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Abstract

Human brain atlases are essential for research and surgical treatment of

Parkinson's disease (PD). For example, deep brain stimulation for PD often

requires human brain atlases for brain structure identification. However, few

atlases can provide disease-specific subcortical structures for PD, and most of

them are based on T1w and T2w images. In this work, we construct a HybraPD

atlas using fused quantitative susceptibility mapping (QSM) and T1w images from

87 patients with PD. The constructed HybraPD atlas provides a series of tem-

plates, that is, T1w, GRE magnitude, QSM, R2*, and brain tissue probabilistic

maps. Then, we manually delineate a parcellation map with 12 bilateral subcortical

nuclei, which are highly related to PD pathology, such as sub-regions in globus

pallidus and substantia nigra. Furthermore, we build a whole-brain parcellation

map by combining existing cortical parcellation and white-matter segmentation

with the proposed subcortical nuclei map. Considering the multimodality of the

HybraPD atlas, the segmentation accuracy of each nucleus is evaluated using T1w

and QSM templates, respectively. The results show that the HybraPD atlas pro-

vides more accurate segmentation than existing atlases. Moreover, we analyze

the metabolic difference in subcortical nuclei between PD patients and healthy

control subjects by applying the HybraPD atlas to calculate uptake values of con-

trast agents on positron emission tomography (PET) images. The atlas-based anal-

ysis generates accurate disease-related brain nuclei segmentation on PET images.

The newly developed HybraPD atlas could serve as an efficient template to study

brain pathological alterations in subcortical regions for PD research.
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1 | INTRODUCTION

Parkinson's disease (PD) is one of the most common age-related

degenerative movement disorders that is characterized by the loss of

dopaminergic cells in the substantia nigra (Hindle, 2010; McGeer &

McGeer, 2004; Ofori et al., 2015). The mechanisms leading to neuro-

nal population degeneration remain unclear, one potential factor is

the oxidative stress due to excessive iron accumulation in the aging

brain (Acosta-Cabronero et al., 2017; Barbosa et al., 2015; Lan-

gkammer et al., 2016). Iron overload causes oxidative stress-mediated

cell death by altering the valence state between ferrous (Fe2+) and

ferric (Fe3+) (Barnham, Masters, & Bush, 2004). Previous studies have

demonstrated the theoretical impact of iron on the aggregation of

alpha-synuclein (Bardinet et al., 2009; He et al., 2011; Li, Jiang, Song, &

Xie, 2010) and the induction of Lewy body deposition in PD

(Castellani, Siedlak, Perry, & Smith, 2000). These are thought to occur

early in the brainstem, gradually spreading across vulnerable sites in

the allocortex and temporal paralimbic cortex before reaching the pre-

frontal and sensory-association isocortex (Braak, Ghebremedhin, Rüb,

Bratzke, & Del Tredici, 2004). It is postulated that projection neurons

with disproportionally long, thin, and poorly myelinated axons are par-

ticularly susceptible to degeneration in PD (Braak et al., 2004), of

which the most studied to date have been the neuromelanin-

pigmented dopaminergic neurons of the basal ganglia.

Magnetic resonance imaging (MRI)-based estimation of brain iron

deposition in vivo is particularly important for early PD patients due to the

ubiquitous involvement of iron accumulation in the dopaminergic neuron

degeneration process. Gradient-echo (GRE) imaging approaches, for exam-

ple, T2*-weighted (T2*w) magnitude, phase, R2*, susceptibility-weighted

image (SWI), quantitative susceptibility mapping (QSM), have been used to

characterize magnetic susceptibility changes that are caused by iron over-

load in PD at different disease stages (Du et al., 2011; Kosta,

Argyropoulou, Markoula, & Konitsiotis, 2006; Lewis et al., 2013; Martin,

Wieler, & Gee, 2008; Wallis et al., 2008). Meanwhile, diffusion-based MR

imaging techniques (e.g., diffusion tensor imaging, diffusion kurtosis imag-

ing, neurite orientation dispersion and density imaging, etc.) have been

widely studied to examine the nigrostriatal degeneration in PD (Kamagata,

Hatano, & Aoki, 2016; Nilsson, Szczepankiewicz, van Westen, &

Hansson, 2015; Zheng et al., 2014). Diffusion-based imaging is sensitive to

the diffusion of water molecules within neural tissue (Basser, Mattiello, &

LeBihan, 1994). Alternations in the scalar measurements of diffusion

(e.g., fractional anisotropy and mean diffusivity) acted as imaging markers

for PD-related white matter (WM) microstructure variations and were

linked to cognitive impairments involved in PD (Péran et al., 2010). In

advanced PD, severe degeneration of dopaminergic neurons leads to tis-

sue atrophy in substantia nigra and thus further yields morphological

changes in structural MR image modality such as T1-weighted (T1w)

(Schwarz et al., 2011). Volume estimation techniques such as voxel-based-

morphometry (VBM) were used to identify pathological differences in gray

matter (GM) volume in PD compared with healthy controls (Feldmann

et al., 2008). Therefore, it is helpful to involve multimodality MRI tech-

niques for revealing the intrinsic pathological changes in PD.

Human brain atlases are essential for the research of PD and pro-

vide disease-specific information for interventional therapy purposes,

for example, guiding deep brain stimulation (DBS) (Chen, Sha, Ma,

He, & Feng, 2018; Deuschl et al., 2006; Follett et al., 2010) by serving

as references to identify target structures. Most existing atlases are

constructed based on T1w and T2w. For example, the commonly used

MNI space plays a vital role in neuroscience and provides a series of

atlases. The MNI152 linear atlas is the standard anatomy chosen by

the International Consortium of Brain Mapping (ICBM). The MNI152

nonlinear sixth generation atlas and the original Collin27 atlas only

provide T1w templates (Grabner et al., 2006; Holmes et al., 1998;

Mazziotta et al., 2001). For example, in the more recent versions, the

MNI152 nonlinear 2009 atlas and the Collin27 high-resolution 2008

atlas include T1w, T2w, and proton density-weighted templates

(Aubert-Broche, Evans, & Collins, 2006; Fonov et al., 2011). However,

it is challenging to differentiate the subtle tissue contrast changes

between deep gray matters and their surroundings on T1w images.

Thus, the existing T1w atlases based on a healthy population may not

provide accurate structural information of PD in subcortical regions

due to the lack of image contrast in the corresponding regions.

There have been several atlases constructed with specific empha-

sis on the localization of human brain subcortical nuclei. For example,

the DBS intrinsic template atlas (DISTAL atlas) provides subcortical

anatomy on the MNI152 nonlinear 2009b templates (Ewert

et al., 2018). The California Institute of Technology (CIT168) atlas pro-

vides probabilistic anatomical subcortical nuclei labels using reinforce-

ment learning (Pauli, Nili, & Tyszka, 2018). In the CerebrA atlas, the

authors manually corrected the sub-cortical labels to complete

the labeling adaption for the MNI152 nonlinear 2009c templates

(Manera, Dadar, Fonov, & Collins, 2020). However, these atlases are

all based on T1w or T2w images of healthy junior subjects. The DIS-

TAL atlas (MNI152 nonlinear 2009b) and the CerebrA atlas (MNI152

nonlinear 2009c) are derived from the average anatomy of the age

range 4.5–18.5 years, while the CIT168 atlas uses structural images

from 168 healthy adults between 22 and 35 years old. The age distri-

bution of these atlases does not match the typical range of PD

patients (>50 years old) (Dorsey et al., 2018).

QSM is a relatively new MRI technique based on the GRE MRI

phase signal. For elder population, especially for PD patients, iron accu-

mulation evolves with aging in the dopaminergic system (Chen

et al., 2019). QSMmeasures the spatial distribution of magnetic suscepti-

bility, which is mainly affected by neuronal myelination (diamagnetic) and

iron content (paramagnetic) in human brain (Lotfipour et al., 2012). QSM

provides superior image contrast between iron-rich subcortical nuclei

and surroundings (Cobzas et al., 2015; Li et al., 2016; Sun et al., 2015). A

longitudinal age-dependent QSM atlas, namely Zhang atlas in this article,

has provided an efficient tool for segmenting brain subcortical structures.

