
Computational and Structural Biotechnology Journal 20 (2022) 5065–5075
journal homepage: www.elsevier .com/locate /csbj
Mini review
The seen and the unseen: Molecular classification and image
based-analysis of gastrointestinal cancers
https://doi.org/10.1016/j.csbj.2022.09.010
2001-0370/� 2022 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding authors at: Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität
(M.P. Dragomir). Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (G.A. Calin). Depar
Surgery, Fundeni Clinical Institute, Bucharest, Romania (C. Vasilescu).

E-mail addresses: mihnea.dragomir@charite.de (M.P. Dragomir), gcalin@mdaderson.org (G.A. Calin), catvasilescu@gmail.com (C. Vasilescu).
Corina-Elena Minciuna a,b, Mihai Tanase c,d, Teodora Ecaterina Manuc b,e, Stefan Tudor a,b, Vlad Herlea f,g,
Mihnea P. Dragomir h,i,j,⇑, George A. Calin k,l,⇑, Catalin Vasilescu a,b,⇑
aDepartment of Surgery, Fundeni Clinical Institute, Bucharest, Romania
bCarol Davila University of Medicine and Pharmacy, Bucharest, Romania
cDepartment of Automatic Control and Computers, Politehnica University of Bucharest, Bucharest, Romania
dUniversity of Bucharest, Bucharest, Romania
eDepartment of Gastroenterology, Fundeni Clinical Institute, Bucharest, Romania
fDepartment of Pathology, Fundeni Clinical Institute, 022328 Bucharest, Romania
g ‘‘Titu Maiorescu” University, Bucharest, Romania
hGerman Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
iBerlin Institute of Health (BIH), Berlin, Germany
j Institute of Pathology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
kDepartment of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
lCenter for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA

a r t i c l e i n f o
Article history:
Received 5 July 2022
Received in revised form 7 September 2022
Accepted 7 September 2022
Available online 12 September 2022

Keywords:
Artificial intelligence
Molecular classification
Image-based classification
Gastric adenocarcinoma
a b s t r a c t

Gastrointestinal cancers account for 22.5% of cancer related deaths worldwide and represent circa 20% of
all cancers. In the last decades, we have witnessed a shift from histology-based to molecular-based clas-
sifications using genomic, epigenomic, and transcriptomic data. The molecular based classification
revealed new prognostic markers and may aid the therapy selection. Because of the high-costs to perform
a molecular classification, in recent years immunohistochemistry-based surrogate classification were
developed which permit the stratification of patients, and in parallel multiple groups developed hema-
toxylin and eosin whole slide image analysis for sub-classifying these entities. Hence, we are witnessing
a return to an image-based classification with the purpose to infer hidden information from routine his-
tology images that would permit to detect the patients that respond to specific therapies and would be
able to predict their outcome. In this review paper, we will discuss the current histological, molecular,
and immunohistochemical classifications of the most common gastrointestinal cancers, gastric adenocar-
cinoma, and colorectal adenocarcinoma, and will present key aspects for developing a new artificial intel-
ligence aided image-based classification of these malignancies.
� 2022 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Bio-
technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
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1. Introduction

Gastrointestinal cancers (GIC) account for 22.5 % of cancer
related deaths worldwide and represent circa 20 % of all cancers
[1]. In order to keep this review concise, we will focus on two main
GIC subtypes, gastric adenocarcinoma (GAC) and colorectal adeno-
carcinoma (CRC), for which the most interesting molecular classi-
fication (terms outlined in bold are further presented in the
Glossary section) and the first steps for image based-analysis were
recently developed.

