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Abstract: Cerebrospinal fluid (CSF) analysis supports diagnosis of neurodegenerative diseases (NDs),
however a number of issues limits its potentialities in clinical practice. Here, a newly developed
technique for fluid voltammetry, relying on a simple sensor (BIOsensor-based multisensorial system
for mimicking Nose, Tongue and Eyes, BIONOTE), was used to test the applicability for CSF analysis.
BIONOTE was initially calibrated on an artificial CSF-like solution and then applied on human CSF,
either immediately after collection or after refrigerated storage. Following optimization, it was used
to evaluate 11 CSF samples correlating the electrochemical dataset with CSF routine parameters and
biomarkers of neurodegeneration. Multivariate data analysis was performed for model elaboration
and calibration using principal component analysis and partial least squares discriminant analysis.
BIONOTE presented a high capacity to predict both physiological and pathological constituents
of artificial CSF. It differentiated distinct fresh human CSF samples well but lost accuracy after
refrigerated storage. The electrochemical analysis-derived data correlated with either CSF routine
cytochemical indexes or a biomarker of neurodegeneration. BIONOTE resulted as being a reliable
system for electrochemical analysis of CSF. The CSF fingerprint provided by the sensor has shown
itself to be sensitive to CSF modification, thus it is potentially representative of CSF alteration. This
result opens the way to its testing in further study addressed at assessing the clinical relevance of the
methodology. Because of its advantages due to the ease and rapidity of the methodology, a validation
study is now required to translate the technique into clinical practice and improve diagnostic workup
of NDs.

Keywords: CSF; voltammetry; electrochemical analysis; biomarkers; neurodegenerative diseases

1. Introduction

Neurodegenerative diseases (NDs) are a heterogeneous group of progressive and
disabling conditions whose worldwide incidence and prevalence are increasing following
global aging and longer life expectancy.

Neuropathology and pathophysiology differ among NDs; conversely, clinical distur-
bances, including both motor and cognitive disturbances, may overlap. Indeed, while
Alzheimer’s disease (AD) and Parkinson’s disease (PD), the two most common NDs, basi-
cally present with typical syndromes, there are many other cases in which the diagnosis is
more challenging because of the clinical complexity and variety [1].
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Nowadays NDs remain incurable disorders. However, the therapeutic scenario is
rapidly changing and potential disease-modifying treatments are upcoming. Therefore, the
diagnostic certainty now represents an urgent need in the field of NDs, since the therapeutic
success may depend on a timely and precise diagnosis [2,3].

To date, the diagnosis of different NDs mostly relies on clinical criteria, whereas
instrumental findings (e.g., neuroimaging or fluid biomarkers) offer support. Actually,
fluid biomarkers are constantly gaining more relevance, such that cerebrospinal fluid (CSF)
biomarkers are crucial in diagnosis and stratification of patients with suspected AD, as
well as allowing prognostic evaluations in patients with PD [3–6].

CSF, indeed, reflects pathological changes occurring at the central nervous system
(CNS) level, thus representing a valuable source for reliable biomarkers informing on
the biological events underlying clinical conditions. Despite these theoretical advantages,
development and use of CSF biomarkers are still limited by several factors, which include
either the scarcity of molecular targets or issues related to the validation and spread of
assay methodologies. In this perspective, the application of novel technologies in CSF
analysis aimed at overcoming current barriers would be fundamental [7].

In this direction, here we present a newly developed technique based on voltammetry
oriented towards a detailed chemical description of fluids’ characteristics [8,9].

This technique is based on a sensor system able to analyze many different biological
fluids [8,9], already tested in numerous experiments in the medical field [10–13].

The method of the analysis of CSF is not new, and this analyte has been also measured
with non-conventional sensors (meaning not routine clinical instruments) [14–17] but this
analysis has never been performed with an electrochemical sensor using a fingerprinting
approach. Moreover, the novelty not only consists in using a diverse instrument but in
using an instrument with a series of characteristics offering innovative potentialities to
obtain (after further developments) easier, faster and cheaper methodologies with respect
to the existing ones.

In particular, we preliminarily applied the technique to artificial CSF in order to assess
applicability and performance in terms of sensitivity and resolution.