However, the atlas is constructed based on healthy subjects of age

1–83 years old (Zhang et al., 2018). It has been commonly recognized

that PD pathological neuronal loss in iron-rich nuclei greatly affected

QSM contrast. Thus, QSM atlas built from healthy subjects might not be

proper for the accurate localization of PD-related subcortical regions.

Xiao et al. (2015) proposed to perform multi-modality MR contrasts

including T1w, T2*w, T1–T2* fusion, phase and R2* maps for templates

generation, and constructed MNI PD25 atlas based on scans of 25 PD

patients to guide segmentation of subcortical nuclei (Xiao et al., 2017).
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The authors fused T1w and T2*w images to enhance the tissue

contrast in subcortical nuclei in the generated hybrid image. Com-

paring with T1w image, relatively clear image contrast in subcorti-

cal nuclei has been demonstrated in T2*w images. Both T2* and

QSM are affected by variations in magnetic susceptibility of the

brain tissue. T2* decreases proportionally to the concentration of

both iron and myelin (Langkammer et al., 2010). However, iron

and myelin have opposing effects on the magnetic susceptibility

maps, as iron is paramagnetic and myelin lipids are relatively dia-

magnetic (Deistung et al., 2013; Li et al., 2019). QSM therefore

provides better image contrast between iron-rich brain nuclei and

surrounding white matter fiber bundles than T2* images. Inspired

by the image fusion idea in (Xiao et al., 2017), rather than using a

single imaging modality, the fusion of multimodalities can involve

complementary information from different imaging techniques to

investigate brain functional, structural, or anatomical properties

(Qi et al., 2019). Therefore, in this study, we present a subcortical

atlas constructed for PD population based on hybrid multi-modal

images to precisely define the PD-related subcortical nuclei struc-

tural changes.

In this work, we construct a human brain atlas including templates

of multiple MRI contrasts, that is, T1w, QSM, GRE magnitude, R2*,

and tissue probability maps (WM; GM; CSF, cerebrospinal fluid). We

construct a hybrid template using fused QSM and T1w images from

87 subjects with PD, and generate multi-modality templates by apply-

ing the same deformation fields on different image modalities. In the

proposed atlas space, we manually segment 12 bilateral subcortical

structures and build a whole-brain parcellation map by combining with

existing cortical gray and white matter atlases. To access the feasibil-

ity, we segment 15 individual subjects with PD using several proposed

atlases and then calculate quantitative parameters by comparing seg-

mentation results with ground truth manual annotations. The results

show that our HybraPD atlas provides more accurate segmentation

than other comparison atlases. By applying the proposed atlas on pos-

itron emission tomography (PET) images, we study the metabolic dif-

ference in subcortical nuclei between PD patients and healthy control

subjects. The atlas-based analysis enables identifying small subcortical

nuclei, which are difficult to be manually annotated in PET images due

to the limited spatial resolution. It is envisioned that the newly devel-

oped HybraPD atlas may serve as an efficient template for studying

brain pathological alterations in subcortical regions for PD.

2 | MATERIALS AND METHODS

The summarized workflow of this work is illustrated in Figure 1.

F IGURE 1 Workflow for the HybraPD atlas construction, subcortical nuclei segmentation and accuracy evaluation, as well as a combined
analysis with PET images from PD patients

YU ET AL. 4401



2.1 | Magnetic resonance imaging acquisition and
reconstruction

2.1.1 | Data acquisition

Magnetic resonance imaging (MRI) scans of 87 subjects with PD (56.9

± 10.0 years old, 48 female, 39 male) were conducted on a 3.0-Tesla MR

system (GE 750 Medical Systems, Milwaukee, Wisconsin). For each partic-

ipant, foam padding was applied to prevent head movement, and earplugs

were provided to reduce scanner noise. Structural T1w images were

acquired using a fast-spoiled gradient recalled sequence: repetition time

(TR) = 7.336 ms; echo time (TE) = 3.036 ms; flip angle = 11�; field of

view (FOV) = 260 � 260 mm2; matrix size = 256 � 256; slice

thickness = 1.2 mm; 196 continuous sagittal slices. A three-dimensional

multi-echo GRE sequence was utilized to obtain T2*w images with follow-

ing parameters: TR/TE1/TE spacing = 33.7/4.56/3.65 ms, number of ech-

oes = 8, flip angle = 20�, FOV = 240 � 240 mm2, matrix size =

;416 � 384, slice thickness= 2 mm, resolution= 0.47 � 0.47 � 2.0 mm3.

All the images were resampled to the same resolution of 1 � 1 � 1 mm3

through operations in k-space. The raw phase was unwrapped using the

Laplacian-based phase unwrapping, and the normalized background phase

was removed by V-SHARP (Wu, Li, Guidon, & Liu, 2012). The susceptibil-

ity maps were determined by the STAR-QSM algorithm (Wei et al., 2015).

GRE magnitude and R2* were derived from the same MR sequence as

QSM. R2* maps were calculated by fitting the signal intensity decay with

a mono-exponential model using the following expression:

S tð Þffi S 0ð Þ�exp � TE
T2�

� �
þC, ð1Þ

where, S tð Þ is the signal intensity at time t , S 0ð Þ is the initial signal

intensity, TE is echo time and C is the offset.

2.1.2 | Data for segmentation accuracy evaluation

The 15 individual subjects with PD (58.1 ± 6.0 years old, 8 female,

7 male) for validation were obtained on a 3.0-Tesla MRI scanner

(GE 750 Medical Systems, Milwaukee, Wisconsin). T1w images were

acquired using the following parameters: TR = 2,300 ms;

TE = 1.95 ms; flip angle = 9�; FOV = 256 � 256 mm2; matrix

size = 256 � 256; slice thickness = 1 mm; 152 continuous sagittal

slices. QSM was performed using 3D multiecho GRE sequence:

TR/TE1/TE spacing = 41.6/3.2/2.2 ms, number of echoes = 16, flip

angle = 12�, FOV = 256 � 256 mm2, matrix size = 256 � 256, slice

thickness = 1 mm. The susceptibility maps were calculated by the

STAR-QSM algorithm (Wei et al., 2015).

2.1.3 | PET data for metabolic analysis

Thirty subjects (63.6 ± 4.2 years old) with 15 PD patients (64.2

± 4.5 years old, 7 female, 8 male) and 15 health controls (62.9

± 3.8 years old, 6 female, 9 male) were scanned both on MRI and PET

scanners. MRI data were collected on the same 3.0 T GE 750 Medical

Systems and PET images were acquired using a Siemens Biograph

64 PET/CT scanner (Siemens, Munich, Germany) in 3D mode. A CT

transmission scan was first performed for attenuation correction. For

dopaminergic imaging, the distribution of dopamine transporter was

measured 60 min after the intravenous injection of 370 MBq of 11C-

CFT and lasted for 15 min. The image volume consisted of 148 axial

images, with a matrix size of 168 � 168 covering a FOV of

342 � 342 mm2.

2.2 | HybraPD atlas construction

The skull was removed from the T1w images using FSL BET (Smith

et al., 2004). As illustrated in Figure 2, the T1w images were then nor-

malized to the intensity range [0, 255] and co-registered to the magni-

tude images using FSL FLIRT (Smith et al., 2004). The hybrid images

were calculated by fusing QSM and warped T1w images depending

on the formula:

Hybrid¼T1w�μ�QSM, ð2Þ

where, μ¼400 is a scalar coefficient (Zhang et al., 2018).

The hybrid brain template was generated from all the hybrid

images based on the symmetric group-wise normalization (SyGN)

method achieved by advanced normalization tools (ANTs) (Avants

et al., 2010). The SyGN algorithm optimized the template appearance

and template shape iteratively to guarantee a fully unbiased result.

