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Abstract: Current therapeutic modalities to treat urethral strictures are associated with several
challenges and shortcomings. Therefore, significant strides have been made to develop strategies
with minimal side effects and the highest therapeutic potential. In this framework, electrospun
scaffolds incorporated with various cells or bioactive agents have provided promising vistas to repair
urethral defects. Due to the biomimetic nature of these constructs, they can efficiently mimic the
native cells’ niches and provide essential microenvironmental cues for the safe transplantation of
multiple cell types. Furthermore, these scaffolds are versatile platforms for delivering various drug
molecules, growth factors, and nucleic acids. This review discusses the recent progress, applications,
and challenges of electrospun scaffolds to deliver cells or bioactive agents during the urethral defect
repair process. First, the current status of electrospinning in urethral tissue engineering is presented.
Then, the principles of electrospinning in drug and cell delivery applications are reviewed. Finally,
the recent preclinical studies are summarized and the current challenges are discussed.

Keywords: regenerative medicine; tissue engineering; electrospinning; urethra; drug delivery;
cell delivery

1. Introduction

Urethral stricture (US) is characterized by fibrosis of the tissues surrounding the
urethral lumen that restricts the easy flow of fluids. While US is rare in females, it mainly
affects the male population. In this regard, it is estimated that the incidence of US in males
is about 1% after age 55 [1]. Urethral infections, overactive bladder, and traumatic injuries
are the leading causes of US in females; while, iatrogenic damages, idiopathic, traumatic,
and inflammatory events are the primary causes of US in males [2,3].

US commonly manifests with other symptoms such as urinary tract infection, urolithi-
asis, chronic inflammation, development of fistulas, and kidney injuries [4,5]. Therefore,
there is an urgent need to treat US; otherwise, it may lead to renal failure and a significant
reduction in the patients’ quality of life.

The success of the current treatment modalities is determined by the size and location
of the injury. US management strategies may vary from urethral dilatation and urethrotomy
to autologous tissue grafting and anastomotic urethroplasty [6,7]. In critically sized urethral
injuries, autologous tissues from various sources such as penile skin, oral mucosa, bladder
mucosa, and intestinal mucosa are used to bridge the defect site. However, these tissues
are not specialized to endure urine exposure, and their application may lead to additional
complications such as infection, fistula development, malignancy, graft failure, renal failure,
and recurrence of US [8,9]. Therefore, significant strides have been made to develop
alternative strategies. In this framework, tissue engineering has shed new light on the
next generation of urethral grafts. This group of technologies aims to develop artificial
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urethra by integrating biomimetic scaffolds, cell-based therapies, advanced drug delivery
systems, and signaling molecules [10,11]. To this end, numerous studies have combined
the principles of cell-based therapies, drug delivery, and tissue engineering to develop
potential treatment modalities for US [12,13].

Indeed, biomimetic tissue-engineered scaffolds are ideal candidates for US treatment,
as they can deliver various therapeutics such as cells and drugs. These constructs can be
engineered to target specific pathophysiological processes involved in US development,
induce tissue repair, trigger extracellular matrix secretion, and prevent the recurrence of
US [1,14]. Selecting an appropriate fabrication method is primarily important to engineer-
ing such a scaffold. Among various candidates, electrospinning has gained significant
therapeutic appeal. Based on biomimetic principles, electrospun scaffolds are highly similar
to architectural features of native tissue extracellular matrix (ECM) and can build a permis-
sive environment for cellular colonization, differentiation, and tissue remodeling [15,16].
Furthermore, electrospun scaffolds are ideal for developing drug-delivering urethral grafts
due to their high surface-to-volume ratio, high encapsulation efficacy, and controlled drug
release [17,18]. Excellent tensile strength, suturability, ease of fabrication, and tunable
degradation rate are other therapeutic footholds of electrospun scaffolds in urethral defects
repair [8].

This review discusses the recent progress, applications, and challenges of electrospun
scaffolds to deliver cells or bioactive agents during urethral defects repair. First, the current
status of electrospinning in urethra tissue engineering is presented. Then, the principles
of electrospinning in drug and cell delivery applications are reviewed. Finally, the recent
preclinical studies are summarized and the current challenges are discussed.

2. Pathophysiology of US, Its Etiology, and Current Treatment Options

The urethra lumen is lined with a pseudo-stratified columnar epithelium consisting
of several layers of epithelial cells supported by a basement membrane [19]. Generally,
all damages to the urethra epithelium or corpus spongiosum may potentially cause US.
After the injury, where the inherent healing activity of epithelium fails to replace the lost
cells, this layer is substituted with squamous metaplasia [20,21]. Small defects in the
metaplastic tissue result in urine extravasation that subsequently causes the infiltration of
polymorphonuclear cells to the injury site. These cells and the myofibroblast cells trigger a
fibrotic reaction that finally results in the US [22,23]. In this process, the normal connective
tissue of the urethra dramatically changes, and the ratio of type III to type I collagen
decreases. Furthermore, smooth muscle cells are gradually replaced with dense collagen
fibers, and the elasticity of the whole construct is compromised (Figure 1) [1,24].

The anterior US commonly occurs after traumatic injuries or infections in which the
injured parts of the corpus spongiosum undergo fibrosis and cause the narrowing of the
urethral lumen. In contrast, stenosis in the posterior urethra is not generally classified as
true strictures. In this condition, iatrogenic causes or traumatic injuries, such as pelvic
fractures, radical prostatectomy, and pelvic radiation cause a fibrotic reaction that narrows
the lumen of the posterior urethra [6,25].

The etiology of US may involve various factors such as idiopathic causes, iatrogenic
injuries, traumatic events, infectious diseases, and Lichen sclerosus [26,27]. However,
there are still cases with unknown etiology. While in western countries, the iatrogenic
causes account for the majority of disease etiology, US in developing countries is primarily
caused by infectious diseases and traumatic injuries [28,29]. Lichen sclerosus is a chronic
inflammatory response of the skin with a predilection for the genital region, that can cause
obstructive urethral scarring [30].
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Figure 1. Schematic illustration representing the pathophysiology of urethra stricture. Stage 1 shows 
mucosal fold. In this stage, minor defects in the metaplastic tissue cause urinary extravasation that 
triggers the establishment of a fibrotic reaction. Increased deposition of ECM components results in 
the progression to further stages of US. Stage 2, shows Iris constriction. In stage 3, the fibrotic reac-
tion has penetrated the spongiosum and caused a minimal fibrosis in the spongy tissue. Stage 4 
shows full-thickness spongiofibrosis. In stage 5, fibrosis has penetrated the tissues outside the cor-
pus spongiosum. In stage 6, a complex US has formed that is usually accompanied by a fistula. 

The anterior US commonly occurs after traumatic injuries or infections in which the 
injured parts of the corpus spongiosum undergo fibrosis and cause the narrowing of the 
urethral lumen. In contrast, stenosis in the posterior urethra is not generally classified as 
true strictures. In this condition, iatrogenic causes or traumatic injuries, such as pelvic 
fractures, radical prostatectomy, and pelvic radiation cause a fibrotic reaction that nar-
rows the lumen of the posterior urethra [6,25]. 

The etiology of US may involve various factors such as idiopathic causes, iatrogenic 
injuries, traumatic events, infectious diseases, and Lichen sclerosus [26,27]. However, 
there are still cases with unknown etiology. While in western countries, the iatrogenic 
causes account for the majority of disease etiology, US in developing countries is primarily 
caused by infectious diseases and traumatic injuries [28,29]. Lichen sclerosus is a chronic 
inflammatory response of the skin with a predilection for the genital region, that can cause 
obstructive urethral scarring [30]. 

Different treatment options have been developed to alleviate US. In this regard, ure-
thral dilation with various instruments such as balloons, sounds, and catheters has been 
used to increase the caliber of obstructed urethra [31]. However, this treatment strategy 
stretches the urethra’s wall and may introduce some defects. Therefore, urinary extrava-
sation is possible after urethral dilation, explaining the high recurrence rate of US follow-
ing this treatment. In addition, this treatment is not curative, as it does not cure the fibrotic 
lesion but only corrects its symptoms, leaving in place the mechanisms underlying the 

Figure 1. Schematic illustration representing the pathophysiology of urethra stricture. Stage 1 shows
mucosal fold. In this stage, minor defects in the metaplastic tissue cause urinary extravasation that
triggers the establishment of a fibrotic reaction. Increased deposition of ECM components results
in the progression to further stages of US. Stage 2, shows Iris constriction. In stage 3, the fibrotic
reaction has penetrated the spongiosum and caused a minimal fibrosis in the spongy tissue. Stage 4
shows full-thickness spongiofibrosis. In stage 5, fibrosis has penetrated the tissues outside the corpus
spongiosum. In stage 6, a complex US has formed that is usually accompanied by a fistula.

Different treatment options have been developed to alleviate US. In this regard, ure-
thral dilation with various instruments such as balloons, sounds, and catheters has been
used to increase the caliber of obstructed urethra [31]. However, this treatment strategy
stretches the urethra’s wall and may introduce some defects. Therefore, urinary extravasa-
tion is possible after urethral dilation, explaining the high recurrence rate of US following
this treatment. In addition, this treatment is not curative, as it does not cure the fibrotic
lesion but only corrects its symptoms, leaving in place the mechanisms underlying the
appearance of the lesion. Therefore, at best, it can only be considered a temporary treatment
allowing the surgeon to implement a complete strategy [32,33].