Specifically, GAC is the fourth most common cancer type [2] and
the number three cause of cancer related death worldwide [3]
being an important public health issue. Around 35 % of GAC
patients are diagnosed with metastatic disease [4]. Prior to
chemotherapy, the survival was of only 5 months [5,6]. Although
adjuvant chemotherapy increased survival to 8 months [5], the
prognosis remains unfavourable, with a median survival of under
1-year [5,7]. Recently, neoadjuvant chemotherapy emerged show-
ing improved overall survival compared with surgery alone, 5-year
survival rate of 36 % vs 23 %, and a progression-free survival benefit
[8] becoming the preferred treatment option for Stage IB resectable
GAC or higher according to ESMO Guidelines [9] and NCCN Guide-
lines [10]. In what concerns CRC, it is the fourth most deadly can-
cer, with the highest rates of incidence in developed countries [11].
Novel therapeutic strategies have doubled the overall survival for
advanced stage disease to 3 years [11], but giving the fact that it
becomes symptomatic late on, it represent approximately 10 % of
cancer-related mortality in western countries [12].

The introduction of immunotherapy, in particular immune
checkpoint inhibitors (ICIs), was an important advance in oncology.
The results of this new therapy in advanced stage melanoma [13]
encouraged oncologists around the world to use immunotherapy
in the treatment of digestive cancers, including GAC and CRC.
Unfortunately, the therapeutic effect recorded in stage IV mela-
noma has not been recapitulated for GAC: median survival
remained around one year in metastatic disease [2] even though
targeted immunotherapies have been introduced in the clinical
use for advanced GAC [2]. The 5-year survival rate under 5 % in
advanced stage disease emphasizes the need for a better biologic
understanding of this neoplasia in order to develop novel therapies
[14]. Not all GAC patients respond effective to immunotherapy.
Hence, new strategies need to be developed to discover the
patients that can benefit from this therapy.

Likewise, CRC is a complex heterogenous disease and despite all
the advancements made in treating CRC there are many current
and potential variables influencing the treatment plan: location
(right-side colon cancer is a negative prognostic factor for the over-
all survival in patients who underwent treatment with curative
intent for colon cancer [15] and it steered treatment decision in
first line [16]), stage, cancer grade, and genomic biomarkers [17]
(CIMP - CpG island methylator phenotype High, MSI - microsatel-
lite instability High, MLH1 methylation, BRAF mutation, CIN - chro-
mosomal instability, CMS - consensus molecular subtypes, RAS
mutational status, EGFR/HER family, TP53-APC/b -catenin and var-
ious microRNAs (miRNAs) - miR-31, miR-99a, miR-125b, miR-
181a [18,19]).

Currently immune checkpoint therapy is approved for PD-L1
positive GAC (defined as a Combined Positive Score-CPS � 1)
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[10], and it is well known that microsatellite instable high (MSI-
H), or PD-L1 CPS � 10 tumors show a much better response rate
[20]. Other score considered and reported in some trials is tumor
proportion score (TPS) [10]. Other monoclonal antibodies approved
are trastuzumab for HER2-positive tumors and ramucirumab for
VEGFR2 positive [21]. In CRC, drug resistance against chemothera-
peutic regimens poses a serious challenge, finally leading to
chemotherapy failure [22]. Hopes have come from anti-EGFR
agents as cetuximab or panitumumab [23], anti-angiogenesis
agents as bevacizumab and anti PD-L1 as pembrolizumab, that
are currently approved only for MSI-H metastasized CRC [22,24].

These markers only partially reflect the tumor biology. It
became clear that in both cases the tumor heterogeneity is a cru-
cial cause of lack of response to ICIs and it holds profound implica-
tions for therapy selection [3].

Great efforts have been made to overcome the barrier of the
molecular heterogeneity of GAC and sub-classify these tumors.
The so called ‘‘molecular revolution” tried to identify optimal gene
sets in order to predict the disease course and the response to
chemotherapy or ICI.
2. The morphological classifications

The first classifications of gastrointestinal cancers were made
based on the tumor morphology using simple hematoxylin and
eosin (H&E) slides.

