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Fueled by technological advancement, there has been a surge of human microbiome

studies surveying the microbial communities associated with the human body and their

links with health and disease. As a complement to the human genome, the human

microbiome holds great potential for precision medicine. Efficient predictive models

based on microbiome data could be potentially used in various clinical applications such

as disease diagnosis, patient stratification and drug response prediction. One important

characteristic of the microbial community data is the phylogenetic tree that relates all the

microbial taxa based on their evolutionary history. The phylogenetic tree is an informative

prior for more efficient prediction since the microbial community changes are usually not

randomly distributed on the tree but tend to occur in clades at varying phylogenetic

depths (clustered signal). Although community-wide changes are possible for some

conditions, it is also likely that the community changes are only associated with a small

subset of “marker” taxa (sparse signal). Unfortunately, predictive models of microbial

community data taking into account both the sparsity and the tree structure remain

under-developed. In this paper, we propose a predictive framework to exploit sparse

and clustered microbiome signals using a phylogeny-regularized sparse regression

model. Our approach is motivated by evolutionary theory, where a natural correlation

structure among microbial taxa exists according to the phylogenetic relationship. A novel

phylogeny-based smoothness penalty is proposed to smooth the coefficients of the

microbial taxa with respect to the phylogenetic tree. Using simulated and real datasets,

we show that our method achieves better prediction performance than competing sparse

regression methods for sparse and clustered microbiome signals.

Keywords: microbiome, phylogenetic tree, sparse generalized linearmodel, predictivemodel, statistical modeling,

high-dimenisonal statistics
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1. INTRODUCTION

The human microbial community (a.k.a., microbiota) is the

collection of microorganisms associated with the human body.

These microorganisms, their genomes, and the environment they
reside in are collectively known as the human “microbiome.” The

human microbiome plays a critical role in health and disease
(Cho and Blaser, 2012). For instance, the human gut microbiome
aids the digestive system with inaccessible nutrients, synthesizes
beneficial nutrients and protects us against pathogens. An
abnormal microbiome has been implicated in many human
diseases including various cancer types (Ahn et al., 2013;
Bultman, 2014; Walther-Antonio et al., 2016; Peters et al., 2017).
Dysbiosis of the microbiome has been observed in obesity, type II
diabetes, rheumatoid arthritis and multiple sclerosis (Turnbaugh
et al., 2009; Kinross et al., 2011; Honda and Littman, 2012;
Pflughoeft and Versalovic, 2012; Qin et al., 2012; Chen et al.,
2016; Jangi et al., 2016). Therefore, the human microbiome holds
great potential for various clinical applications such as disease
diagnosis, patient stratification and drug response prediction.
Building up an efficient microbiome-based predictor could thus
empower microbiome-based precision medicine (Kashyap et al.,
2017).

Advances in low-cost, high-throughput DNA sequencing
technologies such as Illumina Solexa sequencing has enabled
researchers to study the microbiome composition by directly
sequencing the microbial DNA. Two main approaches have been
employed to sequence themicrobiome: gene-targeted sequencing
and shotgun metagenomic sequencing (Kuczynski et al., 2011).
Compared to the shotgun metagenomic sequencing, where
all microbial DNA is sequenced, the gene-targeted approach
only sequences a “fingerprint” region of a “molecular clock”
gene such as the 16S rRNA gene in the bacteria. Although
the shotgun metagenomic sequencing provides more biological
information, the targeted approach is still the dominant approach
for large-scale microbiome studies due to its lower cost and high
scalability (McDonald et al., 2018). In the targeted sequencing,
standard practices involve clustering the sequencing reads into
operational taxonomic units (OTUs) or amplicon sequence
variants (ASVs) based on their sequence similarities (Schloss
et al., 2009; Caporaso et al., 2010, 2012; Chen et al., 2013b,
2017; Edgar, 2013; Rideout et al., 2014; Callahan et al., 2016;
Amir et al., 2017). A taxonomic lineage is further assigned
to each OTU/ASV by comparing their sequence to existing
16S rRNA gene databases. Finally, a phylogenetic tree, which
characterizes the evolutionary relationships among OTUs/ASVs,
is constructed based on their sequence divergences (Price et al.,
2010). For shotgun metagenomic sequencing, a phylogenetic tree
can also be constructed based on the reference genomes of the
detected species (Kembel et al., 2011). As a result, a typical
microbiome sequencing study is usually summarized as a table
of the read counts of the detected OTUs/ASVs/Species, together
with a phylogenetic tree, reflecting the community structure and
composition of the studied microbiome. For simplicity, hereafter,
we use the term “OTU” to stand for the basic taxonomic
units (e.g., OTU, ASV, species, taxa) from any sequencing
experiment/bioinformatics pipeline. Compared to other types

of omics sequencing data, one important characteristic of
microbiome sequencing data (microbial community data) is the
phylogenetic tree that relates all the OTUs. The phylogenetic tree
provides prior knowledge about how the OTUs are evolutionarily
related. Related OTUs, which usually share similar biological
functions, are more likely to be simultaneously associated with
the outcome, forming “clustered signals” at varying phylogenetic
depths (Garcia et al., 2014; Martiny et al., 2015). Therefore, the
phylogeny creates linkages among OTUs and induces a grouping
structure, allowing more efficient linkage between the OTUs and
the phenotype. As the microbial community data moves into
even higher resolutions such as strain-level resolution (Mallick
et al., 2017; Edgar, 2018), the phylogenetic relationship becomes
even more important for OTU data analysis. Clearly, it is not
sensible to treat OTUs with only 1% sequence divergence in
the same way as the OTUs with more than 10% sequence
divergence. Indeed, incorporating the tree structure has proven
to make the analyses more efficient and robust for various
statistical tasks ranging from ordination to microbiome-wide
multiple testing (Purdom, 2011; Chen et al., 2012, 2013a;
Evans and Matsen, 2012; Wang and Zhao, 2017; Xiao et al.,
2017).