The detailed construction framework of the SyGN algorithm is

described in the Appendix. It was performed on individual hybrid

images and generated the hybrid standard template space. The defor-

mation fields during the template generation were then applied to the

original QSM, R2* and normalized T1w images, respectively, to obtain

the multiple templates in the proposed HybraPD atlas space (shown

as Figure 2). Thus, brain tissue probabilistic maps based on the seg-

mentation on T1w images were in the same space. Detailed genera-

tion processes for these contrasts are illustrated in Figure 2.

Besides, we calculated the contrast-to-noise ratio (CNR) to quan-

tify the benefits of using different modalities to generate the tem-

plates. Because the intensity values were totally zero at the region

outside of brain tissue in all the multi-modality templates, there was

no strict sense of background to calculate the standard deviation of

noise for the CNR. Therefore, we used the definition introduced in

(Bechara et al., 2012),

CNR¼ μ1�μ2j jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ21þσ22

q , ð3Þ

where, μ1, μ2, σ1, and σ2 are the average intensity values and standard

deviations of two region of interests (ROI). In this work, μ1 and σ1

were calculated from different subcortical nuclei, μ2 and σ2 were from
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the white matter segmented by the JHU DTI-based atlas (Mori,

Wakana, Van Zijl, & Nagae-Poetscher, 2005).

2.3 | HybraPD atlas segmentation

In this section, we manually segmented 12 subcortical nuclei based on

the constructed templates and then generated a whole-brain

parcellation map by fusing with two reported cortical gray and white

matter atlases.

2.3.1 | Subcortical nuclei segmentation

Three experienced radiologists independently delineated all the

12 subcortical nuclei using ITK-SNAP 3.8.0 (Yushkevich et al., 2006)

based on the generated hybrid, QSM and T1w templates. These sub-

cortical nuclei included: putamen (Pu), caudate nucleus (CN), nucleus

accumbens (NAC), ventral pallidum (VeP), internal and external globus

pallidus (GPi and GPe), pars reticulata and pars compacta of substantia

nigra (SNr and SNc), red nucleus (RN), subthalamic nucleus (STN),

habenular nuclei (HN), and thalamus (Thal). The thalamus was further

segmented into 5 sub-regions, that is, anterior nuclei (AN), median

nuclei (MN), internal medullary lamina (IML), lateral nuclei (LN), and

pulvinar (Pul). Then, the majority voting of three annotations was

defined as the subcortical nuclei map for the HybraPD atlas. More

details about the manual segmentation are discussed in the next

section.

2.3.2 | Whole brain parcellation map

The AAL3 atlas (Rolls, Huang, Lin, Feng, & Joliot, 2020) and the

MNI152 atlas (Fonov, Evans, McKinstry, Almli, & Collins, 2009) were

registered to the HybraPD atlas via T1w templates using symmetric

normalization by ANTs (Avants et al., 2010). The deformation fields

were applied to the AAL3 parcellation map (Rolls et al., 2020) and the

JHU DTI-based white-matter atlas (Mori et al., 2005) warping the cor-

tical structures into HybraPD atlas space. It should be noted that the

AAL3 parcellation map has given some subcortical structures such as

F IGURE 2 HybraPD atlas construction including generations of the Hybrid template, the T1w template, and the QSM template
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Pu, CN, GP, NAC, SNr, SNc, RN, and 15 sub-regions of the thalamus

(Rolls et al., 2020). However, we removed these subcortical structures

from the warped AAL3 parcellation map considering the weak con-

trast of subcortical nuclei in T1w images, and the specific quantitative

analysis was discussed in the following section. Finally, we merged

the subcortical nuclei map and the two warped maps to get the whole

brain parcellation map (Figure 3).

2.4 | Evaluation of subcortical nuclei segmentation

To assess the segmentation accuracy, the same 12 bilateral subcorti-

cal structures were manually annotated in individual subjects, and the

labeled maps were taken as the ground truth in the validation analysis.

Then, the evaluation parameters, such as Kappa coefficient, sensitiv-

ity, and average Hausdorff distance (AHD), were calculated between

the atlases and the manual segmentation.

2.4.1 | Manual segmentation

Three experienced radiologists used ITK-SNAP 3.8.0 (Yushkevich

et al., 2006) to delineate the 12 subcortical nuclei on 15 individual PD

subjects. Both the QSM and T1w images of the same subjects were

used during the manual segmentation. The QSM images were co-

registered to the T1w space using FSL FLIRT (Smith et al., 2004). The

DICE coefficient was chosen to measure intra-rater and inter-rater

reliability. For intra-rater reliability, three raters were asked to draw

the subcortical segmentation in 15 subjects twice with two-week

intervals. The DICE coefficient was calculated between two segmen-

tations for the same subject by the same rater. To assess inter-rater

reliability, the DICE coefficient was computed between segmentations

from three raters in two time-points respectively, and then calculated

the average. Finally, a voxel-based majority voting of six segmenta-

tions for one subject by three raters was defined as the ground truth.

A voxel would be annotated if at least two raters gave the same label.

2.4.2 | Evaluation of atlases using T1w templates

Based on the symmetric normalization by ANTs (Avants et al., 2010),

each subject was co-registered to the proposed HybraPD atlas and

four existing subcortical atlases, including the PD25 atlas (Xiao

et al., 2017), the CIT168 atlas (Pauli et al., 2018), the CerebrA atlas

(Manera et al., 2020) and the AAL3 atlas (Rolls et al., 2020), using the

T1w templates. Then, these atlases were warped to the subject space

by applying the inverse deformation fields (Figure 4). Regarding each

subcortical structure as a ROI, several quantitative parameters were

calculated to evaluate the segmentation reliability, for example, Kappa

coefficient, sensitivity, specificity, and DICE coefficient. Also, we

F IGURE 3 Creation of the whole brain parcellation map using the HybraPD atlas
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calculated the average Hausdorff distance, which was less sensitive to

outliers and could provide appropriate similarity assessment for small

ROIs considering label location and shape (Pauli et al., 2018). The cal-

culation formulas of these parameters are described in the Appendix.

Within each subcortical ROI, we calculated the average volume

(in mm3) and the average susceptibility (in ppm) from the QSM images.

In the parcellation map of the HybraPD atlas, we labeled the subcorti-

cal nuclei by the left and right hemispheres. But for the quantitative

analysis, this work would just give the results for the whole nuclei

instead of two sub-parts. The average volume of one nucleus was

computed by the mean of the left and right hemispheres. We also cal-

culated the regression coefficients (R2) between the manual segmen-

tation and the parcellation maps from atlases. The p-values under .05

were considered as significant.

2.4.3 | Evaluation of atlases using quantitative
susceptibility mapping templates

In this section, we made a comparison between atlases and manual

segmentation based on the registration using only QSM templates

(Figure 5), performed by the symmetric normalization of ANTs

(Avants et al., 2010). Because there were few atlases containing QSM

templates, especially for subcortical nuclei, we just compared the

HybraPD atlas and the Zhang atlas (Zhang et al., 2018). For the evalu-

ation, we calculated the same quantitative parameters, such as Kappa

coefficient, sensitivity, specificity, DICE coefficient, average Hausdorff

distance, average volume, and average susceptibility.

2.5 | HybraPD atlas validation based on positron
emission tomography images

To quantify PD pathological metabolic alterations in subcortical nuclei

(Nurmi et al., 2003), the PET images were first co-registered to the

T1w images from the same subject using FSL FLIRT (Smith

et al., 2004). Then, the HybraPD atlas labels were warped to the sub-

ject space via the T1w template using symmetric normalization by

ANTs (Avants et al., 2010) (as shown in Figure 6). Next, we performed

a semi-quantitative analysis by calculating the standardized uptake

value ratio (SUVR) of 2β-carbomethoxy-3β-(4-fluorophenyl) tropane

(11C-CFT) according to the following formula (Bu et al., 2018):

SUVR¼UVROI
UVREF

�1, ð4Þ

where, UVROI is the average uptake value in each ROI of subcor-

tical nuclei, and UVREF is the average uptake value in a

F IGURE 4 Registration between the subject and atlases using T1w templates for quantitative evaluation of segmentation
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F IGURE 5 Registration between the
subject and atlases using QSM templates
for quantitative evaluation of
segmentation

F IGURE 6 PET images
processing based on the
HybraPD atlas
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reference region. In this article, the reference region was

selected as the superior occipital gyrus from the whole brain

parcellation map.