Then we tested this technique on samples of human-derived CSF, in order to evaluate
its potentialities and to understand its relevance for future use in clinical frames.

Considering the simplicity of the instrument, the low costs of each measurement
and the fingerprinting approach (not selective for the single compound, but sensitive to
a spectrum of elements and factors), the goal of this work consists in demonstrating the
feasibility of the application via a proof of concept experiment.

2. Materials and Methods
2.1. Voltammetric System and Experimental Design

The voltammetric sensor consists of a sensing platform, named BIONOTE (BIOsensor-
based multisensorial system for mimicking Nose, Tongue and Eyes [8,9]), including a
screen-printed electrode (SPE; DRP-250BT, Metrohm, Herisau, Switzerland) probe and a
dedicated electronic interface providing an input signal and recording the output data.
The SPE composition is the following: the working electrode is made of gold, the counter
electrode is made of platinum, the reference electrode is made of silver and all the other
electric contacts are made of silver. The signal input consists of a triangular waveform
between −1 V and 1 V and a frequency of 0.01 Hz. When the sensor probe is immersed
in a solution, a current related to the oxy-reductive reactions occurring in the sample is
recorded. This current is the output signal response of the sensor, and it is converted into
a voltage value by a trans-impedance circuit. The system is composed of an Analogo to
Digital Converter (ADC) able to guarantee a sampling rate of 200 ms. During each period,
we can collect 500 output values for each measuring cycle. The entire dataset is then treated
as a global electrochemical signature (composed of 500 points) of the analyzed sample.
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This instrument has been already used with human fluids, namely for etiological
diagnosis of pleural effusion [10], ascites identification based on serum-ascites analysis [11],
and lower-limb ulcers monitoring based on exudate analysis [12].

Since BIONOTE has never been tested on CSF, here we set an experimental plane
aiming to: (1) estimate BIONOTE sensitivity and resolution in the assessment of CSF
samples such to be used for the content analysis and between-samples discrimination;
(2) assess the reliability and effectiveness of BIONOTE-based analysis after CSF sample
storage; (3) evaluate the capability of BIONOTE to differentiate CSF samples from different
clinical conditions.

Aim 1 has been addressed by an experiment of calibration of the BIONOTE to the
artificial CSF constituents; aim 2 has been addressed by the optimization of the experimental
setup for human CSF analysis; aim 3 has been addressed by applying the BIONOTE analysis
protocol on a small number of patient-derived CSF samples as a pilot experience.

2.2. Preparation of the Standard Curves for Calibration Purposes

All standard solutions used for calibration purposes were prepared dissolving the
chemical compound in bi-distilled water at the higher concentration and by following
dilutions. All chemical standards were purchased at Sigma Aldrich (Merck KGaA, Darm-
stadt, Germany): potassium chloride (P3911), sodium chloride (S7653), sodium bicarbonate
(S5761), calcium chloride (C5670), magnesium chloride (M8266), Sodium hydrosulfide
hydrate (161527), dopamine hydrochloride (H8502). All these samples were prepared and
measured in glass test-tubes.

The BIONOTE was initially challenged against these CSF constituents individually
as described in [13]. Seven calibration curves were prepared using the chemical standard
compounds reported in Table 1.

Table 1. Calibration curve schema of relevant cerebrospinal liquid compounds.

Chemical Standard Concentration (mM)

KCl 3 10 50 100 150
NaCl 10 50 100 124 150

NaHCO3 10 25 50 100 150
CaCl2 2 10 50 100 150
MgCl2 1 10 50 100 150
NaHS 0.01 0.1 0.3 0.6 1

Dopamine 0.001 0.003 0.01

2.3. Preparation of the Artificial Cerebrospinal Fluid (CSF)

To find further evidence supporting the employability of the BIONOTE system for
CSF analysis, an artificial CSF was prepared.

The artificial CSF was freshly prepared before each experimental session dissolving in
bi-distilled water the compounds reported in Table 2 [18,19].

Table 2. Chemical composition of the artificial cerebrospinal liquid.

KCl NaCl NaHCO3 CaCl2 MgCl2 NaHS

mM 3 124 26 2 1 1.25

Next, dopamine and NaHS were added at different concentrations, mimicking some
alterations occurring in NDs [20] (Table 3).
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Table 3. Artificial modified-cerebrospinal fluid (CSF) standard concentration (mM) at different
concentrations.