One important task for microbiome analysis is to predict the
phenotype/outcome (either quantitative or qualitative) based on
the features of the underlying microbial community (relative
abundances of the OTUs and their phylogeny). This process is
also known as predictive modeling or supervised learning in
machine learning literature, where we try to derive some function
from the training data that can be used to predict the outcome
of future data, and to learn which features (i.e., OTUs) are
predictive of the outcome. For clinical applications, the outcome
includes disease state, treatment response, and drug toxicity. To
enable prediction based on microbial community data, general-
purpose predictive methods have been applied (Knights et al.,
2011; Statnikov et al., 2013; Pasolli et al., 2016). These methods
include classical machine learning methods (e.g., Random Forest
and Support Vector Machine) and modern regression methods
for high-dimensional data [e.g., Lasso (Tibshirani, 1996), MCP
(Zhang, 2010), and Elastic Net (Zou and Hastie, 2005)], focusing
onmodeling the nonlinear relationship between the outcome and
the microbiome as well as selecting the most predictive OTUs
for better interpretation. However, these methods do not fully
exploit the information in the microbiome data, particularly the
phylogenetic relationship among OTUs. The phylogenetic tree is
an informative prior since the microbial community changes are
usually not randomly distributed but tend to occur in clades at
varying phylogenetic depths (clustered signal). In other words, the
phylogenetic structure offers a biologically motivated grouping
structure, through which we can aggregate sparse OTU data
to enrich signals and achieve better predictive performance.
The objective of the proposed study is thus to provide a data-
adaptive approach to use the tree structure when constructing
the predictive model, i.e., let the data determine how much
phylogenetic information and what level of phylogenetic depth
we should use to achieve optimal performance. The inputs of
our method are the OTU count table, the phylogenetic tree of
the OTUs and the outcome measurements, and the outputs are
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the selected OTUs and the predictive function based on their
abundances.

Many previous attempts have been made to incorporate the
tree information into prediction, particularly in the regression
framework (Tanaseichuk et al., 2014; Chen et al., 2015; Ning
and Beiko, 2015; Wang and Zhao, 2017; Randolph et al., 2018;
Xiao et al., 2018). These methods are advantageous over previous
methods by taking into account the tree. However, they still
have many limitations. For example, some methods do not
perform variable selection in model building (Wang and Zhao,
2017; Randolph et al., 2018; Xiao et al., 2018), and hence their
prediction performance is subpar for sparse-signal scenarios (i.e.,
only a subset of OTUs are associated with outcome). For methods
that perform variable weighting or selection (Tanaseichuk et al.,
2014; Ning and Beiko, 2015), they usually rely solely on the
tree topology. The branch lengths, which provide more detailed
evolutionary history, are usually ignored. Therefore, there is still
a need to develop prediction methods for sparse clustered signals
while exploiting the full information of the phylogenetic tree,
which consists of both the tree topology and branch lengths.

Previously, we developed glmgraph (Chen et al., 2015),
a graph-regularized sparse regression model for structured
genomic data. In the glmgraph framework, besides a sparsity
penalty, a graph Laplacian-based structure penalty (Laplacian
penalty) was imposed to smooth the coefficients with respect
to the graph structure. It also encourages structurally related
predictors to be selected simultaneously (Huang et al., 2011).
In principle, a graph Laplacian can be constructed based on
the pair-wise distances between OTUs with respect to the
phylogenetic tree. However, the Laplacian penalty has two major
drawbacks for microbiome applications. First, the Laplacian-
induced smoothing/grouping effects are susceptible to the
interference by a large number of distantly relatedOTUs since the
graph is fully connected. It is well- known that distantly related
OTUs have very different biological characteristics, and thus their
contribution to the smoothing should be minimized. Second, the
smoothing effects induced by the Laplacian penalty is completely
driven by the external graph structure. This is in stark contrast
to the l2 penalty-induced smoothing effects (Zou and Hastie,
2005; Huang et al., 2016), which are mainly driven by the internal
correlation structure in the data. In case of a misspecified tree, the
Laplacian penalty cannot reduce to the l2 penalty. Therefore, it
does not possess the data-driven smoothing property, which has
been shown to be important to improve prediction performance
under certain scenarios (Waldron et al., 2011).

In this work, in parallel to our previous prediction method
for “dense and clustered” microbiome signals (Xiao et al.,
2018), we develop a phylogeny-regularized sparse regression
model for “sparse and clustered” microbiome signals. The
proposed method uses a novel phylogeny-based smoothness
penalty, which is defined based on the inverse of the phylogeny-
induced correlation matrix. The new penalty addresses the
two major drawbacks of the Laplacian penalty: it encourages
local smoothing, i.e., smoothing effects from more immediate
neighbors, as well as enjoys the data-driven smoothing property
if the tree is misspecified. In summary, the sparse nature of the
distribution of OTUs in complex microbiome data can be better

captured by our model because it provides a data-adaptive way to
group the OTUs according to their phylogeny as well as to select
the most predictive OTUs, which leads to improved prediction
and interpretation.