The data of 15 PD patients and 15 healthy controls were ana-

lyzed. The SUVR was calculated and the mean value of each group

was compared using the unpaired t-test. The p-values under .05 were

considered as significant.

3 | RESULTS

In this section, we present the results of the HybraPD atlas construc-

tion and tissue segmentation, the evaluation for the subcortical nuclei

map and the simple analysis of PET data.

3.1 | HybraPD atlas

Figure 7 illustrates the proposed HybraPD atlas, including T1w, QSM,

hybrid templates, R2* templates, and brain tissue probabilistic maps.

The enlarged views clearly illustrate the fine structure of the subcorti-

cal nuclei regions. Both the T1w and the hybrid templates provide a

good performance of cortical contrast. Moreover, due to the fusion

with QSM images, the hybrid template offers better contrast for the

subcortical structures, for example, thalamus in the axial view, and

substantia nigra in the sagittal view. Figure 8a shows the manual

annotations of subcortical brain nuclei overlaid on the hybrid sections

and the 3D rendering shown on the right. All the 12 labeled subcorti-

cal structures are displayed in the rendering image. Note that the thal-

amus is divided into five sub-regions, so there are 16 labels in the

F IGURE 7 The HybraPD atlas exhibited via T1w, QSM, hybrid, R2* templates, and brain tissue probabilistic maps (WM and GM), with
enlarged views to illustrate clear contrast in detail for the subcortical nuclei. The atlases are shown by representative sections in the axial, sagittal,
and coronal views
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rendering image. Figure 8b–e illustrate the labeled subcortical nuclei

in details on sections of three views and give the corresponding

screenshots of 3D rendering.

Table 1 lists the CNR calculated for the 12 subcortical nuclei from

different image modalities (e.g., T1w, QSM, and R2*) in the HybraPD

atlas. Depending on the results, the hybrid template provides higher

CNR than the T1w template in all the subcortical nuclei. For GPe, GPi,

SNr and SNc which are important in the research of PD pathology,

the average CNR increased most dramatically from 0.15 in the T1w

template to 2.18 in the hybrid template. For STN, HN, and Thal, the

F IGURE 8 Manual annotations of subcortical brain nuclei. (a) Labeled segmentations overlaid on the sections of the axial, sagittal, and coronal
views of the Hybrid template, as well as a 3D rendering of the annotations with the labels of subcortical structures; (b) Labeled Pu, GPe, and GPi
on the sections of three views and the 3D rendering; (c) Labeled CN, NAC, and VeP on the sections of three views and the 3D rendering;
(d) Labeled STN, RN, SNr and SNc on the sections of three views and the 3D rendering; (e) Labeled HN and five sub-regions of Thal on the
sections of three views and the 3D rendering
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improvements on the CNR are limited, because these nuclei are still

complicated to annotate despite the fusion of contrasts from QSM

and T1w images.

3.2 | Evaluation of subcortical nuclei segmentation

In this section, we report the reliability measurements for manual

-segmentation, and evaluation parameters (e.g., Kappa coefficient,

sensitivity, and average Hausdorff distance) calculated between the

atlas-based sub-cortical nuclei segmentation and the ground truth

nuclei labeled in each individual subject.

3.2.1 | Reliability analysis

Table 2 shows the intra- and inter-reliability DICE coefficients in

12 labeled subcortical nuclei between manual segmentations of

15 subjects by three raters. From the results of intra-reliability, we

can see that all the DICE coefficients are close to 0.90. Pu and CN

provide average DICE coefficients of 0.95 and 0.94, higher than 0.90

and 0.89 from STN and HN. For the inter-reliability, all the DICE coef-

ficients are above 0.80. Similarly, Pu and CN show average DICE

coefficients of 0.89 and 0.87 respectively, higher than 0.83 of both

STN and HN. Checking Table 1, the CNRs for Pu and CN are 1.85 and

2.30, higher than 0.94 and 0.77 for STN and HN. All these results

illustrate that STN and HN are more difficult to delineate manually

compared with Pu and CN. Besides, the total average DICE coefficient

of intra-reliability is 0.91 and that of inter-reliability is 0.85, indicating

that the manual segmentations by three raters are reliable.

3.2.2 | Evaluation of atlases using T1w templates

For qualitative evaluation of T1w templates, Figure 9 presents the

registration results of HybraPD, PD25, CIT168, CerebrA, and AAL3

atlases in one subject space for qualitative evaluation of T1w tem-

plates. From the enlarged pictures of three viewpoints, the T1w

templates of these atlases could provide visible structures of Pu, CN,

and GP, while it is difficult to distinguish other subcortical nuclei, for

example, SN, RN, and sub-regions of thalamus. For quantification, the

error-bar charts in Figure 10 demonstrate evaluation parameter statis-

tics of 12 subcortical ROIs for the 5 state-of-the-art T1w atlases.

TABLE 1 Contrast-to-noise ratio for subcortical nuclei from
different image modalities in the HybraPD atlas

Name T1w QSM Hybrid R2*

Pu 1.25 1.28 1.85 1.34

CN 1.61 1.69 2.3 0.98

NAC 1.46 1.49 1.97 0.91

VeP 0.31 2.47 2 3.75

GPe 0.15 3.13 2.56 3.24

GPi 0.19 2.66 1.89 3.13

SNr 0.12 2.3 1.73 2.12

SNc 0.13 3.58 2.56 2.74

RN 0.43 1.87 1.38 1.76

STN 0.75 1.25 0.94 2.13

HN 0.33 0.34 0.77 0.34

Thal 0.66 0.7 0.8 0.12

Abbreviations: CN, caudate nucleus; GPe and GPi, external and internal

globus pallidus; HN, habenular nuclei; NAC, nucleus accumbens; Pu,

putamen; RN, red nucleus; SNr and SNc, pars reticulata and pars compacta

of substantia nigra; STN, subthalamic nucleus; Thal, thalamus; VeP, ventral

pallidum.

TABLE 2 Average DICE coefficients in subcortical nuclei between manual segmentations to assess intra-rater and inter-rater reliability

Name Intra-rater reliability Inter-rater reliability

Rater 1 Rater 2 Rater 3 Raters 1 and 2 Raters 1 and 3 Raters 2 and 3

Pu 0.95 ± 0.01 0.94 ± 0.01 0.95 ± 0.01 0.89 ± 0.03 0.89 ± 0.03 0.88 ± 0.03

CN 0.93 ± 0.01 0.94 ± 0.02 0.95 ± 0.01 0.88 ± 0.03 0.88 ± 0.03 0.86 ± 0.04

NAC 0.92 ± 0.02 0.93 ± 0.02 0.92 ± 0.02 0.84 ± 0.05 0.85 ± 0.06 0.83 ± 0.06

VeP 0.90 ± 0.02 0.88 ± 0.03 0.89 ± 0.02 0.83 ± 0.05 0.83 ± 0.05 0.82 ± 0.06

GPe 0.93 ± 0.02 0.91 ± 0.02 0.91 ± 0.03 0.86 ± 0.04 0.87 ± 0.03 0.84 ± 0.05

GPi 0.91 ± 0.02 0.92 ± 0.02 0.92 ± 0.02 0.85 ± 0.04 0.85 ± 0.04 0.83 ± 0.06

SNr 0.90 ± 0.03 0.89 ± 0.03 0.90 ± 0.03 0.84 ± 0.04 0.86 ± 0.04 0.82 ± 0.05

SNc 0.91 ± 0.02 0.90 ± 0.03 0.89 ± 0.02 0.83 ± 0.04 0.85 ± 0.05 0.82 ± 0.06

RN 0.92 ± 0.02 0.91 ± 0.02 0.90 ± 0.02 0.87 ± 0.05 0.88 ± 0.04 0.85 ± 0.05

STN 0.90 ± 0.03 0.88 ± 0.02 0.91 ± 0.03 0.83 ± 0.06 0.84 ± 0.06 0.81 ± 0.05

HN 0.91 ± 0.02 0.89 ± 0.02 0.88 ± 0.02 0.84 ± 0.06 0.84 ± 0.05 0.82 ± 0.06

Thal 0.95 ± 0.01 0.94 ± 0.01 0.94 ± 0.01 0.89 ± 0.03 0.89 ± 0.03 0.87 ± 0.03

Abbreviations: CN, caudate nucleus; GPe and GPi, external and internal globus pallidus; HN, habenular nuclei; NAC, nucleus accumbens; Pu, putamen; RN,