With the advent of direct visual internal urethrotomy (DVIU), the use of blind urethra
dilation has been considerably limited. In this technique, a cold-knife longitudinal incision
at the stricture site is made to release the scar tissue under the surgeon’s direct vision using
a cystoscope [34,35]. Besides cold-knife, various lasers have been widely used for internal
urethrotomy [36]. Generally, the success rate of this procedure is determined by the size and
location of the injury. Risk factors for recurrent US are the previous attempts at urethrotomy,
large-sized urethral defects (>2 cm), infection, US at the penile or membranous urethra, and
strictures at different locations. The shortcomings of this technique include hemorrhage,
recurrent US, urine extravasation, and perineal hematoma [37,38].
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Application of temporary or permanent stents after dilation or internal urethrotomy
has also been proposed. However, their various complications, such as infection, high rate
of lumen obstruction, stent movement, and chronic pain, have led to their low success
rate [39,40].

The success rate of reconstructive urethroplasty is much higher than other existing
strategies. Therefore, urethroplasty is considered the gold standard of US treatment. In this
framework, various methods such as end-to-end cooptation (anastomosis), onlay grafting,
and the use of flaps have been developed [14,41]. The end-to-end anastomosis technique is
often utilized to treat injuries less than 2 cm [42]. On the other hand, the graft urethroplasty
technique is used to treat injuries >2 cm, as the end-to-end anastomosis will not be tension-
free in these cases. In this method, tissue grafts from various sources such as the skin,
the bladder, the oral mucosa, and the intestinal mucosa are harvested to bridge the defect
site [43,44]. However, these tissues are not specialized for urine exposure. As a result,
complications such as infection, fistula development, malignancy, graft failure, renal failure,
and US recurrence may arise [8,14].

As shown, the current treatment options are minimal, with numerous drawbacks.
Fortunately, regenerative medicine has broken new grounds to address this dilemma.

3. Pros and Cons of Potential Cell Sources to Repair Urethra Defects

Cells from different lineages are available to repair urethral defects. In this context,
several cell types including autologous urothelial cells, smooth muscle cells, cells derived
from buccal mucosa, mesenchymal stem cells, endothelial progenitor cells, embryonic stem
cells, and induced pluripotent stem cells are available [45–47].

MSCs are a multipotent source of stem cells that can differentiate into cells from various
lineages. MSCs from different sources such as adipose tissue, bone marrow, amniotic
membrane, menstrual blood, urine, Wharton’s jelly, umbilical cord blood, etc., may be
used [48,49]. The primary mechanism by which these cells may contribute to urethra defect
repair is through paracrine secretions. It has been shown that the secretome of MSCs
possesses immunomodulatory properties that can alleviate the hyperactive inflammation
at the US site and reduce fibrotic reactions [50,51]. Furthermore, the proangiogenic function
of these cells may facilitate the cell delivery vehicle’s vascularization, promote cell survival,
and prevent graft failure [52,53]. Castiglione et al. showed that local injection of adipose-
derived stem cells (ASCs) could successfully prevent US and urodynamic complications in
a rat model of US [54]. Luo et al. reported that local injection of bone marrow MSCs, or their
extracellular vesicles, alleviated US and prevented renal dysfunction in a rat model [55].
Although mal-differentiation of MSCs has not been reported in previous studies, none of
these studies have investigated the adverse effects of urine exposure on mal-differentiation
of MSCs. There is the possibility of MSCs carcinogenicity upon contact with urine, as these
cells are not specialized to endure toxic substances in the urine [56].

Endothelial progenitor cells (EPCs) are circulating cells that attach to the site of
ischemic injuries and participate in neovascularization. These cells share many sur-
face markers with vascular endothelial cells and have been extensively studied to treat
hypoxia/ischemia-induced tissue injuries [57]. Seeding these cells on the cell delivery
vehicle may promote its vascularization and facilitate the tissue integration of the graft [58].
However, the paucity of these cells in the circulation poses a significant challenge for their
clinical translation [59]. Chen et al. showed that co-transplantation of MSCs and EPCs via
a decellularized human amniotic membrane could repair a 3-cm urethral defect in a canine
model by preventing scar tissue formation and promoting angiogenesis [60].

The buccal mucosa is an epithelium lining the oral cavity from the inner surface of
the cheeks and lips to their attachment with the alveolar ridge. The epithelial cells of this
mucosal layer are stratified with high resistance against heat and physical damage [61,62].
The high healing activity of this epithelium may be due to the presence of progenitor
cells in its basal layer. Cells isolated from the buccal mucosa are favored in urethroplasty
procedures because of their ease of harvest and compatibility with wet environments [63,64].
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However, complications such as donor site scarring, numbness, pain in opening the mouth,
and mucosa dryness are this technique’s disadvantages [65]. Xie et al. isolated keratinocytes
and fibroblast cells from the buccal mucosa and seeded them onto a silk fibroin matrix to
develop a potential treatment modality for US. Cell-scaffold constructs showed no signs of
US and formed a stratified epithelium in the injury site [66].

IPSCs are pluripotent stem cells generated by transfection of somatic cells with Myc,
Oct3/4, Sox2, and Klf4 genes. The appeal toward these cells is rising, as these cells can
differentiate into cells from three germ layers [67]. However, the differentiation potential
of iPSCs depends on the origin of the cells, and it can be challenging to differentiate cells
into the target lineage. On the other hand, these cells can potentially form teratoma and
delivery of these cells by current cell delivery systems is challenging, because iPSCs require
particular feeder layer substrates for adhesion and colonization [68,69]. On the positive
side, urological cells can be produced via the differentiation of iPSCs in vitro. In this regard,
Li et al. produced smooth muscle progenitor cells from iPSCs to repair urethra sphincter
injury. The obtained cells expressed the phenotypical markers of smooth muscle cells and
were engrafted at the injury site [70].

Embryonic stem cells are pluripotent cells isolated from the embryo’s inner cell mass.
The isolation method of these cells poses a significant ethical challenge for their clinical
translation. Furthermore, these cells may develop teratoma upon in vivo administration.
Therefore, clinical use of these cells in medical practice seems unreachable in the coming
years [71,72]. Like iPSCs, embryonic stem cells have potential applicability in urethra
defects repair by differentiation into urothelial cells and smooth muscle cells. In this
framework, smooth muscle cells were produced by differentiation of human embryonic
stem cells and studied for their ability to restore urethra sphincter dysfunction following
injury. This approach could significantly improve the sphincter function with no adverse
effects [73]. Currently, preclinical data regarding the application of iPSCs and embryonic
stem cells in the US treatment is lacking. Nevertheless, we believe that these cells have
tremendous potential to treat US. However, various safety checks and long-term follow-up
studies must be implemented before any clinical trial can occur. Furthermore, the ethical
issues with the use of embryonic stem cells should be kept in mind.

The urothelium layer of the urethra is exposed to urine and protects the deeper
compartments against urinary extravasation. Therefore, this layer is the first line of defense
against the potential US. The success of any tissue-engineered urethra relies on perfectly
mimicking this layer on the construct’s lumen. Otherwise, the US recurrence would be
inevitable [74,75]. Three different factors guarantee the impermeability of this layer to
urine. First, the asymmetric membrane structure of the umbrella cells consists of uroplakin
plaque, which prevents direct urine penetration. Second, the occluding junctions between
the upper cells block the paracellular path for urinary extravasation. Finally, the glycocalyx
of these cells helps in the development of the urine–blood barrier [8].

The healing function of urothelial cells to treat urethral defects has been well-
documented in previous studies [45,61,76]. Sievert et al. used a collagen type I carrier
system to transplant urothelial cells into a Minipig model of urethral defect. Results showed
that the transplanted cells successfully homed to the injury site without any rejection or
inflammatory responses. Immunofluorescence studies showed that the transplanted cells
had preserved their phenotypical markers and developed tight junctions with the resi-
dent cells [77]. Despite promising results, applying autologous sources of urothelial cells
may be challenging. Low isolation yield, complex culture procedures, maintenance of
urothelial progenitor cells stemness, and compromising the urothelium’s integrity upon
cell harvesting are to be considered [75,78].

Cell-seeded scaffolds push the regeneration response of the injured urethra toward
the natural healing response in small-sized injuries [14]. However, the lack of an organized
muscular layer is the principal disadvantage of many recent studies. Urethra smooth muscle
cells preserve the contractility of the channel and facilitate urine’s easy passage [79,80].
Therefore, a smooth muscle cell layer on the outer surface of the cell delivery system
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is crucial. In this context, Silva et al. compared the healing function of smooth muscle
cells-seeded collagen tubes with cell-free ones. They observed that cell-delivering scaffolds
had a significantly lower rate of stricture and infiltration of polymorphonuclear cells than
their cell-free counterparts [81].

It seems that the use of urothelial cells on the luminal surface and a smooth muscle
layer on the outer surface of the urethral grafts is the key to the success of a cell delivery
system for US treatment. However, factors such as ethical issues, mal-differentiation of
the seeded cells, availability of the cell source, and the effects of urine exposure on cell
survival/differentiation need to be kept in mind. Furthermore, the use of non-specific cells
may alter the tissue-engineered construct’s function in a long-term perspective.

4. Bioactive Agents That Can Prevent US

Drug-delivering urethra grafts are gaining momentum to prevent US recurrence [82].
In this framework, various drugs such as, mitomycin C [83], inhibitors of the Wnt/β-
catenin signaling pathway (ICG-001, IWR-1, and PRI-724) [84], TGF-β signaling pathway
inhibitors (EW-7197) [85], triamcinolone [86], methylprednisolone [87], and captopril have
been explored to prevent US (for more information, please see reference [88]).

Paclitaxel is a lipophilic chemotherapy medication that is used to treat various types
of cancers. Recently, its anti-fibrotic potential has been utilized in urological procedures to
prevent fibrotic reactions [89]. For instance, Zhang et al. showed that intraperitoneal injec-
tion of Paclitaxel could alleviate tubulointerstitial fibrosis via suppressing the TGF-β/Smad
signaling pathway [90]. In another study, Zhang et al. showed that Paclitaxel could mitigate
the activation of renal interstitial fibroblast cells by suppressing STAT3 signaling [91]. Re-
cently, paclitaxel-eluting stents have been proposed to prevent US recurrence. Virasoro et al.
followed-up on the efficacy and safety of a paclitaxel-coated Optilume™ balloon in 53 male
subjects (Plymouth, MN, USA). Twelve-month follow-up showed that this system was
safe and could significantly prevent US recurrence [92]. Although this strategy effectively
prevented US recurrence, coating drugs on a balloon with or without hydrogel systems is
not effective in controlling drug release. In this technique, the incorporated drug is usually
released in a burst manner [93]. However, we need a sustained drug delivery system to
prevent US in the long-term applications.