2. METHODS

2.1. A Phylogeny-Induced Correlation
Structure Among OTUs
We first introduce a phylogeny-induced correlation structure, on
which our phylogeny-based smoothness penalty will be defined.
Suppose we have p OTUs on a phylogenetic tree, following the
evolutionary model proposed in Martins and Hansen (1997), the
correlation of the traits between OTU i and j can be modeled as

cij(α) = e−2αdij , i, j = 1, . . . , p, (1)

where dij is the patristic distance between OTU i and j (i.e., the
length of the shortest path linking the two OTUs on the tree)
and the parameter α ∈ (0,∞) characterizes the evolutionary
rate. When α = 0, cij = 1 ∀i, j, indicating all the traits are the
same and there is no evolution. When α → ∞, cij = 0 ∀i 6= j,
indicating that the traits evolve independently. The parameter
α is also related to the phylogenetic depth of trait conservation
(Martiny et al., 2015), with a smaller α value indicating a greater
phylogenetic depth at which the trait is conserved (i.e., a large
clade of OTUs share the trait). In other words, the parameter
α has a (soft) grouping effect and groups the OTUs at various
phylogenetic depths. Compared to the taxonomic grouping,
where the OTUs are grouped at a specific taxonomic level, such
phylogeny-based grouping not only achieves more resolutions,
but also circumvents the difficulty of the uncertainty in taxonomy
assignments. Therefore, in the context of predictive modeling,
the parameter α can be treated as a tuning parameter, which
allows us to explore different phylogenetic depths to optimize
prediction. Also to be noted, the pairwise distance dij can be
simply the genetic distance based on pairwise comparison of the
DNA sequences without the need for explicit tree construction.

2.2. Phylogeny-Regularized Sparse
Generalized Linear Model
To account for the high dimensionality and the phylogenetic
tree structure in microbiome-based prediction, we introduce
a phylogeny-regularized sparse generalized linear model. We
assume that there are n samples with the abundances of p
OTUs being profiled. For the ith sample, let yi denote the
outcome variable, which can be binary or continuous, and
xi = (xi1, xi2, . . . , xip)

T denote the normalized and properly
transformed abundance vector of the pOTUs.We further assume
the data have been standardized (

∑

i xij = 0,
∑

i x
2
ij = n). The

goal is to predict yi based on xi. We will use a generalized linear
model

g(E(yi)) = β0 + x
T
i β ,

where β0 is the intercept, β = (β1,β2, . . . ,βp) and g(.) is
a link function (identity and logit link for continuous and
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binary outcome, respectively). Since p > n, we need to
make some sparsity assumption in order for the model to
be estimable. Additional assumption will be imposed on the
structural relationship among the model parameters to make the
estimation more efficient. To this end, we propose the following
penalized log-likelihood to estimate the regression coefficients:

pl(β0,β; λ1, λ2) =
1

n

n
∑

i=1

{−l(β0,β; yi, xi)} + p
sp
λ1
(β)+ psmλ2 (β),

(2)
where

l(β0,β; yi, xi)

=
{

−(yi − β0 − x
T
i β)2/2 linear regression,

yi(β0 + x
T
i β)− log(1+ eβ0+x

T
i β ) logistic regression.

The penalized likelihood estimate can be obtained by solving the
optimization problem

β̂ = argminβ0 ,β
pl(β0,β; λ1, λ2). (3)

The two penalty terms in Equation (2) play distinct roles. p
sp
λ1
(β)

is the sparsity penalty, which induces a sparse solution and has
been demonstrated to improve both the prediction performance
and model interpretability (Tibshirani, 1996) in the high-
dimensional setting. psmλ2 (β) is the smoothness penalty, which
encourages smoothness of the estimated coefficients with respect
to the phylogenetic tree (i.e., encourage similar coefficients for
clustered OTUs at a certain phylogenetic depth).

For the sparsity penalty p
sp
λ1
(β), we choose to use MCP

(Minimax Concave Penalty) (Zhang, 2010):

p
sp
λ1
(β) =

p
∑

j=1

ρ(|βj|; λ1, γ ), ρ(t; λ1, γ )

= λ1

∫ |t|

0
(1− x/(γ λ1)+dx, (4)

where λ1 ≥ 0 is the tuning parameter, (.)+ indicates the
nonnegative part and the parameter γ (1 ≤ γ ≤ +∞) controls
the degree of concavity. Larger values of γ make ρ less concave.
By varying the value of γ from 1 to +∞, the MCP provides a
continuum of penalties with the hard-threshold penalty as γ → 1
and the convex l1 penalty at γ = +∞. In practice, γ is usually
fixed to a reasonable value without the need for further tuning.
An important advantage of the MCP over the l1 penalty is that
it leads to a nearly unbiased estimator and achieves selection
consistency under weaker conditions. More detailed discussions
of MCP could be found in Zhang (2010).

Our major contribution is the design of a novel structure-
based smoothness penalty psmλ2 (β) to achieve efficient phylogeny-
based smoothing. One common approach to accommodate
structure/graph information in sparse regression model is
through the use of a graph Laplacian penalty psmλ2 (β) =
λ2β