red nucleus; SNr and SNc, pars reticulata and pars compacta of substantia nigra; STN, subthalamic nucleus; Thal, thalamus; VeP, ventral pallidum.
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Because not all the atlases annotate the same subcortical nuclei as we

labeled in the HybraPD atlas, there are blanks in the charts of some

ROIs. For the thalamus, the PD25 atlas and the CerebrA atlas only

labeled the whole ROI instead of sub-regions, and the AAL3 seg-

mented 15 sub-regions which was too detailed. Therefore, we con-

sider the thalamus as just one ROI when making a comparison among

atlases. Besides, we check the unpaired t-test analysis of quantitative

parameters between 5 atlases and 12 subcortical ROIs. We find that

almost all the p-values are less than 0.05. All these statistical data are

put in the Table S1.

The average and SD of Kappa coefficient, sensitivity, and average

Hausdorff distance for each of the 12 subcortical nuclei in 15 individ-

ual subjects are plotted in Figure 10a–c, respectively. The ranges of

Kappa coefficients denote the agreement levels of segmentations

between the ground truth and the labels propagated from the atlases.

For instance, a value of 0.61–0.80 represents “substantial” and

0.81–1.00 denotes “almost perfect” label unifications (Landis & Koch,

1977). In Figure 10a, we can see that the HybraPD atlas provide the

highest Kappa coefficients among the five atlases for all the subcorti-

cal ROIs. Most of the Kappa coefficients of the HybraPD atlas are

bigger than 0.86 (“almost perfect” level). Pu has the largest coefficient

of 0.97, while STN which is difficult to segment shows the minimum

value of 0.86.

The sensitivity, also named the true positive rate, measures the

proportion of actual regions compared with the ground truth. As

shown in Figure 10b, the HybraPD atlas still has the most consider-

able sensitivity for most ROIs labeled in the ground truth, except

for Pu and CN where the CIT168 atlas gives the sensitivity of

F IGURE 9 Qualitative evaluation of T1w templates for HybraPD, PD25, CIT168, CerebrA, and AAL3 atlases after being co-registered to one
subject space. The images are shown by representative sections in the axial, sagittal, and coronal views
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98 and 94%, respectively. And the sensitivity from the HybraPD

atlas for most subcortical nuclei is higher than 85%. Meanwhile, we

compute the specificity which measures the proportion of correctly

identified negatives, and the DICE coefficient which is widely used

in the evaluation of image segmentation. The plots of them are not

shown in Figure 10, because the specificity from all the atlases for

each ROI is close to 100%, and the DICE coefficient is equal to the

Kappa coefficient when keeping four decimal places in our case. In

addition, all the specific calculated parameters will be given in the

Appendix S1.

F IGURE 10 Evaluation
parameters showing the accuracy
of segmentation among five co-
registered atlases. (a) Kappa
coefficient; (b) sensitivity; and
(c) average Hausdorff distance
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The average Hausdorff distance has frequent application in object

matching by considering the context of relocating the target. The HybraPD

atlas shows the best performance of the AHD for all the subcortical ROIs

compared with the other four atlases in Figure 10c. Within the results of

the HybraPD atlas, the AHD of STN, 0.17 mm, is relatively larger than other

ROIs, while the smallest AHD is for Pu with the value of 0.04 mm.

Similarly, Figure 11 illustrates the evaluation of the segmentation for

five sub-regions of the thalamus: Kappa coefficient, sensitivity, and aver-

age Hausdorff distance. The parameters are calculated based on the man-

ual segmentation and the HybraPD atlas which is the only one labeling

these sub-regions. The results show that the HybraPD atlas keep good

consistency with the ground truth in the five sub-regions of the thalamus.

Tables 3 and 4 show the average volume and tissue susceptibil-

ity of subcortical nuclei calculated from the manual segmentation

and co-registered atlases. Tissue susceptibility is averaged within

each subcortical ROI in the QSM images. Figures 12 and 13 illus-

trate the regression of the volume and average susceptibility

between manual segmentation and atlas-based labels of each ROI.

The HybraPD atlas shows the best correlation lines with the ground

truth for all the 12 subcortical nuclei. In Figure 12, we can see that

the R2 coefficients are higher in some nuclei such as Pu, CN, and

Thal, compared with others, for example, VeP, STN, and HN. From

the regression plots of the tissue susceptibility, most subcortical

nuclei for all the atlases perform well except for STN. Checking the

Table 4, the values of the average susceptibility of STN for all the

atlases are close to the ground truth. However, there exit many

fluctuations in susceptibility around the regression line for STN, as

shown in Figure 13.

F IGURE 11 Evaluation parameters showing the accuracy of segmentation for five sub-regions of the thalamus from the HybraPD atlas. From
left to right: Kappa coefficient; Sensitivity; average Hausdorff distance

TABLE 3 Volume (mm3) of subcortical nuclei calculated from the manual segmentation and co-registered atlases

Name Manual annotation HybraPD PD25 CIT168 CerebrA AAL3

Pu 4,338.6 ± 503.7 4,223.1 ± 495.7 4,842.0 ± 565.9 5,365.1 ± 631.4 4,620.1 ± 550.1 6,166.6 ± 685.1

CN 4,166.9 ± 468.3 4,018.0 ± 574.5 3,665.2 ± 496.8 5,000.0 ± 690.7 4,129.0 ± 595.3 5,441.5 ± 1,036.7

NAC 286.1 ± 22.1 273.8 ± 22.4 # 384.8 ± 32.1 356.8 ± 36.2 856.9 ± 89.1

VeP 142.9 ± 12.0 142.7 ± 13.1 # 93.4 ± 9.2 # #

GPe 1,209.3 ± 155.6 1,194.4 ± 150.6 1,085.6 ± 133.2 790.6 ± 103.0 # #

GPi 506.6 ± 66.1 488.7 ± 62.6 438.4 ± 47.5 372.8 ± 47.0 # #

SNr 285.8 ± 27.1 272.0 ± 31.8 # 273.9 ± 30.6 # 287.9 ± 31.1

SNc 212.8 ± 21.9 209.7 ± 22.1 # 127.2 ± 14.8 # 176.8 ± 21.0

RN 290.9 ± 39.3 278.5 ± 33.7 191.5 ± 21.2 277.9 ± 31.4 # 321.4 ± 34.5

STN 144.4 ± 19.7 149.0 ± 18.4 67.0 ± 8.8 120.3 ± 16.0 # #

HN 77.6 ± 10.9 78.1 ± 8.9 # 50.6 ± 5.4 # #

Thal 5,888.1 ± 452.7 5,659.4 ± 530.3 5,439.3 ± 460.8 # 6,798.2 ± 556.9 6,002.7 ± 578.2

Note: “#” denotes the ROI of that row is not labeled in the atlas of the corresponding column.

Abbreviations: CN, caudate nucleus; GPe and GPi, external and internal globus pallidus; HN, habenular nuclei; NAC, nucleus accumbens; Pu, putamen; RN,

red nucleus; SNr and SNc, pars reticulata and pars compacta of substantia nigra; STN, subthalamic nucleus; Thal, thalamus; VeP, ventral pallidum.
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3.2.3 | Evaluation of atlases using quantitative
susceptibility mapping templates

Figure 14 illustrates the registration results of HybraPD and Zhang

atlases in one subject space for qualitative evaluation of QSM tem-

plates. Visually, the QSM template of the HybraPD atlas provides

clearer tissue boundaries than the Zhang atlas in gray and white mat-

ter regions. And it presents better edge details for subcortical nuclei

which are helpful for accurate segmentation. Figure 15 illustrates the

evaluation of the segmentation for the HybraPD and Zhang atlases.