Mitomycin C is a chemotherapeutic agent used to combat cancers such as breast, gas-
trointestinal, and bladder cancer. This drug is a potent DNA cross-linker and prevents DNA
transcription into mRNA, reducing the cancer cell’s ability to synthesize proteins [94,95].
In the context of urethral defect repair, the anti-fibrotic function of mitomycin c has caught
the attention of urologists. In this regard, Mazdak et al. investigated the anti-US potential
of mitomycin C in a randomized clinical trial. Forty patients with the anterior US were
included in this study, twenty of whom received urethral submucosal mitomycin C injec-
tion. Results showed that US recurrence rate in patients treated with mitomycin C was
significantly lower than the control group [96].

Paclitaxel and mitomycin C have the merits of being used in clinical practice. However,
given their anti-proliferative functions, incorporating these drugs into the cell delivery
system may suppress cell proliferation and ECM secretion. Therefore, co-delivery of these
drugs with the cell delivery platforms is not reasonable.

The role of the Wnt/β-catenin signaling pathway in fibrosis has been shown in pre-
vious studies [97]. Soluble Wnt proteins bind to their cell surface receptors, known as
Frizzled, and trigger intracellular signaling pathways, leading to the regulation of various
target genes expression involved in the fibrotic reactions (Figure 2) [98].
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shows the internalization of the receptor complex into the endosomal vesicles that causes the se-
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MVB and protects cytoplasmic β-catenin against proteasome degradation. In section (E), β-catenin 
is then carried to the nucleus and interacts with various transcription proteins such as LEF/TCF, 
p300, and CBP. (F) shows the termination of the signaling pathway. PKC-6 phosphorylates the β-
catenin, making it a target for ubiquitination with (TRIM)33. Then, the ubiquitinated β-catenin is 
degraded in the proteasome complex. (G) Wnt/β-catenin signaling pathway may also end with 14-
3-3ζ and Chibby (Cby). Abbreviations: Lipoprotein-related-receptor protein (LRP), dishevelled 
(DVL), adenomatous polyposis coli (APC), glycogen synthase kinase 3 (GSK3), and casein kinase 
1(CK1), T cell factor/lymphoid enhancer factor family (LEF/TCF), protein kinase C (PKC)δ, tripartite 
motif (TRIM)33, CREB-binding protein (CBP). Adopted from reference [99]. 

Indeed, disorders in the Wnt/β-catenin signaling pathway have turned out to be cor-
related with fibrogenesis in different tissues. Therefore, this signaling system may be a 
prime target for anti-fibrotic drugs [100,101]. Inhibitors of the Wnt/β-catenin signaling 
pathway, including ICG-001, IWR-1, and PRI-724, bind to different components of this 
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Figure 2. Schematic illustration representing the role of Wnt/β-catenin signaling pathway in fibrosis.
(A) shows the binding of Wnt to the frizzled receptor that forms a complex with LRP. (B) shows
the ubiquitination of the degeneration complex composed of DVL, Axin, APC, GSK3, and CK1.
(C) shows the internalization of the receptor complex into the endosomal vesicles that causes the
sequestration of the degeneration complex and suppression of GSK3. (D) GSK3 is then transferred to
MVB and protects cytoplasmic β-catenin against proteasome degradation. In section (E), β-catenin
is then carried to the nucleus and interacts with various transcription proteins such as LEF/TCF,
p300, and CBP. (F) shows the termination of the signaling pathway. PKC-6 phosphorylates the
β-catenin, making it a target for ubiquitination with (TRIM)33. Then, the ubiquitinated β-catenin
is degraded in the proteasome complex. (G) Wnt/β-catenin signaling pathway may also end with
14-3-3ζ and Chibby (Cby). Abbreviations: Lipoprotein-related-receptor protein (LRP), dishevelled
(DVL), adenomatous polyposis coli (APC), glycogen synthase kinase 3 (GSK3), and casein kinase
1(CK1), T cell factor/lymphoid enhancer factor family (LEF/TCF), protein kinase C (PKC)δ, tripartite
motif (TRIM)33, CREB-binding protein (CBP). Adopted from reference [99].

Indeed, disorders in the Wnt/β-catenin signaling pathway have turned out to be
correlated with fibrogenesis in different tissues. Therefore, this signaling system may be
a prime target for anti-fibrotic drugs [100,101]. Inhibitors of the Wnt/β-catenin signaling
pathway, including ICG-001, IWR-1, and PRI-724, bind to different components of this
signaling pathway and mitigate fibrosis. For instance, ICG-001 binds to CBP and acts as
an antagonist for the Wnt/β-catenin signaling pathway. Choi et al. investigated the anti-
fibrosis potency of ICG-001, IWR-1, and PRI-724 in a rat model of US. They showed that rats
treated with ICG-001 or PRI-724 demonstrated a significantly lower level of US and tissue
expression levels of collagen type I and alpha-smooth muscle actin genes [84]. In addition
to the Wnt/β-catenin signaling pathway, other signaling systems such as YAP/TAZ and
TGF-β signaling are involved in organ fibrosis. Therefore, antagonist drugs against these
signaling pathways may also be of therapeutic value in treating US (for more information,



Int. J. Mol. Sci. 2022, 23, 10519 8 of 37

please see reference [99]). For example, the TGF-β signaling pathway inhibitor, EW-7197,
has been found to prevent fibrosis in different disease models [102,103].

Triamcinolone is a glucocorticoid, utilized in the clinic to suppress hyperactivity of
inflammatory responses. This drug prevents US by decreasing ECM component synthesis
and suppressing pro-fibrosis inflammatory mediators [104]. In a randomized clinical
trial, Mazdak et al. showed that submucosal injection of triamcinolone (40 mg) could
significantly reduce US recurrence after 12 months of internal urethrotomy [105]. Zhou et al.
showed that co-administration of triamcinolone and 5-fluorouracil significantly reduced
US in a rat model by upregulating miR-192-5p expression [106]. Methylprednisolone is
another glucocorticoid that has found application in the management of US. Abdallah et al.
showed that intra-urethral injection of methylprednisolone could significantly prevent US
recurrence following DVIU [87].

Studies on US glucocorticoid treatment have focused on local injection following
urethrotomy. However, this administration method does not provide long-term drug
bioavailability. On the other hand, drug delivery by polymeric urethral grafts provides
better control over drug release profile [107]. It should be noted that the incorporation of
immunosuppressive drugs into the matrix of urethral grafts may increase the risk of urinary
tract infection (UTI) or the development of malignancies [108]. However, preclinical or
clinical data to support this theory are lacking.

Angiotensin II promotes tissue fibrosis via triggering the fibrotic reactions [109]. Cap-
topril can inhibit US via blocking angiotensin-converting enzyme and production of An-
giotensin II. In this context, Kumiawan et al. investigated the anti-fibrotic function of
captopril-loaded gel in a rabbit model of US. They showed that transurethral injection of
captopril gel significantly reduced US by decreasing the tissue expression levels of TGF-β1
and connective tissue growth factor (CTGF) [110]. In a phase II clinical trial, Shirazi et al.
showed that captopril gel could prevent US recurrence and increased urine flow without
adverse reactions [111].

Generally, these drugs can be loaded into the electrospun scaffolds to combat US
recurrence. However, the effects of the electrospinning process on the loaded drugs’
biological activity should be considered [18].

5. General Characteristics of Cell and Drug Delivery Systems to Treat Urethra Defects

The natural healing process in the urethra involves the interplay between multiple
role players, such as growth factors, cytokines, cell-to-cell contacts, secretome of resident
and migratory cells, and various signaling pathways [112–114]. Therefore, polymer-only
scaffolds are unsuitable for repairing urethral defects and must be engineered to provide
multiple biological and biophysical cues [53]. In this framework, significant strides have
been made to incorporate different cells and bioactive agents into the matrix of tissue-
engineered scaffolds to improve their healing activity (Table 1).

Although cells can be directly injected at the site of injury, various complications such
as cell migration, lymphatic drainage, low cell survival, and off-target homing compromise
the healing function of the administered cells [115]. In contrast, delivery via a carrier
system can protect cells against environmental factors, localize them at the site of injury,
and improve their biological activity [116]. However, the complexity of the native cells niche
requires a versatile approach to delicately engineer a delivery system that provides essential
cues for cells’ survival, colonization, and differentiation [117,118]. In particular, stem cell
delivery via biomaterials-based delivery systems is challenging because the differentiation
program of stem cells is governed by various parameters such as the biophysical properties
of their microenvironment, spatiotemporal exposure to various biological cues, and their
surface receptors’ interactions with biological macromolecules [119]. In the context of
urethral tissue engineering, different cell delivery systems such as hydrogels, porous
scaffolds, decellularized tissues, fibrous scaffolds, bioprinted scaffolds, and self-assembled
ECM are available [120,121].
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An ideal cell delivery vehicle for urethra tissue repair should possess various function-
alities such as sufficient mechanical strength to shield cells against external forces, suturabil-
ity, ability to preserve cells’ biological function through providing biochemical/biophysical
cues, biocompatibility, appropriate biodegradation time in a way that its degradation keeps
pace with the tissue regeneration process, selective permeability to urine and nutrients, and
a porous structure to allow cell ingrowth and vascularization [10,53,61,78]. However, man-
ufacturing such a complex system with the existing technology looks pretty demanding.