TLβ , where the Laplacian matrix L is defined based on

the connectivity, or adjacency among predictors. The penalized
likelihood estimator resulted from the combination of the MCP
and Laplacian penalty, termed as Sparse Laplacian Shrinkage
(SLS) estimator, has been shown to have nice properties such
as selection consistency and generalized grouping (Huang et al.,
2011). For microbiome applications, a graph Laplacian for
microbiome data can be defined using the phylogeny-induced
correlation (Equation 1) as the adjacency measure. However, we
found that this approach did not always achieve better prediction
performance than the procedure without the Laplacian penalty.
The subpar performance is partly due to the interference by a
large number of distantly related OTUs since the phylogeny-
induced graph is fully connected. To achieve better prediction
performance, it is important to reduce the contribution of
smoothing effects from the large number of distantly related
OTUs. Although this can be achieved by sparsifying L, in practice,
the degree of sparsity to achieve optimal prediction depends on
the data and it is difficult to set a universal degree of sparsity for all
applications. To overcome the limitation of the graph Laplacian
approach, we propose to use an alternative smoothness penalty

psmλ2 (β) = λ2β
TC−1(α)β , (5)

where C(α) = (cij(α))p×p is the phylogeny-induced correlation
structure defined in the previous section. The inverse correlation
matrix � , C−1 also implies a graph structure among predictors
but encourages more local smoothing, that is, the coefficient
smoothing is mainly contributed by its immediate neighbors. To
demonstrate a stronger local smoothing effect by � than L, we
plot �ij, Lij, the elements of the � and L, against the pairwise
patristic distances between OTUs (Figure 1). As the pairwise
distance increases, �ij approaches zero quickly while Lij does not
decrease as fast. Since |�ij|, |Lij| determine the contribution of the
smoothing effect of OTU i to OTU j, a faster rate to zero suggests
a stronger local smoothing effect.

FIGURE 1 | Local smoothing effects of the proposed smoothness penalty.

The data was generated based on a simulated phylogenetic tree

(p = 200,“rcoal” from R “ape” package). The correlation C(α) was calculated

based on the pairwise patristic distances with α = 2. (A) The elements of

inverse correlation matrix (�ij ) are plotted against pairwise patristic distances

(dij ). (B) The elements of Laplacian matrix (Lij ) are plotted against pairwise

patristic distances (dij ).
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In the phylogeny-regularized sparse generalized linear model,
we have three parameters λ1, λ2 and α, which need to be tuned in
the training step for optimal prediction performance. These three
parameters, respectively control the model sparsity (i.e., how
many OTUs are predictive of the outcome), the phylogeny-based
smoothing effects (i.e., how much smoothing effects should be
induced by the tree), and the phylogenetic depth of the signal (i.e.,
what level of clustering is needed to achieve better prediction).
With the inverse correlation matrix-based smoothness penalty,
we call the resulting penalized likelihood estimator Sparse Inverse
Correlation Shrinkage (SICS) estimator. The proposed approach
also has a Bayesian interpretation: it assumes that the coefficient
β has a prior multivariate normal component with the covariance
matrix τC and the penalized likelihood estimate can be viewed
as the MAP (maximum a posteriori) estimate from a Bayesian
perspective.

2.3. Connection With Existing Methods
The proposed smoothness penalty βT�β , the graph Laplacian
penalty βTLβ and the l2 penalty βTβ are all special cases of a
general class of quadratic penalties βT6β , where 6 is a positive
semi-definite matrix. When α → ∞, the proposed penalty
becomes l2 penalty and the SICS estimator is reduced to theMnet
estimator (Huang et al., 2016). It is well-known that l2 penalty
induces a grouping effect based on the correlation structure in
the data (data-driven smoothing). As α decreases, the phylogeny-
driven smoothing will take control (prior-driven smoothing).
Thus, α also provides some tradeoff between data-driven and
prior-driven smoothing (Theorem 1). To better understand
the behavior of the proposed smoothness penalty, we rewrite
it as

βT�β =
p

∑

i=1

(�ii −
p

∑

j=1,j 6=i

|�ij|)β2
i +

∑

1≤j<k≤p

|�jk|(βj − sjkβk)
2

(6)
where sjk = sgn(−�jk) is the sign of −�jk. Note that
the second part has the same form as the Laplacian penalty
(Huang et al., 2011). Thus, the proposed smoothness penalty
is a combination of a weighted l2 penalty (first part) and a
Laplacian penalty (second part) with the adjacency coefficients
−�ij. For the phylogeny-induced correlation structure, all the
off-diagonal elements �ij are negative and the magnitude
controls the prior-driven smoothing effect. The weighted l2
penalty, on the other hand, offers the data-driven smoothing
effect. In contrast, the Laplacian penalty cannot reduce to
the l2 penalty and does not have the data-driven smoothing
effect.

Since the proposed smoothness penalty has a weighted l2
component, some degree of shrinkage in the coefficient estimate
is expected (Zou and Hastie, 2005). For orthogonal designs,
rescaling could remove the bias due to l2 shrinkage without
significantly increasing the variance. However, we find that,
for more general designs, rescaling could instead increase the
variance of the SICS estimator and decrease the prediction
performance. Therefore, we will not rescale the coefficients in the
implementation.

2.4. Some Theoretical Properties
We further investigate the smoothing effect and grouping
property of the proposed SICS estimator. Previously, Li and Li
(2008) derived the smoothing effect and grouping property for
the penalty combining l1 and Laplacian penalty, and Huang et al.
(2016) demonstrated a similar property for the Mnet estimator.
Here, we demonstrate such property for our SICS estimator
under a linear regression model and a simple graph design. The
proof of the theorem can be found in the Supplementary File.

Without loss of generality, we assume that the whole graph
(as characterized by �) corresponding to the index set {1, . . . , p}
is divided into disjoint cliques V1, . . . ,VJ . We further assume
that the patristic distances between OTUs are the same in each
clique so that the phylogeny-induced correlation coefficient cij
are the same. Thus, � has a special block-diagonal structure:
� = diag(�1, . . . ,�J) with �g=(�g,lm)vg×vg , where vg=|Vg |
for g=1, . . . , J, �g,ll = κg(vg − 1)�0

g for �g , κg>0, l=1, . . . , vg

and �g,lm= − �0
g for 1 ≤ l,m ≤ vj, l 6= m. Also, denote

ρjk = n−1
∑n

i=1 xijxik (data-induced correlation between OTU
i and OTU j). For the SICS estimator based on this inverse
correlation matrix �, we have the following smoothing and
grouping property:

Theorem 1. Denote t = 2λ2κg(vg − 1)�0
g and

ξ =
{

max {2γ (γ t − 1)−1, (γ t + 1)(t(γ t − 1))−1, t−1}, if γ t > 1,

t−1, if γ t ≤ 1.