Stomach tumors are mainly epithelial. There are multiple types
of epithelial malignant tumors of the stomach, but by far the most
common one is GAC. GAC is defined as a neoplasia with glandular
differentiation originating from the stomach mucosa. Laurén clas-
sified GAC in 1965 into diffuse type and intestinal type [25]. Diffuse
type GAC is characterized by infiltrating isolated cells or small bun-
dles of cells that do not form glands. Often these cells have a
signet-ring cell morphology. On the other hand, intestinal type
GAC is composed of well-structured glands. As expected, diffuse
type GAC have a poor prognosis compared to intestinal type GAC.
The diagnosis of diffuse type GAC is more challenging, especially
if metastasized, the poorly cohesive cells hide in an inflammatory
or fibrous background making their detection sometimes difficult.

Currently, the WHO proposes five main morphological subtypes
of GAC [26]. The five subtypes are tubular adenocarcinoma (if
well/moderately differentiated matches the intestinal type, if
poorly it is similar to the diffuse type), papillary adenocarcinoma
(matches the intestinal type), poorly cohesive also including
signet-ring cell carcinoma (matches the diffuse type), mucinous
adenocarcinoma (can be both intestinal or diffuse) and mixed ade-
nocarcinoma (matches a mixed subtype of Laurén containing both
intestinal and diffuse type). Additionally, other subtypes are
described, but these are rare and are beyond the scope of this
review. All these subtypes not only look different but also have a
different prognosis and clinical course. For example, the papillary
adenocarcinoma (a former intestinal type) frequently is associated
with liver metastases and has a poor outcome [27]. Tubular GAC is
the most common subtype of GAC and is more frequent in Japanese
population, and if solid components are present it associates with
MSI [28]. Poorly cohesive GAC is well known to have an unfavor-
able prognosis and can harbor RHOA mutations [29]. Mucinous
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GAC is rare, shows MSI, and TP53 is the most common driver muta-
tion [30]. Moreover, mixed GAC shows multiple phenotypes, and
the poorly cohesive component is E-cadherin mutated [31]. There-
fore, it seems that a lot of information is hidden in the banal mor-
phology of adenocarcinomas, and we ask ourselves how much of it
are we missing.

The other very common subtype of gastrointestinal tract can-
cers is CRC. CRC is the main epithelial neoplasia originating from
the colon. Regarding the morphology most CRC are classified as
Not Otherwise Specified (NOS) [32]. Despite this, the WHO pro-
poses nine other subtypes of CRC, all having specific clinical fea-
tures and prognostic impact: mucinous adenocarcinoma,
adenoma-like adenocarcinoma, serrated adenocarcinoma,
micropapillary adenocarcinoma, signet-ring cell carcinoma,
medullary carcinoma, adenosquamous carcinoma, carcinomas
with sarcomatoid components and undifferentiated carcinomas
[26]. For example, mucinous CRCs have a prognosis similar to CRCs
NOS, although being enriched in MSI [33,34]. Additionally, muci-
nous tumors show more frequently BRAF, and PIK3CA mutations
and alterations of the transforming-growth-factor-beta pathway
[34]. Moreover, these tumors have a high number of tumor infil-
trating lymphocytes [34]. Signet-ring cell CRCs are rare (�1%), have
an unfavorable prognosis and are also enriched in MSI and BRAF
mutations being depleted in KRAS mutations [35]. Medullary mor-
phology is associated with a good prognosis and is associated with
MSI [36]. Serrated CRCs harbor BRAF mutations and MLH1 methy-
lation and have a specific intestinal microbiota [37]. Adenoma-like
adenocarcinoma morphology is associated with a favorable prog-
nosis often showing KRAS mutations [38]. Micropapillary adeno-
carcinomas of the colon and rectum show high levels of lymph
node metastases, vascular and perineural invasion, being associ-
ated with an unfavorable prognosis [39]. Adenosquamous carci-
noma of the colon and rectum usually have a higher stage at
diagnosis and consequently a shorter survival [40]. Finally, carcino-
mas with sarcomatoid components show alterations of the
SWItch/sucrose nonfermentable (SWI/SNF) chromatin remodeling
complex [41].