Generally, natural polymers-based cell delivery systems have excellent biocompati-
bility, but their poor biodegradation rate and low mechanical strength hamper their cell
delivery applications in urethra defects repair [122]. On the other hand, synthetic polymers
have excellent mechanical properties and tunable biodegradation. However, due to the lack
of cell adhesion moieties and high hydrophobicity, cell tendency toward these polymers
is poor, resulting in a significant reduction in cell survival [123,124]. Therefore, one can
fabricate a hybrid delivery system by blending synthetic and natural polymers. In this way,
the delivery system supports cells’ survival and colonization; while buying enough time
for the resident cells to replace the artificial scaffold with their ECM [125].

The delivery system for adherence-dependent cells should provide cell recognition
sites for cell adhesion and survival; otherwise, the cell-to-cell interactions will surpass
cell–material interactions that cause the cells aggregation within the delivery system and
their apoptosis (Figure 3) [119]. Integrins are principle cell surface receptors that mediate
cell binding to ECM components such as collagen, fibronectin, and vitronectin. These
polymers possess RGD moieties in their structure, and integrins bind to these peptides.
Therefore, delivery systems for these cells should contain RGD-bearing polymers or be
functionalized with RGD moieties [126].
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Figure 3. Schematic illustration representing the interaction of cells with RGD-free and RGD-
incorporated surfaces.

Selective permeability to urine and nutrients is the crucial factor in the success of a cell
delivery vehicle in urethral defects repair. While the diffusion of nutrients is essential for
the survival of the seeded cells, the delivery system should prevent urinary extravasation
and subsequent fibrotic reaction [127]. However, current scaffold fabrication methods fail to
produce such a smart membrane. Therefore, the tissue–urine barrier can only be achieved
via effective differentiation of urothelial cells in the cell-delivery system [128].

An appropriate biodegradation rate guarantees that the delivery system will preserve
its structural integrity until the cells can build their niche. A high biodegradation rate may
cause the graft’s failure and swelling. On the other hand, a slow biodegradation rate may
cause foreign body reactions and chronic pain after graft’s implantation [129].

Incorporating bioactive agents can enhance the healing activity of polymer-only scaf-
folds. In this context, various growth factors, signaling molecules, cytokines, and small
drug molecules are available to enhance the bioactivity of the urethral grafts [130,131].
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However, the spatiotemporal control over the release of these agents is of prime importance.
This issue is fundamental when fabricating a dual-function delivery system for cells and
bioactive agents. In this scenario, the dose-dependent effects of the bioactive agents on
cellular behavior must be investigated [93]. An ideal drug carrier for urethra tissue repair
should encapsulate the bioactive agents without damaging their biological activity, possess
a sustained drug release profile, preserve its structural integrity in long-term applications,
possess a homogenous drug distribution all over the matrix, and have a tunable drug
release [132–134].

Different mechanisms govern the release profile of bioactive agents from polymeric
scaffolds. First, the diffusion of the bioactive agents due to the concentration difference
is the primary driving force in the release profile. Second, the swelling of the polymeric
matrix upon contact with the physiological fluids may repulse the bioactive agents out of
the matrix. Finally, gradual degradation of the polymeric matrix may explain the sustained
drug release from the carrier system (Figure 4) [135].
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urethra grafts.

Table 1 summarizes the recent applications of different drug and cell delivery systems
to treat urethral defects. As shown, most of the studies have been focused on hydrogel
systems or decellularized scaffolds. Poor mechanical strength and fast biodegradation are
the significant disadvantages of hydrogel systems for cell or drug delivery applications.
Although these drawbacks can be addressed by increasing the cross-linking degree, exces-
sive cross-linking may sacrifice the hydrogel’s injectability [136,137]. On the other hand,
decellularized scaffolds cannot be efficiently functionalized with anti-fibrotic reagents.
Therefore, the ideal cell or drug delivery system for urethral defects repair should be easily
sutured at the injury site, have functionalization capability, and allow urine passage [14,46].
Fortunately, electrospun scaffolds meet all these criteria.



Int. J. Mol. Sci. 2022, 23, 10519 11 of 37

Table 1. Summary of previous applications of cell and drug delivery systems to treat urethra defects.

Polymer/s. Delivery System Cell/Drug Type Fabrication Method Cell Type/s for In
Vitro Study In Vivo Model Experimental Results References

Polycaprolactone and fibrin Hydrogel Urothelial cells and
smooth muscle cells 3D printing Urothelial cells and

smooth muscle cells -

The produced delivery system had
comparable mechanical strength with

rabbit urethra and supported cell viability
up to 7 days after printing

[138]

Propylene glycol Hydrogel Mitomycin C Cross-linking - Clinical trial
Mitomycin C-loaded hydrogel could

significantly reduce the recurrence of US
after internal urethrotomy

[139]

Gelatin methacrylate and
pure collagen Bioprinted scaffold Bladder smooth

muscle cells Bioprinting Bladder smooth
muscle cells - Cells stayed viable in the printed scaffolds,

and cell density increased over time [140]

Poly l lactic acid, poly
D,L-lactic-co-glycolic acid,

and poly(L-lactic
acid-co-ε-caprolactone)

Porous sponge Adipose-derived
stem cells Lyophilization Adipose-derived

stem cells

New Zealand white
rabbit model of
urethra defect

Hypoxia-preconditioned stem cells
delivered via the porous scaffolds could
successfully repair urethral defects and

induced a robust angiogenesis

[141]

Poly [N-isopropyl
acry-lamide-co-n-butyl

methacrylate] poly
[NIPAAm-co-BMA]) and

hydrophilic blocks
(polyethylene glycol)

Hydrogel Buccal epithelial cells
Sol-gel transition was
obtained by changing

the temperature.
Buccal epithelial cells Clinical trial

The treated patients void well with a
normal mean peak flow rate. Two of the
six patients showed recurrent stricture at

18 and 24 months after treatment

[142]

TGP Hydrogel Buccal mucosal
epithelial cells

Thermo-reversible
gelation

Buccal mucosal
epithelial cells

Japanese white male
rabbit model of
urethra defect

Cells stayed viable in the hydrogel system
and differentiated into fibroblast-like cells.

Cell-loaded hydrogel system repaired
urethra defects and cells engrafted at the

injury site

[143]

No materials were used tubular scaffold Human mesenchymal
stem cells Self-assembly Human mesenchymal

stem cells Nude rat model
scaffolds showed two layers of cells and
no stricture after implantation into the

nude rat
[144]

Natural ECM

Decellularized
bladder matrices

obtained from
lamina propria

Autologous bladder
epithelial and smooth

muscle cells
Decellularization

Autologous bladder
epithelial and smooth

muscle cells

Rabbit model of
anterior penile
urethra defect

Cell-seeded tubular matrices showed a
wide urethral caliber with no strictures. In

addition, a transitional cell layer was
formed in the cell-seeded matrix group,

and the newly developed urethra
showed contractility

[145]
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Table 1. Cont.

Polymer/s. Delivery System Cell/Drug Type Fabrication Method Cell Type/s for In
Vitro Study In Vivo Model Experimental Results References

Silk fibroin and
a nanoporous

bacterial cellulose

Porous Bilayer
scaffold

Lingual Keratinocytes
and muscle cells

Freeze-drying and
self-assembling

Lingual keratinocytes
and muscle cells

Canine model of
urethra defect

Microstructure studies showed that the
seeded cells could adhere to the scaffolds.

Cell-seeded urethral grafts showed
superior healing function over

cell-free ones

[146]

Bacterial cellulose 3D porous scaffold Lingual keratinocytes Biosynthesis via
bacterial species Lingual keratinocytes

New Zealand White
male rabbit model of

urethra defect

In scaffolds seeded with lingual
keratinocytes, the caliber of the urethras

was wide open and a continuous
epithelium was formed

[147]

Natural ECM
Decellularized

human amniotic
scaffolds

Allogeneic bone
marrow mesenchymal

cells and/or
endothelial

progenitor cells

Decellularization

Bone marrow
mesenchymal cells
and/or endothelial

progenitor cells

Canine model of
circumferential
urethral defect

Animals treated with cell-seeded scaffolds
showed unhindered urination and wide

open urethra caliber. Furthermore,
extensive vascularization was observed in

this group

[60]

Natural ECM 3-D porous small in-
testinal submucosa

Urothelial and
smooth muscle cells
that were produced
from the differentia-
tion of urine-derived

stem cells.

Decellularization

Urine-derived stem
cells differentiated
into urothelial cells

and smooth
muscle cells.

Cell-seeded scaffolds
were implanted into

Athymic mice

The seeded cells developed uniform layers
on the scaffold and penetrated deep into

the inner parts
[148]

Poly-D,L-lactide-co-
εcaprolactone

Bilayer polymeric
matrix

Allogenic mesenchy-
mal stem cells Casting and air drying Mesenchymal

stem cells

Chinchilla rabbit
model of

urethra defect

Cell-seeded scaffolds showed integration
with the urethra tissue with no adverse

tissue reactions. Delivered cells expressed
cytokeratin marker AE1/AE3, implying

their potential differentiation into
neo-urothelium

[149]

Natural ECM Acellular matrix

Endothelial
progenitor cells that

secrete antibiotic
peptide LL37

Decellularization Endothelial
progenitor cells

New Zealand white
Male rabbit model of

urethra defect

Antipoetic-delivering cells seeded on the
acellular matrix could successfully repair

critical-sized urethra defects
[150]

Gelatin, poly l lactic acid,
and silk fibroin

Porous tubular
scaffolds

Mitomycin C and
epidermal growth

factor
Freeze drying

Urethral epithelial
cells and urethral

scar-derived
fibroblast cells

-
The proportion of Urethral epithelial cells
was significantly increased when cultured

on the drug-loaded system
[151]



Int. J. Mol. Sci. 2022, 23, 10519 13 of 37

Table 1. Cont.