Since the Zhang atlas just labels GP and SN instead of GPe & GPi and

SNr & SNc, again, we keep the same ROIs when computing parame-

ters by merging sub-regions. From the results, we can see that the

HybraPD atlas provides better consistency with the ground truth than

the Zhang atlas. For the six subcortical ROIs shown in Figure 15, the

Kappa coefficients of the HybraPD atlas range from 0.80 to 0.91 and

the values of sensitivity are from 86 to 91%, all of which are nearly

doubled than those of the Zhang atlas. Especially, the average

TABLE 4 Tissue susceptibility (ppm) of subcortical nuclei calculated from the manual segmentation and co-registered atlases

Name Manual annotation HybraPD PD25 CIT168 CerebrA AAL3

Pu 0.032 ± 0.011 0.032 ± 0.011 0.027 ± 0.010 0.027 ± 0.009 0.029 ± 0.011 0.016 ± 0.007

CN 0.027 ± 0.003 0.027 ± 0.003 0.026 ± 0.002 0.023 ± 0.003 0.027 ± 0.003 0.019 ± 0.002

NAC �0.008 ± 0.007 �0.008 ± 0.007 # �0.005 ± 0.007 0.003 ± 0.006 �0.006 ± 0.005

VeP 0.088 ± 0.017 0.086 ± 0.016 # 0.095 ± 0.021 # #

GPe 0.086 ± 0.019 0.085 ± 0.019 0.089 ± 0.020 0.093 ± 0.028 # #

GPi 0.073 ± 0.027 0.072 ± 0.027 0.070 ± 0.027 0.072 ± 0.028 # #

SNr 0.090 ± 0.018 0.089 ± 0.019 # 0.104 ± 0.021 # 0.099 ± 0.017

SNc 0.107 ± 0.015 0.107 ± 0.016 # 0.108 ± 0.016 # 0.095 ± 0.018

RN 0.068 ± 0.019 0.070 ± 0.020 0.085 ± 0.022 0.070 ± 0.020 # 0.049 ± 0.017

STN 0.064 ± 0.017 0.063 ± 0.015 0.064 ± 0.020 0.051 ± 0.017 # #

HN �0.009 ± 0.016 �0.010 ± 0.015 # �0.010 ± 0.016 # #

Thal 0.001 ± 0.006 0.001 ± 0.006 0.001 ± 0.006 # �0.001 ± 0.005 �0.002 ± 0.005

Note: “#” denotes the ROI of that row is not labeled in the atlas of the corresponding column.

Abbreviations: CN, caudate nucleus; GPe and GPi, external and internal globus pallidus; HN, habenular nuclei; NAC, nucleus accumbens; Pu, putamen; RN,

red nucleus; SNr and SNc, pars reticulata and pars compacta of substantia nigra; STN, subthalamic nucleus; Thal, thalamus; VeP, ventral pallidum.

F IGURE 12 Regression of the average volume between manual segmentation and co-registered atlases. Hy, HybraPD; PD, PD25; CIT,
CIT168; Cere, CerebrA; AAL, AAL3. The R2 coefficients are given in the image. “*”: p-value <.05; “ns”: nonsignificant
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Hausdorff distance is substantially improved using the HybraPD atlas

with the range 0.14–0.28 mm compared with 4.28–18.02 mm of the

Zhang atlas.

Figures 16 and 17 illustrate the regression of the average volume

and tissue susceptibility between manual segmentation and the two

co-registered atlases using QSM templates. The HybraPD atlas shows

better correlation with the ground truth for most of the subcortical

nuclei. In Figure 16, the R2 coefficients of the average volume are

larger for some nuclei such as Pu, CN, and Thal, compared with others,

for example, GP, SN, and RN. From the regression plots of the tissue

susceptibility, most subcortical nuclei for both the atlases perform

well except the Thal of the Zhang atlas. Checking Figures 15–17, we

can see that there is a big difference between the thalamus annota-

tion of the Zhang atlas and the manual segmentation of our case.

F IGURE 13 Regression of the average susceptibility between manual segmentation and co-registered atlases. Hy, HybraPD; PD, PD25; CIT,
CIT168; Cere, CerebrA; AAL, AAL3. The R2 coefficients are given in the image. “*”: p-value <.05; “ns”: nonsignificant

F IGURE 14 Qualitative evaluation of QSM templates for HybraPD and Zhang atlases after being co-registered to one subject space. The
images are shown by representative sections in the axial, sagittal, and coronal views
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3.3 | Validation of HybraPD atlas on positron
emission tomography images

Using the HybraPD atlas, we calculate the SUVRs of 11C-CFT in the

subcortical nuclei for the PET images of 30 individual subjects, includ-

ing 15 subjects for PD and 15 subjects for healthy control. Table 5

lists the SUVRs in 6 subcortical nuclei from 5 atlases, that is, Pu, CN,

NAC, GP, SN, and STN. For all the atlases, we can see that the SUVRs

of disease-related subcortical nuclei from the PD subjects are signifi-

cantly lower than those from the healthy subject, which might be cau-

sed by the degeneration of dopamine neurons (Nurmi et al., 2003).

Focusing on the HybraPD atlas, for PD patients, the average SUVR in

Pu is 69% lower than that for the healthy subjects. According to the

calculated results, Pu varies the most among all the six sub-cortical

nuclei, followed by CN and GP with 53% lower SUVR values than

healthy controls.

4 | DISCUSSION

In this work, we constructed a HybraPD atlas which was generated

from the T1w and QSM images of 87 subjects with PD and mainly

F IGURE 15 Quantitative statistics showing the accuracy of segmentation between the HybraPD and Zhang atlases. From left to right: Kappa
coefficient; Sensitivity; average Hausdorff distance

F IGURE 16 Regression of the average susceptibility between manual segmentation and co-registered atlases. Hy, HybraPD; Zh, Zhang. The
R2 coefficients are given in the image. “*”: p-value <.05; “ns”: nonsignificant
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concentrated on the parcellation map for deep gray matter nuclei.

Due to the difficulty of small deep brain nucleus localization, only a

few MRI atlases depicted the subcortical nuclei (Ewert et al., 2018;

Manera et al., 2020; Pauli et al., 2018; Rolls et al., 2020). However,

these atlases were mostly generated from healthy young subjects

using the T1w images, sometimes fused with T2*w or R2* maps. The

limitation of T1w-based processing and analyzing methods has been

discussed in previous studies concerned with the low contrast in iron-

rich deep brain nuclei, especially for T1w images of healthy young

adults brain (Acosta-Cabronero et al., 2017; Cobzas et al., 2015; Lim

et al., 2013). Previous studies have constructed histological atlases for

the human basal ganglia and thalamus (Chakravarty, Bertrand, Hodge,

Sadikot, & Collins, 2006; Yelnik et al., 2007) which is helpful for navi-

gating deep brain stimulation surgery to target the subcortical nuclei

for brain diseases treatment (Bardinet et al., 2009; Chakravarty,

Sadikot, Germann, Bertrand, & Collins, 2008). However, the 2D histo-

logical data would suffer from artifacts from tearing, local compres-

sion, shearing, or stretching for 3D reconstruction (Chakravarty

et al., 2008). Thus, the spatial location of subcortical nuclei in the his-

tological atlases might not accurately match that in the standard tem-

plate space due to the registration errors. Several recent studies have

shown the feasibility of labeling the subcortical nuclei based on sus-

ceptibility contrast, either using the QSM images only or using the

hybrid QSM/T1w images of healthy subjects (Hanspach et al., 2017;

F IGURE 17 Regression of the average susceptibility between manual segmentation and co-registered atlases. Hy, HybraPD; Zh, Zhang. The
R2 coefficients are given in the image. “*”: p-value <.05; “ns”: nonsignificant