Chemical Standard Concentration (mM)

NaHS 0.01 0.1 0.3 0.6 1
Dopamine 0.001 0.003 0.005 0.007 0.01

To prevent undesirable oxidation phenomena of dopamine, which may potentially
affect the voltammetric analysis, each solution was bubbled with nitrogen before dopamine
addition [8].

2.4. Human CSF Sampling

CSF samples were obtained from a total of 11 subjects (36% females) undergoing
lumbar puncture (LP) for diagnostic purpose at the Neurology Unit of Tor Vergata Univer-
sity Hospital (Rome, Italy). None of them was diagnosed with NDs (basically affected by
headache, psychogenic disorders or peripheral nervous system disorders).

LP was performed at the bedside, in the morning, after an overnight fast, with the
subject lying in lateral decubitus position. CSF samples were collected and processed
according to standard procedures. Analysis was carried at the local laboratory and in-
cluded routine quantitative assessment of glucose, lactate, total proteins, albumin, white
blood cells, Immunoglobulin G (IgG), and the evaluation of neurodegeneration-related
biomarkers amyloid-β-42 peptide, total tau protein, 181-phosphorylated tau protein [5,21]
(Table 4).

Table 4. Clinical and demographic data of the study population.

Variable Mean st.dev.

Age (years) 62 13.8
Glucose (mg/dL) 57.1 4.7
Lactate (mmol/L) 1.8 0.2

Total proteins (mg/dL) 48.3 19.4
Albumin (mg/dL) 28.4 16.1

White blood cells (mmc) 3.1 2.4
Immunoglobulin-G (mg/dL) 5.7 7.6

Amyloid-β-42 (pg/mL) 715.4 378.8
Total-tau (pg/mL) 340.3 165.9

Phosphorylated-181-tau (pg/mL) 83 96.1

Five of these 11 samples were further used for a repeatability evaluation by being
measured multiple times immediately after the lumbar puncture, and a reproducibility
estimation over time by being re-analysed after 30 and 120 days of stocking at −80 ◦C.

2.5. Data Analysis

The electrochemical pattern registered by the voltammetric sensor holds a multidi-
mensional (500 points) and enriched informative content. The complex nature of this
dataset required the application of multivariate data analysis techniques to provide a
simplified representation of the multidimensional space acquired and to highlight the most
informative features.

Principal components analysis (PCA) allowed the representation of the multidimen-
sional dataset onto a simplified scatter chart by defining the most important variables that
characterized the specific phenomenon of interest [22].

Each measurement of the data set is represented by a point on the PCA plane (the
score plot of the most significant principal components). When the points are close one to
each other, they form a cluster of samples with similar characteristics. The points far from
this cluster have different characteristics.
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Calibration was performed via partial least squares discriminant analysis (PLS-DA)
coupled with the leave-one-out criterion as a cross-validation method in order to obtain all
the predictive models on the calibration data.

All the multivariate data analyses were performed using PLSToolbox (Eigenvector
Research Inc., Manson, WA, USA) in Matlab Environment (The MathWorks, Natick, MA,
USA).

The fingerprints obtained by the sensor reflected the chemical composition of the
measured samples. Thus, a multidimensional model was elaborated via PLS-DA using the
leave-one-out criterion; this model received as input the multidimensional fingerprint and
is able to predict with a reasonable error (root mean square error in cross validation) the
concentration of the different compounds in the sample solution.

Figure 1 resumes the whole steps of the work, giving an overview of the experimental
set-up.
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3. Results
3.1. Calibration of the BIONOTE (Biosensor-Based Multisensorial System for Mimicking Nose,
Tongue and Eyes) to the Single Artificial CSF Constituents