Polymer/s. Delivery System Cell/Drug Type Fabrication Method Cell Type/s for In
Vitro Study In Vivo Model Experimental Results References

Poly-l-lactic acid and
poly-dl-lactic acid Tubular scaffold Paclitaxel Casting - Male rabbit model of

urethra defect

The drug-eluting stent could successfully
prevent US, reduced inflammation, and

alleviated fibrotic reactions
[152]

Poly-L189
lactide-co-caprolactone
(PLC) and Polyethylene

glycol diacrylate (PEGDA)

Polyurethane
double pig-tailed

ureteric stent
spray-coated with

Mitomycin
C-loaded PLC and

overlaid with
PEGDA hydrogel.

Mitomycin C Spray coating and
cross-linking HBdSF cells Porcine model

The developed system released the loaded
drug sustainably and could deliver the

drug to urothelium with no adverse effects
[153]

Collagen A synthetic catheter
coated with collagen

Insulin-like growth
factor 1 (IGF-1)

Coating on a
synthetic catheter HUEpCs cell line

Japanese white rabbit
model of

urethra defect

Animals treated with IGF-1/collagen-
impregnated catheters had significantly
bigger urethra caliber than other groups

[154]
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6. Principles of Electrospinning

The electrospinning technology is based on spinning a conductive droplet of a poly-
meric solution under a high voltage in an electrostatic field. In this technology, polymers
are dissolved in a solvent that are then loaded into a syringe pump with a metal nee-
dle [155,156]. A positive high voltage is then applied to the needle and the solution is fed
under a constant rate (usually 0.5–2 mL/h) (Figure 5a) [157]. The solvent gets charged
under the electrostatic field when exposed to a positive high voltage. By increasing the
magnitude of high voltage, the electrostatic forces gain sufficient energy to surpass surface
tension charges and the polymeric solution turns into a conical shape, known as the Taylor
cone [15,17]. Then, the Taylor cone tends to eject toward the collecting mandrel and starts
to form a polymeric jet. The solvent in the polymeric jet vaporizes and increases its surface
charge. Then, the jet destabilizes and separates into multiple jets while travelling toward
the collector [16,158].
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method to preserve the biological activity of bioactive agents.

The conventional electrospinning method has a low production yield and cannot be
utilized for the mass production of fibrous scaffolds. This drawback can be addressed by
increasing the number of spinnerets (Figure 5b) [159]. Furthermore, many solvent systems
are incompatible with bioactive agents and damage their structure and function. Notably,
growth factors are susceptible to organic solvents and lose their biological activity upon
contact with these chemicals [18]. Core-shell electrospinning method can address this
issue. In this method, the bioactive agent is dissolved in a compatible solvent (usually
aqueous solvents) and spun in the core. At the same time, the shell part of the fibers can be
a polymeric solution with any solvent system (Figure 5c) [160].

Various properties of electrospun fibers, such as their alignment, surface topography,
morphology, average diameter, and porosity can be tuned by altering the fabrication
parameters. In this regard, the effects of different factors on these properties have been
studied (Table 2).
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Table 2. Parameters affecting the properties of electrospun fibers.

Parameter Effects References

The molecular mass of
the polymer

Polymers with low molecular mass tend to form beads, while higher molecular mass
results in fibers with a more uniform structure [161]

Viscosity The higher molecular mass and polymer concentration increase the viscosity of the
polymeric solution. As a result, viscose solutions tend to produce thicker fibers [162]

Surface tension
Increasing the polymer concentration reduces the surface tension and leads to fibers
with a continuous and uniform structure. Changing the solvent system or adding
surfactant can also alter surface tension

[163]

Conductivity The polymeric solution’s conductivity affects the fibers’ mean fiber size and
morphology. Incorporation of salts or polyelectrolytes can improve conductivity [164]

Applied voltage High voltages decrease the average fiber diameter. Furthermore, high voltages stretch
the fibers and align the polymeric chains, increasing fibers’ crystallinity [165]

Solution flow rate The average fiber diameter will increase with higher flow rates and vice versa [166]

Needle to collector
distance

The increase in the fiber receiving distance to a certain extent will produce ultrafine
fibers. Therefore, the distance should be optimized for every polymeric solution;
otherwise, disintegrated or beady fibers will be produced

[167]

Properties of the receiver

The architecture and morphology of the fibers can be determined by using different
collectors. Increasing the collector’s rotation rate increases the alignment of fibers. In
addition, 3D electrospun matrices can be produced when fibers are spun into a liquid
coagulation bath

[168,169]

Humidity Humidity can alter the solvent’s humidity and cause fibers’ fusion [170]

Temperature
Temperature can alter viscosity, solvents’ volatility, and surface tension. In addition,
high-temperature results in rapid solvent evaporation and reduces the flying time,
thereby increasing fibers’ diameter

[171]

Air pressure The air pressure affects the solvent’s volatility and jet stability. However, fibers with a
uniform structure and consistency can be produced when spun at a constant air pressure [172]

7. Principles of Cell Delivery via Electrospun Scaffolds

The natural niche of cells is composed of tissue-specific microenvironmental factors
that control cells’ behavior and preserve their biological functions. In this context, a
diverse range of biochemical and biophysical cues such as growth factors, cytokines, the
architecture of ECM, the composition of ECM, mechanical properties, bioelectrical cues,
surface topography, cell-to-cell contacts, and intercellular communications by extracellular
vesicles (EVs) have been found to affect cellular behavior and function [173–175]. Therefore,
an ideal electrospun cell delivery vehicle should mimic this complex network (Figure 6).

Growth factors and cytokines are bound to ECM components, and their exposure to
cells is tightly regulated. In particular, fibroblast growth factor family members adhere
to ECM’s heparan sulphate and are released on demand [176,177]. Furthermore, the
ECM can serve as a reservoir for different ligands, developmental factors, and bioactive
fragments [178]. Although electrospun fibers have a high surface-to-volume ratio and can
be functionalized with these biochemical cues, the complexity of interactions between these
factors and ECM components poses a significant challenge in developing an artificial niche
by electrospinning method.
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system. Cells bind to different niche components with surface receptors, thus activating the cell
anchorage-dependent signaling pathways. Cells respond to topographical cues and biomechanical
forces by altering their cytoskeleton and various signaling pathways. EVs derived from neighboring
or distant cells are internalized into the seeded cells and mediate intercellular communications.
Bioelectrical cues regulate cellular function by ionic flows from ionic channels. Growth factors and
cytokines bind to cellular receptors and convey messages to the cytoplasm or nucleus by a diverse
range of signaling pathways.

The web-like structure of electrospun scaffolds is highly similar to ECM architec-
ture. However, the composition of natural ECM cannot be recapitulated by electrospin-
ning [158,179]. The natural ECM comprises various components such as collagen, elastin,
proteoglycans, and glycoproteins. While a small proportion of these components can be
electrospun by blending with other polymers, electrospinning of only these components
is not possible [53]. Therefore, mimicking the exact composition of natural ECM by the
electrospinning method cannot be achieved. ECM is not just the sum of molecules such
as collagen, elastin, or GAG, but an organized system with a fine network controlled by
several dozen other proteins to ensure its function. For example, elastin molecules are
entirely different from the elastic network and the elastic function, and we can have much
elastin without having any elastic network [180].

Cells perceive the mechanical properties of their microenvironment by various surface
receptors, focal adhesions, nuclear signaling factors, and mechano-sensors [181,182]. Given
the importance of the mechanical cues in controlling cellular behavior, the mechanical
properties mismatch between native tissues ECM and electrospun scaffolds need to be
addressed. This difference in mechanical properties can be explained by composition dis-
crepancies, hydration status, and degree of cross-linking [53]. Furthermore, the mechanical
properties of electrospun scaffolds can be tuned by changing the polymer type, altering the
degree of cross-linking, and incorporating filler materials [183].

Bioelectrical cues convey regulatory messages to the nucleus by endogenous ionic
flows. These signaling systems affect cellular behavior, regulate tissue regeneration mecha-
nisms, and are involved in the initial development of organs [184]. Unfortunately, many of
the existing polymers for urethra tissue engineering are not electrically conductive. This
property can be imparted to electrospun cell delivery systems by incorporating conductive
filler materials such as carbon nanotubes or metallic nanoparticles [185]. However, the cell
delivery system for urethra tissue repair does need to be conductive.

Seeded cells on electrospun cell delivery systems may respond to their surrounding
surface topography by expressing different focal adhesion complexes. For example, cells
rearrange their cytoskeletal actin in response to changes in surface topography. In this
regard, the essential role of Rho-associated kinases has been proven in previous stud-
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ies [186–188]. Furthermore, focal adhesion kinases (FAK) mediate cellular responses to
surface topographies [189]. However, identifying tissue-specific surface topographies and
their introduction onto the electrospun cell delivery systems are challenging. Generally,
electrospun scaffolds have a smooth surface and cannot mimic this feature of cell niche.
Therefore, new fabrication methods need to be developed to address this issue.

Various surface proteins on the neighboring cells mediate the intercellular commu-
nications. Furthermore, cells send messages to their neighboring cells by EVs. These
membrane-packed vesicles contain miRNAs, mRNA, DNA, and proteins that can cause a
behavioral change in the recipient cells [190,191]. The composition and function of these
vesicles depend on their microenvironment. For instance, it has been shown that the cells
exposed to hypoxic conditions secrete EVs with a higher content of proangiogenic miR-
NAs [192,193]. Therefore, the electrospun cell delivery system may potentially affect this
signaling system. However, no previous study has investigated this phenomenon so far.