All these data together clearly show that the morphology is at
least partially containing the molecular information of gastroin-
testinal neoplasia and the hypothesis of developing an image-
based classification of GICs is supported by these data. Unfortu-
nately, because of the interobserver variability, the morphology
of tumors traditionally plays a secondary role and more reliable
tools for quantifying it are highly necessary.
3. Molecular classifications of gastrointestinal cancers

In 2014, The Cancer Genome Atlas (TCGA) research network
presented four molecular subtypes based on genomic profiling
data of primary GAC [42]. The four subtypes (EBV - Epstein-Barr
virus, MSI - microsatellite instability, CIN - chromosomal instabil-
ity, and GS - genomically stable) have led to a better selection and
stratification of patients that may respond to immunotherapy, and
other types of chemotherapy [3]. This molecular classification
became a roadmap for stratifying patients in order to develop
specific targeted therapies. To define these GAC subgroups,
advanced molecular techniques are necessary, which are not feasi-
ble nor cost effective in current clinical practice [43]. Therefore, we
consider the molecular classification of GAC as one step towards
personalized cancer therapy and follow-up.

The widespread application of molecular classification was
hampered by the fact that it requires advanced technology, time-
consuming bioinformatics methods that extend too much the
time-sensitive delivery of the results, the lack of robust classifiers
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that are platform-independent and especially the remarkably high
costs.

For CRC, until 2015, there were a lot of inconsistencies among
the transcriptomic-based CRC classifications that impeded the clin-
ical translation [44]. A multicentre group tried to harmonize these
classification systems by coalescing into four subtypes that are
considered to represent distinct groups [44]. They established a
consensus molecular subtype classification based on gene expres-
sion profiles from bulk tumours: CMS1-14 % - microsatellite insta-
bility immune, CMS2-37 % - canonical, CMS3 - 13 %-metabolic, and
CMS4-23 % - mesenchymal [44]. The rest of the samples, 13 %, had
mixed features attributed to the tumour heterogeneity or a transi-
tion phenotype being considered indeterminate CMS subtype [44].

CMS1 is characterized by MSI-H and CIMP high, generally has
good prognosis, but the worst prognosis if relapsing, represents
14 % of total CRC tumours, and is predominant in the proximal
colon [45], CMS4 has high somatic copy number alterations, has
the worst overall survival, and potentially display high response
against heat shock proteins like inhibitors [46]. CMS2 also has high
level of somatic copy number alterations and shows MYC andWNT
activation, best responds to anti-EGFR and HER2 inhibitors [46]
and is predominant found in distal colon and rectum [45]. CMS3
has often KRAS mutations, has the 5-year survival rate of approxi-
mately 75 %, the second-highest of the four subtypes, with approx-
imately 13 % of the patients having this subtype [47]. This
classification has been reproduced across multiple studies [48,49]
and represents one of the most accepted molecular classification
of CRC. An important limitation of this classification is that a high
number of samples do not fall in any of the classes. Therefore, more
specific classifications are highly needed.

In 2007, Jass [50] anticipated that a possible solution to under-
standing CRC heterogeneity would be the study of its molecular
features. He proposed a classification comprised of 5 subgroups
based on combinations of MSI and CIMP status and existence of
BRAF and KRAS mutations as follow: type 1 (CIMP-high/MSI-H/
BRAF mutation), type 2 (CIMP-high/MSI-L or MSS/BRAF mutation),
type 3 (CIMP-low/MSS or MSI-L/KRAS mutation), type 4 (CIMP-
neg/MSS) and type 5 or Lynch syndrome (CIMP-neg/MSI-H). This
classification is a predecessor of the purely transcriptomics-based
classification. Currais et al. [51] pointed out that MSI-high and
CIMP-high correspond to CMS1 group, CMS2 and CMS4 are MSS/
MSI-low tumors and CMS3 are CIMP-negative tumors.