In Figure 2, the voltammograms registered for each of the eight artificial CSF con-
stituents are shown. Bi-distilled water is the reference standard used for the calibration
of each compound and as basis solute for the artificial CSF: KCl, MgCl2, NaCl, NaHCO3,
CaCl2, NaHS and dopamine dissolved in bi-distilled water.
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Figure 2. Voltammograms registered for the following constituents for different concentration levels: reference bi-distilled
water KCl (3, 10, 50, 100, 150 mM, MgCl2 (1, 10, 50, 100, 150 mM), NaCl (10, 50, 100, 124, 150 mM), NaHCO3 (10, 25, 50, 100,
150 mM), NaHS (10 µM, 100 µM, 300 µM, 600 µM, 1 mM), CaCl2 (2, 10, 50, 100, 150 mM), Dopamine (1 µM, 3 µM, 10 µM).
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Important confirmations can be inferred from the curves shown in Figure 2: these curves
corroborate the feasibility of the study because they show the ability of the sensor system to
recognize the constituents of the CSF and to distinguish different concentration levels.

Indeed, it is evident that each compound generates a voltammogram with a peculiar
profile; each of these voltammograms is different, in shape, from the others; these profiles
preserve their shape for each constituent when varying the concentration level, but this
shapes increase their area and the height of each peak as the concentration increases.

All these data have been used for calibration purposes. To this scope each single
curve has been treated as a multidimensional data source (the 500 points acquired to form
the voltammogram).

PLS-DA was used for the calibration model. The ability of the sensor inferred by the
qualitative observation of the curves (above introduced) is confirmed by the encouraging
values calculated for the root mean square errors in calibration (RMSEC) and in cross
validation (RMSECV), for each of the constituents the artificial CSF. All these parameters
are reported in Table 5. This shows the ability of BIONOTE to efficiently predict relevant
CSF constituents when challenged in a condition of limited complexity.

Table 5. Partial least squares regression: root mean square error in calibration (RMSEC) and root
mean square error in cross-validation (RMSECV) expressed as mM concentration.

KCl NaCl NaHCO3 CaCl2 MgCl2 NaHS Dopamine

RMSEC 3.62 1.39 0.09 0.43 0.13 0.84 × 10−2 0.02 × 10−3

RMSECV 9.69 11.01 8.01 8.66 7.89 9.26 × 10−2 1.80 × 10−3

In order to understand the influence of these RMSECV when assessing the concentra-
tion of the different compounds in bi-distilled water, the percentage error can be calculated
taking into account the span of the all range of concentrations considered in the calibra-
tion measurements.

The percentage errors are the following: 6% for KCl, 1% for NaCl, 5% for NaHCO3,
6% for CaCl2, 5% for MgCl2, 9% for NaHS, 18% for dopamine. These percentage errors
should not be affordable when the sensor is used as an analytical method for constituent
quantification. In this case the goal is not quantification. The important result coming from
these limited percentage errors is that the sensor is able to distinguish the modification of
the artificial CSF when its composition is modified. Aiming at discriminating alteration of
CSF due to a diseased condition, this is a promising result, encouraging the next step of
verification, consisting in measuring artificial CSF as a whole.

3.2. Measurements of Artificial CSF and Their Modifications

Artificial CSF was measured as a whole in different altered conditions, simulated by
varying the concentration levels of NaHS and of dopamine. The consequent modifications
of the sensor response can be observed in Figures 3 and 4.

The data obtained by BIONOTE-based analysis of the artificial CSF solutions modified
with dopamine and NaHS addition were elaborated through multivariate data analysis
techniques (PLS) in order to mathematically confirm this ability of the sensor in discriminat-
ing altered conditions of artificial CSF. PLS regression model on NaHS modified solutions
confirmed the BIONOTE’s ability to predict NaHS concentration with a RMSECV of about
0.07 mM, even in a complex mixture and with better performance with respect to NaHS as
sole compound in bi-distilled water (which was 0.09 mM).

This result corroborates what arose in the comparison between the electrochemical
fingerprint of the native artificial CSF and the modified one (Figure 3).
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Similarly, the BIONOTE showed a satisfactory and promising performance in the
analysis of dopamine-modified artificial CSF with a RMSECV of about 0.67 × 10−3 mM.
The optimized experimental setup allowed us to achieve better performance by decreasing
the error of the PLS regression model with respect to the 1.80 × 10−3 mM error obtained
for dopamine as sole compound in bi-distilled water.

3.3. Optimization of the Experimental Setup for Human CSF Analysis

Once the ability to detect relevant markers in an artificial complex mixture was
confirmed, the voltammetric sensor was challenged with human CSF.