8. Principles of Drug Delivery with Electrospun Scaffolds

The complexity of US pathophysiology requires a versatile approach to develop effec-
tive treatment strategies. Even though electrospun scaffolds recapitulate some features of
the native urethra tissue, their bioactivity is not sufficient to prevent US recurrence [16,194].
Therefore, anti-fibrotic bioactive agents should be incorporated into their matrix or im-
mobilized onto their surface. In this regard, various methods such as blending with the
polymeric solution, physical adsorption, use of nanoparticles, layer-by-layer surface coat-
ing, and surface immobilization technologies have been proposed to functionalize the
electrospun scaffolds (Figure 7) [93,195].
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various drug loading technologies.

In the physical encapsulation method, the anti-fibrotic drug is blended with the
polymeric solution, and the resulting mixture is finally electrospun. Although this method
is straightforward, optimizing drug/polymer solution in higher drug concentrations is
challenging. Furthermore, the solvents may damage the structure and biological activity of
the loaded drug [18,196,197].

The physical adsorption of anti-fibrotic drugs on the surface of electrospun scaffolds
is mediated by electrostatic interactions and van der Waals forces. Therefore, this method
can preserve the biological function of the drug. However, burst drug release is the main
disadvantage of this method in drug loading [195].
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Nanoparticle systems are advanced drug carriers with a high surface-to-volume ratio,
high encapsulation yield, and suntanned drug release profile [198]. These drug carriers can
be utilized to functionalize the electrospun scaffolds. For example, the anti-fibrotic drug
can be encapsulated into the nanoparticle system and then electrospun with the polymeric
solution [199]. An alternative strategy would be the physical adsorption of the drug-loaded
nanoparticle carrier on the electrospun platform [155].

In the layer-by-layer deposition method, the anti-fibrotic drug is entrapped into
multilayer polymeric films, and these layers are deposited onto the electrospun carrier [200].
Various polymers such as proteins, polyelectrolytes, and micelles may be used. In this
system, various forces such as electrostatic, hydrogen bonding, hydrophobic, and chemical
bonds may stabilize the surface coating [201]. By altering the thickness of the multilayer film
or polymer type, tunable release kinetic of the anti-fibrotic drug can be obtained [202,203].

The chemical immobilization of the anti-fibrotic drug on the electrospun scaffold
provides better control over the drug release profile. In this method, a cross-linking reagent
such as NHS/EDC mediates the covalent bonding between the functional groups on the
electrospun scaffold’s surface and the functional groups of the drug molecule [204,205].

The inherent adhesive capability of mussels has inspired a new surface functionaliza-
tion technology. This adhesion potential can be attributed to the presence of 3,4-dihydroxy-
L-phenylalanine (DOPA) and lysine amino acids in the structure of mussels. Furthermore,
polydopamine complexes containing catechol and amine groups have the same adhesion
activities [206]. Therefore, surface coating of anti-fibrotic drugs on electrospun scaffolds
can be performed using polydopamine structures [207].

In natural ECM, heparan sulfate binds to various growth factors, signaling molecules,
and bioactive peptides. This binding capacity can mediate the surface immobilization of
anti-fibrotic agents on the electrospun scaffolds [208].

The diversity of these drug loading technologies mirrors the considerable potential of
electrospun scaffolds for drug delivery applications. However, in the context of anti-fibrotic
drug delivery, most studies have focused on the physical encapsulation method.

9. Previous Applications of Electrospun Cell Delivery Systems to Treat Urethra Defects

The combination of electrospinning method with other scaffold fabrication technolo-
gies is a valuable strategy to produce constructs with higher similarity to urethra tissue. In
this regard, electrospun polyurethane urea (PUU) fibrous membranes were coated with
collagen hydrogel to produce a fibrous hydrogel (cPUU) [209]. This system could reca-
pitulate the structure of urethra’s natural ECM, which is a fibrous construct embedded
into a hydrogel ground substance. Furthermore, this system could successfully support
the adhesion and growth of bladder smooth muscle cells. The healing activity of bladder
smooth muscle cells delivered by this system was investigated in a rabbit model of urethral
defect. In vivo evaluations showed that rabbits treated with cell-seeded scaffolds had
significantly better urethra reconstruction than other experimental groups. In addition,
complications such as stone formation, US recurrence, and fistula were significantly lower
in cPUU scaffolds compared with control and PUU-only groups (For the figures, please see
reference). Despite promising results, this delivery system did not meet the criteria of a
bioactive cell delivery system. For instance, many essential biochemical and biophysical
cues were not incorporated into this delivery vehicle.

Vascularization of tissue-engineered grafts is essential for their success in tissue re-
generation. However, the small pore size of electrospun cell delivery systems impedes
the ingrowth of small capillaries [210]. Niu et al. developed a novel approach to address
this challenge. Amphiphilic PUU/polycaprolacton (PCL) nanofibrous scaffolds with a
rapid vascularization function were fabricated [211]. Smooth muscle cells were seeded
onto the outer and middle layers, while epithelial cells were seeded onto the inner sur-
face. The results showed that the seeded cells grew and spread well on the scaffolds.
While PUU-based scaffolds were conducive to expressing phenotypical markers of smooth
muscle cells and epithelial cells, PCL-only scaffolds failed to provide such function. The
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developed system was implanted into a Beagle puppy model with an urethra defect. Func-
tional analysis and histopathological examinations showed that cell-seeded PUU scaffolds
were rich in ECM and cellular components, induced angiogenesis, promoted the lumen
re-epithelialization, and had comparable functional recovery outcomes with the autograft
group. In comparison, the PCL group had a negligible healing function. Biochemical and
biophysical cues in the amphiphilic PUU scaffolds may explain their higher regenerative
function compared with PCL-only scaffolds. In another study, Niu et al. used electrospun
block polyurethane (PU-alt) scaffolds for co-delivery of urethral epithelial and smooth
muscle cells [212]. The produced yarns supported the seeded cells’ adhesion, proliferation,
and specific markers expression. The healing function of the autologous tissue-engineered
urethra was investigated in a rabbit model of urethra defect. Results showed that scaffolds
promoted the neovascularization process, induced oriented growth of smooth muscle cells,
and improved the formation of the epithelial layer. Although these studies showed the
controlled neovascularization by PUU scaffolds, incorporating the proangiogenic growth
factors such as vascular endothelial growth factor (VEGF), basic fibroblast growth factor
(b-FGF), platelet-derived growth factor (PDGF), etc., may provide better graft vasculariza-
tion [213,214]. Furthermore, seeding the scaffolds with EPCs or MSCs may further improve
the vascularization on the electrospun scaffolds [215].

One of the main challenges of cell-based therapies is isolating autologous cells with
minimally invasive methods. Adipose-derived MSCs (or ASCs) are an abundant and
accessible source of stem cells that can be isolated from fat tissues with minimal donor site
morbidity [216]. Wang et al. used electrospun poly lactic acid (PLA) scaffolds to transplant
ASCs into a rabbit model of urethra defect [217]. The study showed that urethral stenosis
was significantly lower in rabbits treated with ASC-seeded PLA membranes. Furthermore,
histopathological examinations showed that this group had restored urethra structure with
typical urothelial and muscular layers. Lack of cell recognition sites, high hydrophobicity,
and acidic biodegradation residues are the main disadvantages of PLA-based cell delivery
platforms [218]. This system can be improved by blending PLA with ECM-derived or hy-
drophilic polymers. These polymers possess cell recognition sites in their structure and are
hydrophilic; therefore, they can promote cell adhesion and modulate the surface wettability
of PLA-based scaffolds [53]. In this context, a hybrid cell delivery platform was produced by
blending poly(ethylene glycol) (PEG) with PLLA [219]. The produced yarns had a fibrous
structure. Furthermore, the water contact angle (an indicator of surface wettability) of PLLA
scaffolds was decreased by increasing the PEG fraction (Figure 8A–F). PLLA/PEG scaffolds
were seeded with human amniotic MSCs (hAMSCs) before implantation into a rabbit model
of urethra defect. The study showed that hAMSCs could adhere and proliferate on the scaf-
folds. In vivo study showed that the animals treated with PLLA/PEG/hAMSCs showed
no fistula or US in the urethrography studies or morphological observations (Figure 8G–M).
Histopathological examinations showed that a multilayered urothelium was formed on
the scaffolds for the PLLA/PEG/hAMSCs group. However, the urethral mucosa was
still discontinuous (Figure 9N–V). Immunohistochemical studies showed that the defects
treated with PLLA/PEG/hAMSCs were stained positive for AE1/AE3 marker, indicating
that epithelial cells have been formed in this group. In comparison, other groups were
stained negative for this marker (Figure 9W–FF). The seeded cells on the nanofibrous
membranes may have promoted the urethral defect repair by releasing pro-healing growth
factors, mitigating fibrosis via modulation of inflammatory responses, or increasing the
graft’s vascularization.
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Figure 8. (A–F) shows SEM images of PLLA scaffolds with different PEG weight ratios: (A) 0%,
(B) 10%, (C) 20%, (D) 30%, (E) 40%, (F) 50%. (G–M) show the implantation of PLLA/PEG/ hAM-
SCs in the rabbit model, and the repair of the urethra defect. (G): implantation process. (H–J):
retrograde urethrograms of animals treated with the mock operation, PLLA/PEG scaffolds, and
PLLA/PEG/hAMSCs, respectively. (K–M) show the urethra mucosa defect repair and calculi forma-
tion in rabbits treated with the mock operation, PLLA/PEG scaffolds, and PLLA/PEG/hAMSCs,
respectively. Adopted from reference [219]. Scale bar 10 µm.
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Figure 9. (N–V) show the H & E staining images of animals treated with different scaffolds at weeks 
4, 8, and 12. (W–FF) show the IHC staining images of urethra tissues against the AE1/AE3 marker 
at weeks 4, 8, and 12. Adopted from reference [219]. Scale bars, 100 μm.  