Recently, in 2022, Joanito et al. [52] proposed a new approach to
classifying CRC, refining the CMS [44], by combining intrinsic
epithelial subtype (I), microsatellite instability (M) and fibrosis
(F). The refined IMF classification has 5 subtypes: iCMS2_MSS_NF,
iCMS2_MSS_F, iCMS3_MSS_NF, iCMS3_MSS_F and iCMS3_MSI.
Regarding the relationship with the CMS, the IMF found that
CMS1 and CMS3 tumours are mainly i3, while CMS2 were mainly
i2, but CMS4 with an equal proportion can be i2 or i3 (being strat-
ified by the epithelial subtype). In what concerns the correlation
with clinic-molecular characteristics, the right sided tumours were
mainly i3, 66 %, and the left sided tumours were mainly i2, 68 %.
Consistently with the CMS classification that showed poor relapse
free survival for CMS4 subgroup [44], this was also a particular fea-
ture of the CMS4/iCMS3 subgroup [52], with the same effect on the
overall survival, inferior to all others subgroups. After relapse, the
survival was worse for i3 patients than for the i2 ones [52].
4. Immunohistochemical classifications of gastrointestinal
cancer

Even though clinically used genetic or immunohistochemical
techniques already are used in GAC for identification of EBV, and
MSI subgroups, characterizing other more complex and heteroge-
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nous subgroups are more technically challenging [3]. A more
affordable alternative is required. A solution with limited potential
is immunohistochemistry combined with in situ hybridization with
the following markers proposed for performing the subclassifica-
tion: Epstein-Barr positive, p53 and MMR proteins [43,53]. This
technique is a surrogate for the molecular subtyping, offering an
efficient and reasonably accurate alternative, although separating
GS from CIN is difficult, this has potential prognostic and therapeu-
tic implications [54]. Furthermore, in 2018, Birkman et al. [53] used
immunohistochemistry and in situ hybridization to achieve biolog-
ically and clinically relevant subgroups of GAC based on the histo-
logical Laurén classification of tumors. This is applicable for both
clinical diagnostics and research purposes [53]. Since then, other
studies [55–59] emerged trying to overcome the difficulties in
implementing the molecular classification techniques by deploying
immunohistochemistry staining and in situ hybridization.

Other new research directions that uses immunohistochemistry
are those that evaluate the immune components found in GAC and
those that try to implement some scoring system of those compo-
nents. Zhang et al. [60] identified that tumor infiltrating lympho-
cytes have prognostic value in GAC, high levels being associated
with a positive prognosis. Other more complex scoring systems
as ImmunoScore Signature [61] can predict recurrence and survival
and may be a tool to assess if the patient may benefit from adju-
vant chemotherapy in stage II and III GAC.

Regarding CRC, in 2018, Hoorn et al. [62] described an immuno-
histochemistry Mini Classifier that in combination with MIS testing
can classify CRC into the main molecular subtypes. Immunohisto-
chemistry was also used to develop a two-protein classifier derived
from stromal gene-profiling that could assess the pathological
response to neoadjuvant treatment in rectal cancer [63].

Galon et al. [64,65] combines the immunohistochemistry stain-
ing of the immune cells and image analysis methods and devel-
oped Immunoscore Colon that is a diagnostic test that predicts
the risk of relapse in early-stage colon cancer and so it may have
a role in deciding the need for adjuvant chemotherapy. It demon-
strated the relevance of specific immune signatures in the prognos-
tic of early-stage CRC [49].