The first test on human CSF samples was oriented to the optimization of the mea-
surement protocol. Indeed, in the application of this new methodology in the field, some
practical problems (not present in the lab set-up used for artificial CSF) were encountered.

The first problem was relative to the clinical practicability of the method. Indeed, it
is useful to understand whether the CSF extracted from an individual must be measured
immediately after extraction or can be stored and measured later. This is a problem of
repeatability.
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Five CSF samples, extracted from five patients, were used for a repeatability eval-
uation. These samples were measured multiple times immediately after the LP, and a
reproducibility estimation over the time were performed via successive re-analyses of
the same samples after 30 and 120 days of stocking at −80 ◦C. The overall dataset was
elaborated through PCA, an unsupervised multivariate data analysis technique, and the
result is reported in Figure 5.
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repeatability and reproducibility evaluation.

As can be seen from the score plot of the PCA, the three experimental sessions shaped
distinct clusters in the three-dimensional space defined by PC1, PC2 and PC3 accounting
for about 86% of the explained variance.

This result highlighted the evolution of the biological sample over time, even if
properly stocked at −80 ◦C. Particularly, applying PCA analysis over the three experimental
session independently, it becomes clear that most of the information pertained to the fresh
CSF tends to disappear during the storage as a result of a progressive modification.

Indeed, looking at Figure 5, it is clear that the measurements relative to the fresh
samples can be clustered for each patient and each cluster is sufficiently distinguishable
from each other. The clusters have been graphically identified by grouping all the repeated
measurements executed for the fresh samples of the same patients. It is evident that
all the points relative to the samples measured after storage of 30 days and of 120 days
cannot be grouped in different clusters and are instead crunched in a cloud of overlapped
points. It could be observed that this distribution of the points is due to the 3-D graphical
representation. To better investigate this issue, the planes of the first two PCs (PC1 and
PC2) have also been shown.

While the fresh samples were clearly distinguishable over the plane along both the PC1
and PC2, these were less divergent already after 30 days of storage and became overlapped
in the last time step evaluated (Figure 6a–c). Furthermore, the repeatability of the analytical
system also seems to be affected in a certain way by the evolution of the biological sample.
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3.4. Preliminary Tests on Human CSF Samples

Eleven CSF samples from non-ND patients were analyzed with the BIONOTE voltam-
metric sensor immediately after LP.

Each CSF was measured five times, and the mean electrochemical fingerprints over
the five cycles have been calculated and represented in two figures: all the voltammograms
together, overlapped in the same graph (Figure 7); and a graph for each single patient
(Figure 8).
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In Figure 7 all the voltammogram can be compared immediately. This comparison
highlights a common pattern resembling the shape of the artificial cerebrospinal liquid
signal (check Figures 3 and 4).

Moreover, each voltammogram is characterized by peculiar peaks, probably associated
with the expected interindividual variability. This behavior is put in evidence more clearly
by the 11 panels of Figure 8 showing the 11 profiles of the mean responses calculated for
each individual.

The BIONOTE is proposed here as a fast, easy and cheap instrument to discriminate
altered CSFs against controls and, hopefully, also to discriminate CSFs referring to different
diseases. This is an ambitious end-point, which can be achieved through sensor response
characterization (as described above) but also comparing BIONOTE outputs against the
clinical standard data. A list of biochemical parameters was selected for this test: glucose,
lactate, total proteins, albumin, white blood cells, immunoglobulin-G, amyloid-β-42, total-
tau, phosphorylated-181-tau.

To train the BIONOTE system to predict biochemical parameters usually retrieved by
standard analytical techniques, the whole dataset was elaborated several times through
multivariate data analysis against each marker. The results obtained from the PLS regres-
sion models built on the related clinical data are reported in Table 6.

Thus far, the BIONOTE showed a quite different performance ranging from optimal
(glucose, total proteins, white blood cells, albumin and total-tau protein), to sub-optimal
(immunoglobulin-G and phosphorylated-181-tau protein) and also inadequate (lactate and
amyloid-β-42 protein).
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Table 6. Partial least squares regression: root mean square error in calibration (RMSEC) and root
mean square error in cross-validation (RMSECV) of CSF biochemical markers.