TABLE 5 Standardized uptake value ratios for the PET images in subcortical ROIs from different atlases

Atlas Group Pu* CN* NAC* GP* SN* STN*

HybraPD PD 0.88 ± 0.08 0.95 ± 0.13 1.65 ± 0.15 0.56 ± 0.09 0.37 ± 0.09 0.36 ± 0.08

Health 2.81 ± 0.32 2.03 ± 0.30 2.20 ± 0.19 1.20 ± 0.15 0.64 ± 0.09 0.53 ± 0.07

PD25 PD 0.80 ± 0.07 0.99 ± 0.13 # 0.54 ± 0.09 0.33 ± 0.09 0.33 ± 0.07

Health 2.50 ± 0.27 2.02 ± 0.27 # 1.21 ± 0.15 0.57 ± 0.09 0.49 ± 0.07

CIT168 PD 0.77 ± 0.11 0.74 ± 0.11 1.38 ± 0.16 0.52 ± 0.09 0.30 ± 0.09 0.28 ± 0.07

Health 2.40 ± 0.27 1.64 ± 0.23 1.76 ± 0.11 1.01 ± 0.15 0.52 ± 0.10 0.42 ± 0.07

CerebrA PD 0.82 ± 0.08 0.74 ± 0.12 1.49 ± 0.14 0.51 ± 0.09 # #

Health 2.55 ± 0.27 1.74 ± 0.29 2.04 ± 0.18 0.99 ± 0.12 # #

AAL3 PD 0.67 ± 0.06 0.42 ± 0.10 1.21 ± 0.12 0.62 ± 0.09 0.32 ± 0.08 #

Health 2.15 ± 0.24 1.27 ± 0.31 1.71 ± 0.19 1.39 ± 0.18 0.56 ± 0.08 #

Note: “*”: p-value <.05. “#” denotes the ROI of that row is not labeled in the atlas of the corresponding column.
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Li et al., 2019; Zhang et al., 2018). However, an atlas from PD patients

is essential to investigate the disease-specific anatomy by avoiding

the registration bias between PD subjects and healthy templates (Xiao

et al., 2017).

In the HybraPD atlas, we constructed a parcellation map for

12 subcortical nuclei by manual annotation. This map contained sev-

eral deep gray nuclei which are rarely displayed in existing MRI atlases

but highly related to PD pathology, for example, GPe, GPi, SNr, SNc,

NAC, and STN. The thalamus was further divided into five sub-regions

through susceptibility contrast. Considering the multimodality of the

HybraPD atlas, we verified the nucleus segmentation accuracy on PD

brain images using T1w and QSM templates, respectively. As the gro-

und truth, 15 individual PD subjects were segmented by three experi-

enced experts for the same 12 subcortical nuclei. It should be noted

that these 15 manually segmented subjects could be used as the gro-

und truth not only in this article, but also in other studies related to

the analysis of human subcortical nuclei or processing of PD MRI data.

For instance, the automatic segmentation of subcortical structures

based on the fusion of multiatlas information (Li et al., 2019), the

Bayesian multiobject approach (Bazin, Alkemade, Mulder, Henry, &

Forstmann, 2020), or deep learning classifier using U-net (Wei

et al., 2019), all needed the manual annotation as the reference.

After being co-registered to the ground truth space using T1w

templates, we first made a comparison among five atlases, that is,

HybraPD, PD25, CIT168, CerebrA, and AAL3 (Manera et al., 2020;

Pauli et al., 2018; Rolls et al., 2020; Xiao et al., 2017). According to

the evaluation results, the HybraPD atlas shows the best consistency

with human experts in terms of the Kappa coefficient (>0.86), the sen-

sitivity (>85%), and the average Hausdorff distance (<0.17 mm). From

the internal comparison, the HybraPD atlas provides better delinea-

tions for more prominent subcortical nuclei, for example, Pu, CN, Thal,

GPe, and GPi, with the Kappa coefficient over 0.95. For the nuclei

such as SNr, SNc, STN, and HN, the Kappa coefficient is relatively

lower in the range of 0.86–0.93 but still larger than the other four

atlases. Except for the HybraPD atlas, the PD25 and the CIT168

atlases also perform comparably to the ground truth for specific ROIs.

The PD25 atlas provides more significant Kappa coefficients for GPe

and GPi, while the CIT168 atlas is larger for RN and STN. Meanwhile,

the CIT168 atlas shows higher sensitivity for Pu and CN, but with a

larger average volume for these nuclei (see Table 1). It means that in

these ROIs, the CIT168 atlas annotates not only more actual voxels,

but also larger nontarget regions. Besides, the CerebrA atlas gives a

good Kappa coefficient for Pu, CN, and Thal with a value of about

0.86, and the AAL3 atlas also has a Kappa coefficient of 0.77 for

RN. However, these two atlases show quite large AHD for NAC,

1.59 mm for the CerebrA atlas, 2.64 mm for the AAL3 atlas,

respectively.

Then, a similar comparison was made between the HybraPD and

Zhang atlases (Zhang et al., 2018) based on the registration using QSM

templates. The HybraPD atlas provides the QSM template which could

be helpful for the case that only QSM images are available or QSM infor-

mation needs to be analyzed individually (Deistung et al., 2013; Wei

et al., 2019). The results show that the HybraPD atlas performs better

than the Zhang atlas considering all the quantitative parameters. Mean-

while, it proves the feasibility of registration using QSM templates from

the atlas to the subject space. However, if we compare the quantification

of the HybraPD atlas using T1w and QSM templates, it can be found

that the results of T1w templates improve a little than those of QSM

templates. Taking RN as an example, the Kappa coefficient from the

T1w template is 0.94 and the sensitivity is 82%, which are both bigger

than 0.86 and 88% from the QSM template. And the AHD from the T1w

template is 0.08 mm less than 0.17 mm from the QSM template. It prob-

ably means that when transforming from the same atlas to the subject

space, the T1w contrast could help achieve better registration than the

QSM contrast.

Besides, we analyzed the metabolic difference in subcortical

nuclei between PD patients and healthy control subjects by applying

the HybraPD atlas to calculate SUVRs on PET images. For all the

atlases, the results show that the SUVRs of disease-related subcortical

nuclei from the PD subjects were significantly lower than those from

healthy subjects. It is hard to judge the difference between the

HybraPD atlas and others through the analysis of PET images,

because the benefits of using multimodality contrasts are more appar-

ent in structural images. We tend to provide one potential application

for the subcortical nuclei segmentation. Here, we focus on the results

calculated by the HybraPD atlas. Compared with previous researches

calculating the 11C-CFT SUVRs in the human brain, our average value

of Pu for the PD group is 0.88 ± 0.08, lower than 1.16 ± 0.50 for the

PD group of Sun et al. (2019) and higher than 0.69 ± 0.27 for multiple

system atrophy parkinsonian type (MSA-P) group of Bu et al. (2018).

And for CN, our average SUVR for the PD group is 0.95 ± 0.13, lower

than 1.16 ± 0.50 for the PD group of Sun et al. (2019) and 1.02

± 0.39 for MSA-P group of Bu et al. (2018). Meanwhile, our average

SUVRs of Pu and CN for the health group are 2.81 ± 0.32 and 2.03

± 0.30, higher than 1.98 ± 0.21 and 1.82 ± 0.24 of Sun et al. (2019),

as well as 2.17 ± 0.18 and 1.84 ± 0.15 of Bu et al. (2018). The calcu-

lated SUVRs in our work and previous works are slightly different.

Because the 11C-CFT SUVRs are semi-quantitative estimations, it var-

ies with both acquisition parameter and reference selection. Thus,

with different scanning protocols, the values slightly differ from each

report. Also, in most previous studies, the subcortical nuclei are manu-

ally annotated based on PET or T1w contrast, which is either low res-

olution or show ambiguous contour on these ROIs. Despite the slight

difference, the variations of 11C-CFT SUVRs between PD patients

and healthy subjects are significant and consistent with previous

reports (Bu et al., 2018; Sun et al., 2019). These reductions might be

caused by the degeneration of dopamine neurons within these nuclei

due to the disease (Nurmi et al., 2003). It is envisioned that our pro-

posed atlas provides efficient and reliable reference for PD-related

minor subcortical nucleus identification in PET images.