Then for j, k ∈ Vg and g ∈ {1, . . . , J}, we have

|β̂j(α, λ1, λ2)− β̂k(α, λ1, λ2)| ≤
ξ ||y||1√

n

√

2(1− ρjk).

Especially, if ρjk = 0, we have |β̂j(α, λ1, λ2)− β̂k(α, λ1, λ2)| ≤√
2ξ ||y||1√

n
.

Based on Theorem 1, both the prior-induced correlation cjk
(which in turn determines �0

g and ξ ) and the data-induced
correlation ρjk contribute to the smoothing effect. With the

tuning parameter α, cjk can vary from 0 to 1 (equivalently, �0
g

varies from 0 to∞). We can thus increase and decrease the prior-
driven smoothing by varying α. The optimal level of prior-driven
smoothing effect can be tuned based on the data.

2.5. Model Estimation and Computational
Complexity
Since the proposed penalty is convex with respect to β ,
coordinate descent algorithm, which is developed for sparse
regression model with convex and non-convex sparsity penalties
(Friedman et al., 2010; Breheny and Huang, 2011) can be
readily extended to our case. For the linear regression model,
we have a closed-form solution for each coordinate update. For
the logistic regression model, we solve a series of structure-
regularized sparse linear regression model at each iteratively
reweighed least squares step. Coordinate descent continues until
a certain convergence criterion is reached. More details could
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be found in Chen et al. (2015). We implemented the method in
the R package SICS (https://github.com/lichen-lab/SICS), which
depends on our previously developed glmgraph R package (Chen
et al., 2015).

The computation complexity of the proposed method consists
of two parts: coordinate descent and matrix inversion. For
each coordinate descent loop, it requires O(n + p) arithmetic
operations, and a full cycle through the p OTUs requires
O(np + p2) operations. Assume the number of iterations to
reach convergence is c1 and the number of tuning parameter
combinations is c2. The overall complexity for the coordinate
descent algorithm is thus O(c1c2(np + p2)). In addition, taking
inverse of the correlation matrix typically has a computational
complexity of O(p3) (some algorithm may reduce it, but could
not bring down to O(p2)). A total of O(c3p

3) is required to
perform matrix inversion, where c3 is the number of grid points
for the tuning parameter α. Therefore, the total computational
complexity for SICS is O(c1c2(np+ p2)+ c3p

3). Usually, c1, c2, c3
are treated as fixed, so the computational complexity for SICS
is O(np + p3). Thus it is highly scalable with the sample
size but not with the number of OTUs. Since we usually
perform OTU filtering before running the algorithm, it is
computationally efficient for typical microbiome datasets with
p < 1000.

3. SIMULATION STUDIES

3.1. Simulation Strategy
We performed extensive simulations to evaluate the prediction
performance of SICS for both continuous and binary outcome.
For the continuous outcome, we simulated 100 samples in the
training set and 200 samples in the testing set. For the binary
outcome, we simulated an equal number of 50 samples for
both case and control groups in the training set, and an equal
number of 100 samples in case and control groups in the
testing set. We used a Dirichlet-multinomial distribution with
parameters estimated from a real microbiome data to simulate
OTU counts and generated the outcome based on the abundances
of the outcome-associated OTUs. We investigated the effect of
the informativeness of the phylogenetic tree and the level of
signal strength on the prediction performance. The simulation
studies were aimed to reveal the scenarios in which our model
performed favorably and also to test whether our model was
robust when the phylogenetic tree was not informative or
misspecified.

3.1.1. Simulating OTU Abundance Data
We included 200 OTUs in the simulation. The OTU counts
were generated using a Dirichlet-multinomial distribution with
the parameter values (dispersion, mean proportions) estimated
based on a real dataset from the human upper respiratory tract
microbiome (Charlson et al., 2010). Only the count data from the
200 most abundant OTUs were used in the parameter estimation.
Accordingly, the phylogenetic tree was trimmed to contain the
200 OTUs. For each sample, the total read count was sampled
from a negative binomial distribution with mean 5,000 and
dispersion 25, reflecting a typical sequencing depth for a targeted

sequencing experiment. The OTU counts were normalized into
OTU proportions by dividing the total read counts.

3.1.2. Selecting Outcome-Associated OTUs
We simulated both phylogeny-informative and non-informative
scenarios to study the performance of the proposed method
with respect to the informativeness of the phylogenetic tree.
In the phylogeny-informative scenarios, we selected outcome-
associated OTUs (“aOTUs”) from an OTU cluster and let their
effects in the same direction. In the phylogeny-non-informative
scenarios, we either randomly selected OTUs or let the effects
of the aOTUs in a cluster have opposite effects, which violates
the assumption that closely related aOTUs should have similar
effects. To construct OTU clusters, we partitioned the 200 OTUs
into 20 clusters using the partitioning-around-medoids (PAM)
algorithm based on their patristic distances. The simulation
strategy was illustrated in Figure 2 and the detailed settings for
four scenarios were presented below,

• S1: The phylogenetic tree was informative. One cluster with 12
aOTUs formed an outcome-associated cluster (“aCluster”). In
the aCluster, the aOTUs had the same effect size and the effect
direction was also the same.