RMSEC RMSECV

Glucose (mg/dL) 0.15 4.28
Lactate (mmol/L) 0.18 0.29

Total proteins (mg/dL) 0.37 19.93
Albumin (mg/dL) 0.76 16.53

White blood cells (mmc) 0.69 2.53
Immunoglobulin-G (mg/dL) 0.62 2.21

Amyloid-β-42 (pg/mL) 275.21 510.25
Total-tau (pg/mL) 0.90 176.39

Phosphorylated-181-tau (pg/mL) 30.19 120.94

4. Discussion

BIONOTE is a sensor for voltammetric analysis of fluids which has been used already
for clinical applications with promising results. Indeed, it has been tested to analyze
pleural, ascitic, lower-limb ulcers liquids, and urine [11–13]. Here, instead, it was studied
for the first time with CSF, the liquid in which the CNS is immersed, whose analysis is
critical to diagnose neurological disorders, including NDs.

In this study, we initially assessed the BIONOTE performances on an artificial CSF
sample to establish its capability to recognize main different physiological and pathological
CSF constituents coherently with their concentration.

After such a calibration, the BIONOTE was used with human CSF obtained from five
patients receiving LP for diagnostic purposes. The test was conducted in three conditions
reflecting what commonly occurs in clinical practice, where CSF could be analyzed either
immediately after the LP or after refrigerated storage (−80 ◦C). Namely, the BIONOTE-
based analysis was performed repeatedly on fresh samples and after two periods of
freezing, for 30 and 120 days, respectively, showing that the accuracy to differentiate
distinct samples was better in fresh conditions, while it decreased progressively with
−80 ◦C storage, probably because of CSF’s electrochemical modifications due to prolonged
refrigeration.

Finally, the BIONOTE-based analysis was applied to fresh CSF samples from 11 human
subjects to predict different biochemical markers. Of interest, the strongest associations
resulted with routine parameters such as glucose, total proteins, white blood cells, albumin,
and especially with total-tau protein, a marker of neuronal injury whose CSF levels propor-
tionally increase with axonal degeneration in neurons, as occurs in AD [19], prion diseases,
and other acute neurological disorders (e.g., status epilepticus) [20]. Correlations with
more specific pathology-associated biomarkers (phosphorylated-181-tau and amyloid-β-42
protein) were, instead, weaker. This latter finding is consistent with the enrolment of
subjects not diagnosed with NDs, since it is expected that phosphorylated-181-tau and
amyloid-β-42 were within an established range of normality [23–26]; other markers con-
versely are affected by a number of conditions (e.g., age, systemic disorders), which allows
different distributions of values among the individuals.

Despite the limitation of this pilot study, such as the sample size and enrolment of a
so-called “control population” (patients not diagnosed with NDs), BIONOTE emerges as a
reliable device for voltammetric analysis applicable for clinical purposes even in neurology.
Actually, the sensor was able to detect differences in fresh CSF due to various concentrations
of both physiological and pathological constituents, which may reflect different clinical
conditions. The main quality of BIONOTE is the ease and the rapidity of electrochemical
analysis, which applied on fresh CSF samples may inform immediately on relevant clinical
events. Indeed, electrochemical analysis relies on a simple and manageable device whose
outcome is provided in a short time.
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These strengths seem to be fundamental to fill current gaps of CSF-assisted diagnosis
in the field of NDs. Accordingly, is now necessary to proceed with confirmatory studies
involving patients on larger scale.

5. Conclusions

The endpoint of this work is the proof of concept of the BIONOTE as a relevant
sensor for the characterization of CSF, oriented to its utilization as a fast pre-screening
instrument to address further analysis and therapies. This clinical use is beyond the scope
of the work, while the proof of concept has been shown by the pilot study presented.
BIONOTE output is characteristic and reproducible for artificial CSF and for the human
CSF. Thus, the methodology developed and tested is effective and its application shown
a good reproducibility. Moreover, the CSF fingerprint provided by the sensor has been
shown to be sensitive to CSF modification, and thus it is potentially representative of CSF
alteration. This result opens the way to its testing in a further study addressed to assess the
clinical relevance of the methodology.
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