Despite the verification of the HybraPD atlas reliability, there are

still limitations of this study. First, the number of ground truth is small,

although we have used 15 labeled individual subjects, and there were

similarly several manual annotations in some previous researches

(Bazin et al., 2020; Lim et al., 2013; Pauli et al., 2018). Ewert et al.

used 103 segmented brains to assess the segmentation of DBS target
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nuclei, but just for two ROIs, that is, GPi and STN (Ewert et al., 2019).

The issue is that manual delineation is a quite time-consuming and

exhausting task, especially for subcortical nuclei with such small size.

The segmentation experts need to be experienced, knowledgeable

and familiar with the histological structure of the subcortical nuclei.

Therefore, it takes time to accumulate more manual segmentations.

Meanwhile, the registration methods will impact segmentation accu-

racy when transforming the parcellation map from the atlas space to

the subject one. We used FSL FLIRT (Smith et al., 2004) and symmet-

ric normalization by ANTs (Avants et al., 2010), which are recognized

as practical tools for the MRI images registration. However, it is

always a challenge to achieve 100% perfect registration. Moreover,

we mainly consider the features like the location and the size of the

subcortical nuclei on images. In fact, we should also check the associa-

tion with other pathological information like the UPDRS score to

stage PD (Hughes, Daniel, Kilford, & Lees, 1992). Besides, this study is

based on the 3.0 Tesla MRI data with a spatial resolution of

1 � 1 � 1 mm3. Recently, Lau et al. has successfully used ultra-high

field 7.0 Tesla MRI data (Lau et al., 2017) for in vivo visualization of

brain structures at the submillimeter scale (0.7 mm3 isotropic), for

example, investigation of zona incerta, STN and RN (Lau et al., 2020).

It might be an effective protocol for imaging the complex subregions

of subcortical structures from the human brain in future.

5 | CONCLUSION

This study presents the construction of the HybraPD atlas. This

Parkinson's disease-specific human brain atlas includes multi-contrast

templates (i.e., T1w, QSM, GRE magnitude, R2*, and tissue probabilistic

maps), allowing us to accurately segment cortical white and gray matter

and iron-rich subcortical nuclei. Notably, the QSM template provides fea-

sibility to delineate subcortical structures into fine sub-regions. For

instance, the globus pallidus is made of internal and external segments;

the substantia nigra consists of pars reticulata and pars compacta; the

thalamus is divided into five sub-nuclei including anterior nuclei, median

nuclei, internal medullary lamina, lateral nuclei, and pulvinar. Based on

the templates, a parcellation map with 12 subcortical nuclei is manually

annotated. Our HybraPD atlas presents the most accurate performance

for leading individual PD subjects into atlas space compared with other

four existing atlases. The HybraPD atlas is confirmed to be an efficient

and reliable new tool for investigating PD pathological alterations.
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APPENDIX

Symmetric group-wise normalization method

The SyGN method follows the process below (Avants et al., 2010):

1. Before the first iteration, an initial template could be given or the

algorithm will calculate one initialization by the Euclidean average

obtained using affine alignment from the datasets.

2. Taking the template as fixed, compute a set of deformed images

and diffeomorphisms by the registration between the input

images and the template using affine alignment and symmetric

normalization, which optimizes the energy function Es I,J,ϕð Þ
(Avants et al., 2010):
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Es I,J,ϕð Þ¼D2 ϕ1 x,0ð Þ,ϕ1 x,0:5ð Þð ÞþD2 ϕ2 x,0ð Þ,ϕ2 x,0:5ð Þð ÞþΠ I ϕ1 x,0:5ð Þð Þ,J ϕ2 x,0:5ð Þð Þð Þ

D ϕ x,0ð Þ,ϕ x,1ð Þð Þ¼
ð1
0

dϕ x,tð Þ
dt

����
����
L

dt

Π I,Jð Þ xð Þ¼� ⟨I xð Þ�μn I xð Þð Þ,J xð Þ�μn J xð Þð Þ⟩2n
⟨I xð Þ�μn I xð Þð Þ⟩n�⟨J xð Þ�μn J xð Þð Þ⟩n

ðA1Þ

where, I and J denote two images, t is the time, ϕ1 and ϕ2 are two

diffeomorphisms denoting the mapped image pair I ϕ1 x,0:5ð Þð Þ¼
J ϕ2 x,0:5ð Þð Þ , D the shape distance, Π the dissimilarity between

images, ⟨�⟩n the inner product, μn is the mean over a local n window

centered at the position x.

3. If the template image is denoted by �I , the SyGN algorithm can be

expressed by minimizing the energy function E�I:

E�I ¼
X
i

Es �I,Ji ,ϕi
� �

, 8i,ϕi x,0ð Þ¼ψ xð Þ, ðA2Þ

where, ψ is a diffeomorphism representing the initial conditions of

each ϕi . Then, the E�I is minimized through optimizing the template

appearance in Π term by a gradient-based algorithm (Avants

et al., 2010), and estimating Frechet mean (Fréchet, 1948) of the

diffeomorphisms to minimize
P

iD
2 ϕi

1 x,0ð Þ,ϕi
1 x,1ð Þ� 	

(Avants

et al., 2010).

4. Calculating the new template by applying the average

diffeomorphism and repeat from the Step 2 until convergence.

Quantitative parameters for segmentation accuracy

If we denote the ground truth by T , and the warped segmentation by

R , the True Positive (TP), True Negative (TN), False Positive (FP), and

False Negative (FN) are calculated by (Lim et al., 2013):

TP¼ T\R, TN¼ �T\ �R

FP¼ �T\R, FN¼ T\ �R
: ðA3Þ

If the segmented result A is a binary image with the values of

0 and 1, the operator Aj j calculates the sum of nonzero elements in A.

Then, the sensitivity, the specificity, the Kappa coefficient, and the

DICE coefficient could be given by:

Sensitivity¼ TPj j
TPj jþ FNj j

Specificity¼ TNj j
TNj jþ FPj j

Kappa¼ 2� TPj j� TNj j� FPj j� FNj jð Þ
TPj jþ FPj jð Þ TNj jþ FPj jð Þþ TPj jþ FNj jð Þ TNj jþ FNj jð Þ
DICE¼2� T\Rj j

Tj jþ Rj j ¼ 2� TPj j
2� TPj jþ FPj jþ FNj j

: ðA4Þ

Due to the smaller regions of subcortical nuclei compared with corti-

cal structures, the value of TNj j is far greater than that of TPj j, FNj j, or
FPj j . Thus, the specificity will be approximate to 100%, and the for-

mula of the Kappa coefficient can be rewritten by ignoring small terms

without TNj j:

Kappa¼ 2� TPj j� TNj j� FPj j� FNj jð Þ
TPj jþ FPj jð Þ TNj jþ FPj jð Þþ TPj jþ FNj jð Þ TNj jþ FNj jð Þ

¼ 2� TPj j� TNj j�2� FPj j� FNj j
TNj j� 2� TPj jþ FPj jþ FNj jð Þþ FPj j� TPj jþ FPj jð Þþ FNj j� TPj jþ FNj jð Þ

≈
2� TPj j� TNj j

TNj j� 2� TPj jþ FPj jþ FNj jð Þ¼
2� TPj j

2� TPj jþ FPj jþ FNj j

,

ðA5Þ

which is the same as the DICE coefficient.

Starting from the ground truth T and the warped segmentation R,

the average Hausdorff distance (AHD) is defined by (Taha & Hanbury, 2015):

AHD T,Rð Þ¼max d T,Rð Þ,d R,Tð Þð Þ, ðA6Þ

and d T,Rð Þ is calculated by

d T,Rð Þ¼ 1
Nt

X
t � T

min
r � R

t� rk k, ðA7Þ

where, t and r are voxels in the images T and R , t� rk k denotes dis-

tance formula, for example, Euclidean distance in this article.
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