• S2: The phylogenetic tree was informative. On top of S1, we
varied the effect size of each aOTU but the effect direction was
still the same.

• S3: The phylogenetic tree was non-informative. We randomly
selected 12 OTUs to be aOTUs. We restricted one cluster to
have only one aOTU.

• S4: The phylogenetic tree was non-informative. On top of S1,
we reversed the effect direction for half of the aOTUs.

FIGURE 2 | Illustration for the simulation strategy. We simulated both

phylogeny-informative scenarios (S1 and S2) and phylogeny-non-informative

scenarios (S3 and S4). Blue and red color indicate the direction of the effect

while the darkness of the color indicates the magnitude of the effect.
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3.1.3. Generating the Outcome Based on the

Outcome-Associated OTUs
DenoteA as the set containing the indices of aOTUs, and let xij be
the proportion of OTU j in sample i. We first generated ηi based
on the following linear relationship

ηi = β0 +
∑

j∈A
βjxij (7)

For a continuous outcome,

yi = ηi + ǫi, ǫi ∼ N(0, σ 2
ǫ ) (8)

For a binary outcome,

πi =
eηi

1+ eηi

yi ∼ Bernoulli(πi)

(9)

We simulated different levels of signal strength (effect size).

The signal strength was defined as

√
var(η)

σǫ
for the continuous

outcome and
∑

j∈A var(xj)β
2
j (xj denotes the abundance for

the jth OTU) for the binary outcome. In the simulation,
we investigated a signal strength at 1.0, 1.5, and 2.0 for
continuous outcome and 5.0, 10.0, and 20.0 for binary outcome
to represent low, medium and high signal strength. The detailed
parameter settings for the four scenarios were included in the
Supplementary File.

3.2. Competing Methods, Model Selection
and Evaluation
3.2.1. Competing Methods
We compared the proposed method (SICS) to Lasso, MCP and
Elastic Net (Enet), the three sparse regression models without
considering the phylogenetic tree. We also compared SICS to a
Laplacian-regularized sparse regression model as implemented
in glmgraph (SLS) (Chen et al., 2015). The Laplacian matrix L
was constructed using the same phylogeny-induced correlation
matrix C as the adjacency matrix. L was further sparsified to
90% sparsity level to reduce the adverse effects of distantly
related OTUs on the outcome prediction. Besides those sparse
regression models, we also compared SICS to a representative
machine learning method, Random Forest (RF), which has been
demonstrated good prediction performance on microbiome data
(Pasolli et al., 2016). The parameter settings for the competing
methods were shown in Box 1.

3.2.2. Model Selection and Evaluation
For SICS, the parameters (λ1, λ2,α) were tuned to achieve
optimal model sparsity and phylogenetic depth. Specifically, we
searched their best combination over a three-dimensional grids.
λ2 was searched on the grid {0, 2−5, 2−5+ν , 2−5+2ν , · · · , 25}

︸ ︷︷ ︸

12

, and

α on the grid {0, 2−5, 2−5+ν , 2−5+2ν , · · · , 25}
︸ ︷︷ ︸

12

, ν = 1, while λ1

was selected from a finer grid on a log scale from the most

Box 1 | Parameter settings for competing methods

• Lasso: glmnet R package, all parameters were set as the default.

• Elastic Net (Enet): glmnet R package. Tuning parameter for l2 penalty was

searched on the grid {0, 0.1, 0.2, · · · , 1}
︸ ︷︷ ︸

11

.

• MCP: ncvreg R package, all parameters were set as the default.

• SLS: glmgraph R package, the search grid for λ2 and α were set the same

as SICS.

• Random Forest (RF): randomForest R package, parameters were set as

default.

sparse to a very dense model as implemented in glmgraph and
glmnet.

The best tuning parameter values were selected based on
5-fold cross-validation (CV), where the training samples were
randomly divided into 5-folds with 4-folds for model fitting and
the remaining fold for testing . We used PMSE (Predicted Mean
Square Error) as the CV criterion for a continuous outcome and
AUC (Area Under the Curve) for a binary outcome as in Xiao
et al. (2018). Once the optimal tuning parameters were selected,
we fit the final model using all the training samples and evaluated
the prediction on independent testing samples.

To evaluate the prediction performance, we used PMSE
(“Brier score” for a binary outcome), which quantifies the
discrepancy between the predicted and observed values. In
addition, we also investigated the R2, which quantifies the
(squared) correlation between the predicted and observed values
and ranges from 0 (no correlation) to 1 (perfect correlation).
Detailed definition of R2 could be found in Xiao et al. (2018).

Although we focused our evaluation on outcome prediction,
variable selection and parameter estimation performance were
also investigated to gain more insights about the improved
prediction performance of SICS. Variable selection was assessed
by sensitivity and specificity, where sensitivity is the true
positive rate, i.e., the proportion of aOTUs that are selected,
and specificity is true negative rate, i.e., the proportion of
irrelevant OTUs that are not selected. The parameter estimation
performance was evaluated using MSE (Estimation Mean-
Squared Error). Each simulation setting was repeated 50 times
and the averages and standard errors of the performance
measures were reported.

3.3. Simulation Results
3.3.1. Results for Continuous-Outcome Data
We evaluated the prediction performance in terms of both R2 and
PMSE across different scenarios and signal strengths (Figure 3).
We observed a general increase in performance for all methods
when the signal strength increased. When the phylogenetic tree
was informative (Scenario S1 and S2), SICS outperformed other
methods substantially with a much larger R2 and lower PMSE
across all levels of signal strength. The improvement of SICS
over other methods was more evident when the signal strength
decreased, indicating the importance of using the tree prior to
pool signals when the signal was weak. Under the weak signal,
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FIGURE 3 | Prediction performance for continuous-outcome simulations across different signal levels and scenarios. Both R2 (A) and PMSE (B) were used for

evaluation. S1, S2: phylogeny-informative scenarios, and S3, S4: phylogeny-non-informative scenarios; Signal-S, -M, and -L represent weak, medium and strong

signals, respectively.