EVs derived from stem cells can recapitulate the same regenerative responses ob-
served in whole cell-based therapies. Exosomes are a subclass of EVs that are sized be-
tween 30 and 120 nm [220]. Wang et al. blended poly (L-lactide-co-caprolactone) (P(LLA-
CL)) with collagen to produce a delivery platform for ASC-derived exosomes [221]. The 
developed system was not toxic against fibroblast cells and reduced the secretion of pro-
inflammatory factors such as IL-6. In vivo study showed that the exosome-nanofibrous 
scaffold system prevented US and induced a multilayer epithelial tissue formation. Alt-
hough EVs are an integral part of cells niches and their healing potential has been shown 

Figure 9. (N–V) show the H & E staining images of animals treated with different scaffolds at weeks
4, 8, and 12. (W–FF) show the IHC staining images of urethra tissues against the AE1/AE3 marker at
weeks 4, 8, and 12. Adopted from reference [219]. Scale bars, 100 µm.

EVs derived from stem cells can recapitulate the same regenerative responses observed
in whole cell-based therapies. Exosomes are a subclass of EVs that are sized between 30
and 120 nm [220]. Wang et al. blended poly (L-lactide-co-caprolactone) (P(LLA-CL)) with
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collagen to produce a delivery platform for ASC-derived exosomes [221]. The developed
system was not toxic against fibroblast cells and reduced the secretion of pro-inflammatory
factors such as IL-6. In vivo study showed that the exosome-nanofibrous scaffold system
prevented US and induced a multilayer epithelial tissue formation. Although EVs are an
integral part of cells niches and their healing potential has been shown in various disease
models [222], seeding cell delivery systems with functioning cells may provide a better
healing response, because these cells can interact with their microenvironment and release
EVs specific to the disease condition [193,223]. Furthermore, whole cells can remodel the
tissue-engineered constructs and aid in their replacement with natural ECM [224].

Silk fibroin is a naturally occurring protein with numerous positive features for tissue
engineering, such as excellent tensile strength, biodegradability, and nontoxicity [225].
Xie et al. used electrospun silk fibroin matrices as a delivery platform for urothelial cells
to treat a canine model of urethral defect [226]. Microstructural studies showed that the
electrospun matrices had a porous structure and supported the urothelial cells adhesion
and proliferation. Retrograde urethrography showed no sign of US in the animals treated
with the cell-seeded matrices. Furthermore, histopathological examinations showed that
stratified epithelial layers were developed in the cell-matrix group. The healing activity of
this delivery system may be attributed to the uniform urothelial cell layer on the matrices
that may have prevented urinary extravasation and fibrotic reactions.

Similarly, Xie et al. cultured autologous oral keratinocytes and fibroblasts on electro-
spun silk fibroin matrices to develop an artificial buccal mucosa [66]. The healing function
of these constructs was then evaluated in a canine model of a 5 cm-long urethra mucosal
defect. Results showed that the autologous cells stayed viable on the matrices and formed
a multilayer epithelium. In vivo study showed that the animals treated with the artificial
buccal mucosa voided without difficulty, and US did not occur. Although no adverse tissue
reactions were reported in these studies, silk fibroin-based scaffolds may generate chronic
immunological reactions that can lead to graft failure or fibrosis [227].

In vivo urethra tissue engineering has also been investigated. In this technique, the
cell-free scaffold is implanted at the defect site, allowing the resident cells to migrate on
the scaffolds and populate it over time [228]. The criteria for a bioactive cell delivery
system must be also considered in designing these constructs. In this framework, Hu et al.
used poly D,L-lactic-co-glycolic acid (PLGA) and PLGA/gelatin scaffolds to treat urethral
defects in a canine model. In vitro studies showed that the urothelial cells could adhere and
propagate on both scaffolds. However, in vivo studies showed varying degrees of US in the
repaired urethras. Histopathological examinations showed that multilayered disintegrated
urothelium formed at both ends of the tubes. In addition, many polymorphonuclear cells
had been infiltrated under the epithelium. They concluded that this system is unsuitable
for treating urethra defects [229].

In contrast with this study, Liu et al. reported quite the opposite results. They
functionalized PLLA with gelatin to develop a delivery vehicle for epithelial and smooth
muscle cells [79]. The scaffolds had a fibrous structure and their surface hydrophilicity
improved by increasing the gelatin fraction. None of the scaffolds were toxic against the
seeded cells, and supported their adhesion and proliferation. However, the 75:25 weight
ratio of PLLA gelatin had the best performance in the cell adhesion studies. ICC staining
showed successful expression of AE1/AE3 and α-SMA in cell-scaffold constructs. The
scaffolds were implanted into a rabbit model of urethra defect. Results showed that the
animals treated with PLLA/gelatin grafts had significantly higher urine flow rate and
urethra diameter compared with PLLA-only scaffolds. Histopathological examinations
showed that in the PLLA/gelatin group, smooth muscle cells and urethral epithelial cells
regularly grew on the scaffolds and populated their surface. US occurred the PLLA-only
scaffolds, because these scaffolds were not conductive for cell adhesion and growth. The
PLLA/gelatin scaffolds may have served as a migration substrate for the resident epithelial
and smooth muscle cells and augmented the urethra defect repair (For the figures, please
see reference).
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Niu et al. developed a bioactive nanofibrous platform to recruit the anti-inflammatory
M2 macrophages into the urethra injury site [230]. The scaffolds were produced by coaxial
electrospinning of hyaluronic acid and collagen. In vitro studies showed that the nanofi-
brous scaffolds induced the polarization of macrophages into the M2 phenotype. The
healing function of these scaffolds was investigated in a male puppy model with an ure-
thral defect. In animals treated with hyaluronic acid/collagen scaffolds, M2 macrophages
were recruited onto the scaffolds and promoted the neovascularization and proliferation
of endogenous urothelial progenitor cells. In this framework, various chemotactic factors
can be loaded into electrospun scaffolds to recruit pro-healing cells at the injury site. For
instance, AMD-3100 has been shown to recruit circulatory stem cells at the site of wound
healing [231].

10. Previous Applications of Drug-Loaded Electrospun Delivery Systems to Treat
Urethral Defects

Electrospun scaffolds can serve as a drug delivery system and scaffolding platforms
in urethra defects repair. In this context, anti-fibrotic drugs delivery via electrospun
scaffolds has gained significant attention. For example, Zhang et al. loaded a Wnt signaling
pathway inhibitor, ICG-001, into collagen/poly(L-lactide-co-caprolactone) (P(LLA-CL))
scaffolds using a coaxial electrospinning method for treating US [232]. The produced
scaffolds had a fibrous structure that supported bladder epithelial cells adhesion and
proliferation (Figure 10a–f). Fibroblast cells cultured with the extract of ICG-001-loaded
scaffolds had significantly lower expression levels of collagen type 1 and 3, and fibronectin
genes (Figure 10g–k). The healing function of this system was evaluated in a rabbit model
of urethra defect. The study revealed that US and fistula in ICG-001-loaded scaffolds
were significantly lower than in ICG-001-free groups (Figure 11a–c). Histopathological
examinations showed a negligible collagen deposition, a thick epithelial, and smooth
muscular layer in rabbits treated with ICG-001-loaded scaffolds (Figure 11d–i).
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Figure 10. (a,b) show the microarchitecture of ICG-001-loaded and ICG-001-free scaffolds. (c,e) show
the adhesion of epithelial cells on collagen/PLLA-CL scaffolds on days 3 and 7. (d,f) show the
adhesion of epithelial cells on collagen/PLLA-CL/ICG-001 scaffolds on days 3 and 7. (g–k) show
the Western blotting images of different proteins in fibroblast cells treated with TGFβ-1 and medium
released from ICG-001/scaffolds. * and # show p-value < 0.05. Adopted from reference [232]. (c–f)
Scale bars, 100 µm.
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In another study, Zhang et al. investigated the therapeutic function of collagen/PLLA-
CL/ICG-001 scaffolds in a canine model of urethral defect. Results were consistent with
their previous work on the rabbit model, and ICG-01-delivering scaffolds prevented US and
resulted in a fully functional urethra after 12 weeks of follow-up [233]. In another study,
Guo et al. produced collagen/PLLA-CL/ICG-001 scaffolds. They combined the conjugated
electrospinning and dynamic liquid electrospinning methods to fabricate the yarns. Their
results showed that the cells cultured on the electrospun scaffolds had an organized
morphology and penetrated into the constructs [234]. Although this study provided
valuable information regarding the interaction of fibroblast cells with collagen/PLLA-
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CL/ICG-001 scaffolds, the lack of in vivo study is the main shortcoming of this research.
In addition to ICG-001, PRI-724 that is an anti-fibrotic drug to treat liver cirrhosis and its
active metabolite known as C-82 can potentially prevent US [235]. Therefore, incorporating
these drugs into the electrospun scaffolds may increase their anti-fibrotic potential.

TGF-β1 signaling plays a fundamental role in establishing and progression of fibrotic
reactions. Therefore, many efforts have been dedicated to developing anti-fibrotic treatment
modalities based on inhibiting TGF-β1 signaling [236]. EW-7197 is a TGF-β1 receptor
kinase inhibitor that can be used to treat US [237]. In this regard, Han et al. loaded
EW-7197 into PDLLA/PU electrospun fibers to develop an EW-7197-eluting nanofiber-
covered stent. They studied its anti-US activity in a canine model of urethra defect [85].
The fibers deposited on the metallic stent, had a web-like architecture (Figure 12a–c).
The urethrographic findings showed that at 4 and 8 weeks post-surgery, the luminal
diameter of the urethra in drug-loaded stents was significantly larger than in drug-free
stents (Figure 12d,e). Furthermore, histopathological examinations showed that the mean
thickness of submucosal fibrosis and infiltration of inflammatory cells in the drug-loaded
stent group were significantly lower than in the drug-free stent group (Figure 12f–i). This
preliminary research suggests the potential applicability of EW-7197-delivering nanofibrous
scaffolds to treat US in the clinic. Other TGF-β type-1 receptor kinase inhibitors, such as
IN-1233, may also be of therapeutic value in treating US [238].

