical values of all parameters that influence
initiation rates were available. Utilizing 80% of the
data set for training and the remaining portion for
testing, we observed a consistent level of correlations
between the measured and predicted initiation rates in
both sets (Fig. 5, Pearson R ¼ 0.75). In addition, we
determined the relative contributions of SD score,
number of A and C nucleotides, folding energy, and
CDS length, accounting for 9.6, 9.1, 9.5, 37.7, and
34.1%, respectively, in the overall variation of initiation
rates. This shows that it is the mRNA folding energy
and the transcript length that contribute most to the
variations in in vivo initiation rates in E. coli. We also
found similar results when we trained the model using
llular protein abundance. (A) Overall protein synthesis rate measured
ents (6). (B) Protein synthesis rate from each E. coli transcript (f) is
The red solid line is the identity line. (C) Cellular protein abundances
rate.



FIG. 5 Machine learning model predicts
translation initiation rate with a reasonable ac-
curacy. (A) Predicted initiation rates are
plotted against the ones computed using the
Ribo-seq and RNA-seq data reported in
(6,33). (B) The relative contribution of molecu-
lar factors influencing initiation rate is shown.
the initiation rates computed from the Ribo-seq and
RNA-seq data reported in (6) (Fig. S10).

Unlike previous approaches for predicting initiation
rates, which rely on variations in the UTR and coding
sequence region of a specific transcript (69,82,83),
typically a GFP protein, our model was trained using
the in vivo initiation rate data. This key difference al-
lows our model to account for a broader range of fac-
tors that can potentially impact translation initiation
rates.
FIG. 6 Translation initiation rate normalized by the stoichiometric
coefficient of both components of a two-protein complex are plotted
against each other. Note, here both components of the complex are
coded by a polycistronic transcript. The solid line is the identity line.
Translation initiation rates were estimated using the Ribo-seq and
RNA-seq data reported in (33) and (6), respectively.
Regulation of stoichiometric levels in a complex in
E. coli

Cellular systems depend on several multiprotein com-
plexes for a range of functional requirements (84–86).
The components of these multiprotein complexes are
synthesized in proportion to their stoichiometry in the
complex, known as proportional protein synthesis
(6,11–14). Proportional protein synthesis minimizes
the role of protein degradation in maintaining the
desired protein levels (6,13). Thus, minimizing the
overall wastage of cellular resources. There are two
different types of mechanism that allow such a strict
control of protein synthesis. The first is the hardcoded
regulation where proportional protein synthesis is
built-in in the gene expression system. The second
one is the feedback mechanism where a controller ac-
cesses the synthesis rates of the components of mul-
tiprotein complexes and then gives the instructions to
either increase or decrease their production. However,
which of these two mechanism is responsible for pro-
portional protein synthesis remains unclear.

Protein synthesis at the translational level is mainly
regulated by the step of translation initiation (Figs. 4
and S9). Therefore, if the proportional protein synthe-
sis is hardcoded in the gene expression system, it
must have been tuned by the translation initiation
rate. First, we test this hypothesis for complexes
that contain only two different subunits and are coded
by the same polycistronic gene. To this end, we
compare the initiation rates normalized by the stoi-
chiometric coefficient of the protein and find that
this ratio is almost equal for both components of the
protein complexes (Figs. 6 and S11). This shows
that proportional protein synthesis in those com-
plexes is enforced by balancing the translation initia-
tion rates. Next, we test the role of initiation rate in
enforcing the proportional protein synthesis in com-
plexes that have more than two components. For
this, we plot the initiation rate of all components of a
complex against their stoichiometry coefficient (Figs.
7 and S12). We find that, in the majority of cases, all
components of a complex closely align with the line
of best fit, indicating that the initiation rate of transla-
tion for each component is directly proportional to
their stoichiometry. We also find significant deviations
from the best fit line in NADH dehydrogenase I and oli-
gopeptide transporter (Figs. 7 and S12). This is
because stoichiometric protein synthesis is not main-
tained in these two complexes (Fig. S17). The
Biophysical Reports 3, 100131, December 13, 2023 7



FIG. 7 Translation initiation rate for each of the components of eight different complexes are plotted against their stoichiometric coefficient
(A–H). All components of these complexes are encoded by a single polycistronic transcript. The red solid line is the best-fit line passing
through the origin. Translation initiation rates were estimated using the Ribo-seq and RNA-seq data reported in (33) and (6), respectively.