SICS had a clear advantage over SLS, which uses the Laplacian
penalty to smooth the coefficients, demonstrating the benefit of
using the proposed smoothness penalty that encourages more
local smoothing. SICS and SLS were both significantly better than
other sparse regression methods and RF across different levels of
signal strength. The lower performance of these sparse regression
methods was due to their inability to exploit the phylogenetic
structure. The improved prediction performance of SICS could
be explained by more accurate parameter estimation evidenced
by a lower MSE (Figure S1) and an increased sensitivity to retain
the aOTUs (Figure S2). Although the increased sensitivity was
at the cost of a slightly lower specificity (Figure S3), inclusion
of aOTUs was more important than exclusion of non-aOTUs
to improve prediction. We also observed that SICS performed
similarly in Scenario S1, S2, indicating the robustness of SICS to
the variation of the effect size of individual aOTUs as long as the
effects are in the same direction.

It should be noted that SICS achieved similar performance
as other sparse regression methods in its unfavorable scenarios,
when the phylogenetic tree was not informative (Scenarios
S3 and S4), demonstrating the robustness of SICS. The
comparable performance could be explained by that the
additional parameters λ2,α, which makes MCP and Enet as
special cases of SICS.

3.3.2. Results for Binary-Outcome Data
We repeated the same simulations for binary-outcome data and
presented the results in Figure 4. Compared to the continuous
outcome-based simulations, the prediction improvement of
SICS was even more striking when the phylogenetic tree was
informative (Scenarios S1 and S2). SICS achieved a significantly
larger R2 and smaller Brier Score than other methods across

different levels of signal strength. The advantage was even
evident when the signal was strong, which was not observed for
continuous-outcome data. Overall, a similar trend was observed:
SICS had the best performance, followed by SLS under an
informative phylogeny; SICS was comparable to other methods
for a non-informative phylogeny. The advantage of SICS could be
explained by a higher sensitivity of selecting aOTUs (Figure S4)
at some cost of specificity (Figure S5).

3.3.3. Comparison to SLS With Different Sparsity

Levels in the Laplacian Matrix
In the above simulation, we adopted a sparsity level of 90%
in the Laplacian matrix L for SLS, which generally resulted a
satisfactory prediction performance. To further investigate the
impact of sparsity level on the prediction performance of SLS, we
compared SICS to SLS with different levels of sparsity in L. We
tested sparsity levels at 0, 10, 30, 50, 70, and 90% and 0% sparsity
indicates no sparsification.

For the continuous-outcome data, SICS consistently
outperformed SLS in Scenario S1 & S2 when the signal was weak
or medium, and was on par with SLS when the signal was strong
(Figures S6, S7). When the tree was not informative (Scenarios
S3, S4), SLS was not sensitive to the sparsity level as expected and
the performance was similar to SICS. For binary-outcome data,
the performance difference between SICS and SLS was even more
striking and SICS performed much better across levels of signal
strength when the phylogeny was informative (Figures S8, S9).
We also found that the performance of SLS varied for different
levels of sparsity, and SLS generally achieved the best prediction
at a sparsity level of 90%. In contrast, SICS did not need to select
the optimal sparsity level and had an overall better performance
than SLS, regardless of the sparsity level used.
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FIGURE 4 | Prediction performance for binary-outcome simulations across different signal levels and scenarios. Both R2 (A) and Brier score (B) were used for

evaluation. S1, S2: phylogeny-informative scenarios, and S3, S4: phylogeny-non-informative scenarios; Signal-S, -M, and -L represent weak, medium and strong

signals, respectively.

4. REAL DATA APPLICATIONS

We applied SCIS to two real microbiome datasets and compared
it to the competing methods evaluated in the simulations. We
compared to two versions of SLS: SLS without sparsifying L
matrix (SLS(0)) and SLS with 90% sparsity level (SLS(0.9)). In
addition, we compared to glmmTree, a phylogeny-regularized
linear model for dense and clustered microbiome signals (Xiao
et al., 2018). The first dataset came from a study of the impact of
the long-term dietary pattern on the gut microbiome. We used
the caffein intake as the continuous outcome (Wu et al., 2011).
The second dataset came from a study of the smoking effect on
the human upper respiratory tract microbiome (Charlson et al.,
2010). We used the microbiome data from the left side of the
throat and treated the smoking status as the binary outcome.

4.1. Caffeine Intake Data
The caffeine intake data was taken from a cross-sectional study
of long-term dietary effects on the human gut microbiome
in a general population (Wu et al., 2011). The dataset was
downloaded from Qiita (https://qiita.ucsd.edu/) with study ID
1011, which consists of 98 samples and 6674 OTUs. We selected
the caffeine intake as the outcome of interest since caffeine
intake was found to have a significant impact on the gut
microbiota (Jaquet et al., 2009). We aimed to predict the caffeine
intake based on the OTU abundances. Before applying the
prediction methods, we implemented a series of preprocessing
steps designed in Xiao et al. (2018) to make the microbiome
data more amenable to predictive modeling. First, we removed
outlier samples based on an outlier index defined on Bray-
Curtis distance and removed rare OTUs with prevalence <10%
to reduce the dimensionality of OTUs, leaving 98 samples

and 499 OTUs. Second, we normalized OTU raw read counts
using GMPR (Chen et al., 2018) followed by a replacement of
outlier counts using winsorization at 97% quantile. Third, we
transformed the normalized OTU abundance data using square-
root transformation to reduce the influence of highly abundant
observation. Finally, we applied quantile transformation to the
caffeine intake to make it approximately normally distributed.