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 26 of 39 

organized morphology and penetrated into the constructs [234]. Although this study pro-
vided valuable information regarding the interaction of fibroblast cells with colla-
gen/PLLA-CL/ICG-001 scaffolds, the lack of in vivo study is the main shortcoming of this 
research. In addition to ICG-001, PRI-724 that is an anti-fibrotic drug to treat liver cirrhosis 
and its active metabolite known as C-82 can potentially prevent US [235]. Therefore, in-
corporating these drugs into the electrospun scaffolds may increase their anti-fibrotic po-
tential. 

TGF-β1 signaling plays a fundamental role in establishing and progression of fibrotic
reactions. Therefore, many efforts have been dedicated to developing anti-fibrotic treat-
ment modalities based on inhibiting TGF-β1 signaling [236]. EW-7197 is a TGF-β1 receptor 
kinase inhibitor that can be used to treat US [237]. In this regard, Han et al. loaded EW-
7197 into PDLLA/PU electrospun fibers to develop an EW-7197-eluting nanofiber-covered 
stent. They studied its anti-US activity in a canine model of urethra defect [85]. The fibers
deposited on the metallic stent, had a web-like architecture (Figure 12a–c). The urethro-
graphic findings showed that at 4 and 8 weeks post-surgery, the luminal diameter of the 
urethra in drug-loaded stents was significantly larger than in drug-free stents (Figure 
12d,e). Furthermore, histopathological examinations showed that the mean thickness of 
submucosal fibrosis and infiltration of inflammatory cells in the drug-loaded stent group 
were significantly lower than in the drug-free stent group (Figure 12f–i). This preliminary 
research suggests the potential applicability of EW-7197-delivering nanofibrous scaffolds 
to treat US in the clinic. Other TGF-β type-1 receptor kinase inhibitors, such as IN-1233, 
may also be of therapeutic value in treating US [238]. 

Figure 12. (a) shows the nanofiber-coated metallic stent, (b,c) show the microstructure of EW-7197 
loaded nanofibers. (d,e) show the retrograde urethrography images of the drug-free and drug-
loaded stent groups. (f,g) show the H & E staining images of the drug-free and drug-loaded stent 
groups. (h,i) show Masson’s trichrome staining images of the drug-free and drug-loaded stent 
groups. Adopted from reference [85]. 

Figure 12. (a) shows the nanofiber-coated metallic stent, (b,c) show the microstructure of EW-7197
loaded nanofibers. (d,e) show the retrograde urethrography images of the drug-free and drug-loaded
stent groups. (f,g) show the H & E staining images of the drug-free and drug-loaded stent groups. (h,i)
show Masson’s trichrome staining images of the drug-free and drug-loaded stent groups. Adopted
from reference [85].

Small inhibitory RNA (siRNA) technology can knock down the genes involved in
the fibrotic reactions [239]. For example, Xu et al. seeded oral keratinocytes and TGF-β1
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siRNA transfected fibroblasts on electrospun PCL/silk fibroin/collagen matrices to treat
US by blocking the TGF-β1 signaling pathway [240]. In vitro studies showed that the
electrospun scaffolds were compatible with the seeded cells. Furthermore, in vivo study
in a rabbit model revealed that the animals treated with the siRNA-delivering constructs
had a wide urethra caliber. In addition, a stratified epithelial layer was formed in this
group. Therefore, silencing pro-fibrosis genes via siRNA technology is a feasible strategy
to prevent US after urethroplasty. However, siRNA is a hydrophilic molecule and cannot
efficiently pass through hydrophobic plasma membranes. Furthermore, other challenges
such as degradation by endonucleases, phagocytosis by the reticuloendothelial system,
off-target effects, and activation of the immune responses are other challenges of siRNA
technology in medical applications [241].

The chemokine stromal cell-derived factor-1 alpha (SDF-1α) and its ligand, the C-X-C
chemokine receptor type 4 (CXCR-4), trigger the recruitment of resident and circulatory
MSCs into the tissue injury site. The upregulation of SDF-1α after the tissue injury induces
the infiltration of bone marrow-derived MSCs into the injured tissue [242,243]. Therefore,
incorporating this agent into the electrospun scaffolds may induce homing of MSCs at
the urethra injury and augment tissue healing. Liu et al. loaded SDF-1α into electrospun
silk fibroin microfibers and deposited them onto the bladder acellular matrix grafts [244].
The healing activity of the produced constructs was then investigated in a rabbit model of
ventral urethra defect. In vitro studies showed that SDF-1α-loaded scaffolds significantly
promoted the migration of MSCs in the transwell assay. The animals treated with SDF-1α-
loaded composite scaffolds showed optimal tissue regeneration and the least incidence of
US or fistula. Histopathological examinations showed that a typical transitional epithelium
with multiple layers was formed in SDF-1α-loaded composite scaffolds. Furthermore,
Masson’s trichrome staining showed reduced fibrosis in SDF-1α-loaded composite scaffolds
compared with other groups. This study indicated the beneficial role of MSC-recruiting
drugs in treating urethral defects. One can develop a dual-function delivery system for
these drugs and MSCs. In this strategy, the secretome of the recruited MSCs and seeded
MSCs act in a synergistic manner and promote tissue repair [231].

11. Challenges and Potential Mitigation Strategies

Despite considerable progress, urethra defect repair using electrospun cell and drug
delivery systems is still in its infancy and faces many limitations and challenges. Con-
sidering the solvent systems used for developing the electrospun cell and drug delivery
systems, most studies have utilized class 2 solvents that may potentially elicit adverse
tissue reactions and cytotoxicity [8]. The easy optimization of electrospinning parameters
with these solvents may reason this crucial point to be neglected. The concept of “Green
electrospinning” has been proposed to address this issue. This technology uses less toxic
solvent systems to produce electrospun scaffolds. Furthermore, drying the electrospun
scaffolds in a vacuum chamber may also extract the residual solvents from the matrix of
electrospun scaffolds [245].

In the case of natural polymers-based electrospun scaffolds, fast biodegradation rate
and poor mechanical strength necessitate cross-linking these constructs before implanta-
tion [246]. While glutaraldehyde is a widely used reagent for cross-linking, its potential
cytotoxicity may compromise the cell viability in electrospun cell delivery systems. Keep-
ing this limitation in mind, green cross-linking reagents with minimal toxic effects have
been developed [247]. Furthermore, natural polymers show batch-to-batch variations in
physicochemical and biological properties. This challenge can lead to therapeutic outcome
discrepancies with different sources [248].

Given the dose-dependent effects of anti-fibrotic drugs, spatiotemporal control over
these drugs release is an essential requirement of drug-loaded electrospun scaffolds [249].
In vitro drug release assays can partly simulate the drug release rate from polymeric
scaffolds. However, the interplay between various factors such as reactive oxygen species
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(ROS), the secretome of inflammatory cells, ions, and enzymes may significantly change
the drug release profile from these constructs [93].

Concerning the clinical translation, the effects of sterilization on mechanical properties
and microstructure of electrospun cell and drug delivery systems must be kept in mind.
For example, the current sterilization methods may alter the surface topography on the
electrospun scaffolds, resulting in different cellular behavior in electrospun cell delivery
systems [250,251]. Furthermore, acquiring FDA approval for clinical translation of different
cell types will be demanding. Although no adverse effects have been reported in preclinical
studies, clinical data regarding these cells safe application in human subjects is lacking.

Converting electrospun cell and drug delivery systems from R&D to mass production
scale is also challenging. The low production yield of the conventional electrospinning
method does not meet the criteria of a high throughput manufacturing technique. Therefore,
recent studies have proposed increasing the number of fiber jets to improve the production
yield [252,253].

Finally, the natural healing response in the urethra defect involves the interplay
between various cells and cues [53]. Therefore, the electrospun cell or drug delivery
systems should accommodate multiple cells or bioactive agents to recapitulate this en-
vironment. However, mimicking this complex network is beyond the capability of the
existing technology.

12. Conclusions and Future Perspectives

The electrospun scaffolds are versatile platforms for cell or drug delivery applications
to treat urethra defects. The inherent resemblance of these constructs to native cell niches
and their modifiable physicochemical and biological properties have led to their widespread
applications in cell delivery. In the context of urethral defect repair, cells from various
sources such as stem cells, buccal mucosal cells, urothelial cells, and smooth muscle cells
have been delivered via these scaffolds to augment tissue repair. Furthermore, high surface-
to-volume ratio, high encapsulation efficacy, and tunable drug release are other advantages
of these constructs to deliver bioactive agents. In this framework, various anti-fibrosis drugs
have been delivered via electrospun scaffolds to prevent US recurrence or its development.
These scaffolds have also been used as a dual-function delivery system for both cells and
bioactive agents to target different factors involved in the pathophysiology of US. Despite
these endeavors, the current state-of-the-art falls far behind the clinical translation stage.
Many of the challenges, such as the complexity of innate cell niches, spatiotemporal control
over drug release, the batch-to-batch variations of natural polymers, the scale-up issues,
the production challenges with safe solvent systems, the adverse effects of sterilization
techniques on electrospun scaffolds, and the difficulties in acquiring regulatory approvals,
need to be addressed before any clinical trial can take place.

Concerning future research, the anti-US function of various drugs, such as corti-
costeroids, angiotensin-converting enzyme inhibitors, and different inhibitors of fibrosis-
associated signaling pathways in an electrospun formulation, has not been investigated.
Furthermore, the fibrotic reactions following urinary extravasation may occur by orches-
trated activation of various signaling pathways, including Wnt/β-catenin, YAP/TAZ, and
TGF-β signaling systems. Therefore, blocking all these pathways simultaneously may
result in better anti-US outcomes. Finally, mimicking the natural cell niches using advanced
drug delivery systems and providing biological cues may also unleash the potential of
cell-seeded electrospun scaffolds to treat urethra defects.
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