FIG. 8 The overall protein synthesis rate normalized by protein stoi-
chiometry of the both subunits of two-component protein com-
plexes are plotted against each other. Both subunits of these
complexes are not coded by a single operon. The red solid line is
the identity line. Translation initiation rates were estimated using
the Ribo-seq and RNA-seq data reported in (33) and (6), respectively.
deviation observed in these two complexes could be
attributed to the dominant control of protein compo-
nents at the degradation level and the dynamic nature
of those complexes (6,13,34,87). It is worth noting
that, while the majority (92% of the total stable multi-
protein complexes) adhere to stoichiometric protein
synthesis, these two complexes represent the remain-
ing exception (6).

Next, we consider the two-protein complexes whose
components are not coded by a polycistronic tran-
script. For this, first we compare the normalized trans-
lation initiation rates for both components but find a
significant deviation of the data points from the iden-
tity line (Figs. S13 and S14). This deviation can be
caused by the differences in mRNA abundance as it
also has a significant influence on cellular protein
levels (Figs. 4 C and S9 C). Therefore, we further
compare the normalized initiation rates by multiplying
them with mRNA abundance reported in (88). We find
that the normalized overall production rate of both
components of the complexes are very close to the
identity line (Figs. 8 and S15). We also analyze protein
complexes that consist of more than two subunits of
protein molecules, but are not coded on a single
operon. To do this, we plot the product of the initiation
rate and mRNA abundance against the stoichiometric
coefficient of each transcript that codes for a protein
molecule in the complex. We find that the overall pro-
duction rate of these components is close to the best-
fit line (Fig. S16). This suggests that probably a feed-
8 Biophysical Reports 3, 100131, December 13, 2023
back mechanism is required to tune the desired
mRNA abundance in those complexes that are coded
by multiple transcripts and requires further investiga-
tion. We performed this analysis on a total of 33 out
of 64 stable well-characterized complexes (6). The rea-
sons for choosing these 33 complexes are given in the
supporting material. Taken together, these results
show that proportional protein synthesis is hardcoded
in multiprotein complexes where all proteins are trans-
lated by a single polycistronic mRNA. However, the



modulation of mRNA abundance is required to enforce
the proportional synthesis in complexes whose com-
ponents are translated from multiple transcripts.
DISCUSSION

Evolutionary selection pressure has introduced
several nonrandom features to the genetic material
that regulates protein synthesis kinetics and controls
cellular protein levels (26,74,77,79,80,89,90). In this pa-
per, we demonstrate how these nonrandom features
affect the rate of protein synthesis by extracting the
translation rate parameters using next-generation
sequencing data. We find that the presence of an A
nucleotide in the 50 UTR upregulates the initiation
rate, whereas it is downregulated by a stable structure
near the start codon, CDS length, and the presence of
C nucleotides in the 50 UTR (Figs. 1, 2, S3, and S4). We
also show that translation initiation is the step that de-
termines the rate of protein synthesis from a single
transcript, whereas cellular protein abundance is
determined by the product of the translation initiation
rate and mRNA copy number.