To have an objective evaluation of the prediction
performance, the dataset was randomly divided 50 times into
5 folds each time, among which 4 folds were used for training
and the remaining one for testing. In the training set, tuning
parameter selection was based on CV as in the simulation. R2 and
PMSE were used as metrics for prediction performance based on
the testing set. The results were presented in Figures 5A,B. SICS
achieved the best performance for caffeine intake prediction as
indicated by the highest R2 and lowest PMSE, followed by Elastic
Net, SLS and Random Forest. On the other hand, Elastic Net
and SLS, which had data-driven smoothing and prior-driven
smoothing, respectively, did improve over Lasso and MCP,
which only exploited the model sparsity. To verify whether
the improvement of prediction was statistically significant, we
performed paired Wilcoxon signed-rank test between SICS and
any other methods based on R2 , PMSE values obtained from the
fifty random divisions. SICS achieved significantly higher R2 ,
and significantly lower PMSE than any other method (P<0.05).

4.2. Smoking Data
The smoking data was from a study of the smoking effect on
the human upper respiratory tract microbiome (Charlson et al.,
2010). We aimed to predict the smoking status based on the
microbiome profile. All the data processing steps were carried
out as described in the previous example. After preprocessing,
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FIGURE 5 | Performance comparison on the caffeine intake data (A,B) and

smoking data (C,D). The red dashed line indicates the median value of various

performance measures for SICS. SLS(0): SLS without sparsification; SLS(0.9):

SLS with 90% sparsity level in the Laplacian matrix.

the final dataset consisted of 32 non-smokers and 28 smokers
with 174 OTUs. For smoking vs. non-smoking prediction, SICS
still achieved the highest R2 and lowest Brier Score, followed
by Elastic Net, glmmTree and Random Forest (Figures 5C,D).
However, SLS did not improve the prediction performance
compared to Lasso and MCP. We also noticed that SLS(0) and
SLS(0.9) performed differently (R2 P = 0.01; Brier Score P = 0.12).
Overall, SICS achieved the best prediction performance for both
continuous caffeine intake and dichotomous smoking status.

5. DISCUSSION

The power of a predictive model depends on its capability
to exploit the full information in the data, which usually
requires domain knowledge. For microbiome data, one unique
characteristic is the phylogenetic relationship relating all OTUs,
which is important prior information that could be utilized to
improve prediction performance. In this paper, we proposed
a phylogeny-regularized sparse regression model for capturing
sparse and clustered microbiome signals. In the model, a novel
phylogeny-based smoothness penalty was designed based on the
inverse of phylogeny-induced correlation matrix. We show that
such inverse correlation-based smoothness penalty improved
over the traditional Laplacian-based smoothness penalty for
microbiome applications, due to its local smoothing property as
well as the dual smoothing effects (i.e., data-driven and prior-
driven smoothing). Moreover, an additional tuning parameter
in the smoothness penalty allows our model to capture signals
at various phylogenetic depths, further improving its prediction
power. We demonstrated the robustness of the proposed

method when the tree was not informative or misspecified. A
noisy or misspecified tree could be resulted from applying an
inappropriate tree construction method or be due to the fact that
DNA sequence similarity does not necessarily reflect biological
similarity. Interestingly, the proposed method could reduce to
Mnet (Huang et al., 2016), which possesses the data-driven
smoothing effect.

Similar to other sparse regression models, the proposed
method builds on the assumption that the model is sparse:
only a few OTUs are associated with the outcome. It is thus
expected to be a powerful predictive tool when the signal is
sparse. Many diseases have been shown to be associated with
a small number of “marker” taxa. For example, in the case of
colorectal cancer or arthritis (Scher et al., 2013; Zeller et al., 2014),
individual marker taxa were found to be associated to the disease
state, whereas effects on the overall composition were very mild.
In contrast, other disease states were associated with marked
shifts in the overall composition as in the case of obesity and
inflammatory bowel disease (Manichanh et al., 2012; Le Chatelier
et al., 2013). In such “dense-signal” scenario, sparse regression
models including the proposed approach may not work well.
Instead, a prediction model based on the global community
similarity, such as our recently proposed glmmTree (Xiao et al.,
2018), is expected to be more powerful. Exploratory analysis
of the microbiome data should be performed before selecting a
suitable model.

In the model, we assume a linear relationship between the
OTU abundance and the outcome. Although the assumption
is usually reasonable after the abundance data is properly
normalized and transformed, it may fail to capture complex
nonlinear relationship for some applications. Our model can
be extended to capture more complex nonlinear effects. The
simplest strategy is to apply various transformations, e.g., Box-
cox transformation (Sakia, 1992), to the OTU abundance data
and selects the best transformation function based on cross-
validation. In the case of Box-cox transformation, the power
parameter can be treated as another tuning parameter (Xiao and
Chen, 2017; Xiao et al., 2018). Alternatively, one could apply an
additive model, which is more flexible and allows OTU-specific
nonlinear effects (Wood, 2006). However, a larger sample size
may be needed to achieve good performance.

Finally, the distribution of OTU abundances is very skewed,
and a large number of OTUs are rare and of low-abundance.
For these rare OTUs, their sampling variability is very large.
Accommodating the sampling error in the predictive model
could potentially improve the prediction performance. Jointly
modeling the microbiome and the outcome data is thus a
promising direction. We leave these extensions as our future
work.
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