Li et al. have shown that the members of multipro-
tein complexes in E. coli are produced in proportion
to their stoichiometry in the complex (6). However,
the origin of such a proportional protein synthesis re-
mains unknown (6,12,13,20,29). In this paper, by
analyzing the estimated initiation rate, we find that
the proportional protein synthesis in multiprotein com-
plexes are enforced by balancing the translation initia-
tion rate (Figs. 6, 7, S11, and S12). This means that the
initiation rate of the translation of each of the compo-
nent is proportional to their stoichiometric coefficient
in the multiprotein complexes. This result suggests
that stoichiometric protein synthesis is hardcoded
and does not require any feedback to maintain the
desired protein levels in a cell. However, multiprotein
complexes whose components are not a part of the
same operon may require a feedback mechanism to
maintain the stoichiometric protein synthesis. Further
investigations are required to understand how tran-
scription and translational regulation of gene expres-
sion complement each other to ensure proportional
protein synthesis in those complexes.

The recent findings of Lalanne et al. reveal that the
proportional synthesis is not only restricted to the
components of multiprotein complexes but also ex-
tends to the expression of various components within
different metabolic pathways across different species
(91). For example, in both B. subtilis and E. coli, the ra-
tio of ribosomal proteins and initiation, elongation, and
termination factors remains constant. This pathway-
specific stoichiometry demonstrates remarkable
robustness against any changes in the growth condi-
tions, indicating that proportional protein synthesis
is tightly regulated at multiple levels, including tran-
scription, translation, and mRNA decay. By maintain-
ing stoichiometric protein synthesis at different
levels, cells adopt a multifaceted strategy that maxi-
mizes the utilization of ribosomes and thus ensures
an efficient and balanced distribution of cellular re-
sources (92). While the recent findings provide valu-
able insights into this complex process, there is still
much to uncover about the different layers of propor-
tional protein synthesis and the precise mechanisms
that govern their coordination (20).

The mechanism of translation initiation in eukary-
otes is very different than prokaryotes. In eukaryotes,
a small ribosome subunit is recruited at the 50 cap and
then it starts scanning the UTR and coding region to
find the canonical start codon (93–96). However, in
prokaryotes, a small ribosome subunit directly binds
to a region near the start codon (97–100). This differ-
ence in the mechanism of ribosome recruitment is
also reflected in the portion of the mRNA transcript
whose stability affects the initiation rate. In eukary-
otes, it is the folding energy of the first 70 nucleotides
from the 50 end of the UTR that influences the initia-
tion rate (26), whereas in E. coli it is the region between
�40 and 85 nucleotides that affects the initiation rate,
consistent with the mechanism of translation initia-
tion (Figs. 1 C and S3 C). The average codon transla-
tion rate in E. coli is three times higher than in
S. cerevisiae. Despite that, the mean and median of
the estimated initiation rates are very similar those
estimated in S. cerevisiae (26). This shows that protein
synthesis in E. coli is more stringently limited by the
translation initiation rate. This result is also consistent
with a stronger correlation of protein copy number
with a�mRNA abundance in E. coli compared with
S. cerevisiae (26).

We show that proportional protein synthesis in mul-
tiprotein complexes is enforced by carefully balancing
the translation initiation rates (Figs. 6, 7, S11, and
S12). This balance results in a cellular abundance of
the components of multiprotein complexes that pre-
cisely aligns with their stoichiometry within the com-
plex. However, internal or external factors can
disturb stoichiometric protein levels. In such situa-
tions, additional feedback mechanisms may be
required to restore stoichiometric protein levels. For
example, a faster degradation of the proteins lacking
their binding partner could be one of the mechanisms
to ensure the stoichiometric protein levels after such a
disturbance (101). Nevertheless, further studies are
needed to understand how cells cope with such distur-
bances in cellular protein levels. In summary, this
study has given new insights into how various
conserved and nonrandom features of the genetic
Biophysical Reports 3, 100131, December 13, 2023 9



material regulates the cellular protein level. This work
will also guide future gene optimization methods by
providing a better sense of how initiation rates can
be optimized.
SUPPORTING MATERIAL

Supplemental information can be found online at https://doi.org/10.
1016/j.bpr.2023.100131.
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