Immunohistochemistry is taking a leading role in directing
patients to targeted therapy. Currently-three targeted therapies
have been approved for GAC treatment: trastuzumab - against
erb-b2 receptor tyrosine kinase 2 (ERBB2), ramucirumab - against
vascular endothelial growth factor receptor 2 (VEGFR2), pem-
brolizumab and nivolumab- both against programmed cell death
protein 1 (PD-1) [3]. HER2 is overexpressed in 15–25 % of GAC.
Its positivity is defined as immunohistochemistry score 3 + or by
immunohistochemistry score 2 + and florescence in situ hybridiza-
tion positivity [66]. For HER2 positive advanced stage GAC trastu-
zumab plus chemotherapy is the first line therapy [66]. PD-L1 is
used as a biomarker to guide treatment in certain conditions with
anti-PD-1 antibodies [66]. Its expression in GAC is evaluated by
immunohistochemistry. A positive PD-L1 expression is determined
by the combined positive score (CPS) � 1 and it corelates with the
therapeutic effect of ICI [67].

Other applications of molecular analysis and immunohisto-
chemistry in GAC include identification of FGFR2 amplifications,
EGFR amplifications or overexpression, MET high expression or
amplification, VEGFR overexpression and claudin 18.2 overexpres-
sion [66]. They identify the patients that may benefit from specific
targeted therapies.

For CRC, the use of immunohistochemistry to evaluate the MSI
is employed to evaluate the potential response for PD-1 blockade,
but also to predict the outcome [68]. Even though in the last dec-
ade CRC research produces important results in order to bring CRC
treatment in the era of personalized medicine, many of them did
not yet rendered clinical utility [69].
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5. MiRNAs as morphogens: How does a tumor get its shape [70]?

The cancer invasion front (CIF) configuration seems to corre-
late with the prognosis and survival, but how its shape impacts
prognosis remains an intriguing problem. Here, many characteris-
tics of cancer growth and progression are synchronized both at
single- and collective-cell levels [70]. Vasilescu et al. [70] proposed
a model that supports part of the hypothesis that a morphogenetic
activator and inhibitor regulate tumor development and its form,
underlining that the gradual change in concentration of the inhibi-
tor is crucial. Overall miRNA expression variations and probably
miRNA concentration gradients in the tumor are involved in initi-
ation and progression of cancers [71]. Aberrant expression of miR-
NAs is a characteristic of the neoplasia, being involved in many
biological processes through gene repression [72]. One hypothesis
is that miRNAs are the potential inhibitors in determining the
tumor border of epithelial malignancies and their diffusion coeffi-
cient is an important factor in CIF configuration [70]. Can these
mechanisms be blocked as a novel therapeutic strategy?

For GAC, multiple miRNAs have been linked to its progression
and prognosis. Low level of miR-34a can promote progression
and reduce survival [73]. Downregulation of miR-193b was signif-
icantly associated with invasion, metastasis, and Lauren sub-type-
diffuse, while high levels of miR-196-a was linked to poor differen-
tiation [74]. Some serum miRNAs such as miR-21, miR-146a and
miR-148a were linked with gastric cancer pN stage, these may be
possible biomarkers to predict the presence of tumor cells in
lymph nodes giving the fact that there were no differences noticed
by pT stage, Lauren’s sub-types, sex or age [75]. Whilst other miR-
NAs such as miR-17-92 cluster miRNAs are associated with the
progression and chemoresistance in patients with gastric cancer
treated with oxaliplatin/capecitabine (XELOX) [76]. Other non-
coding RNA molecule found in GAC patients that express chemore-
sistance isMACC1-AS1 [77]. It is overexpressed in FOLFOX-resistant
GAC, and it binds miR-145-5p derepressing CPT1 and ACS [77].
Also, CircAKT3 is upregulated in cisplatin-resistant GAC [77].

In CRC, miRNAs regulate main pathways for development, pro-
gression, and metastasis, as well as serve as biomarkers for progno-
sis and diagnosis [78]. MiR-224 expression in primary CRC patients
may have prognostic value and promotes CRC metastasis through
the regulation of SMAD4, at least in part [79]. MiRNA dysregulation
in CRC are a consequence of genetic and epigenetic changes and
transcriptional regulations as suggested by recent studies [78]. A
major obstacle to current cancer therapy is drug resistance to
chemotherapy, but also to molecular targeted therapy [78]. A novel
way to overcome it, as evidence indicate, is by targeting miRNAs
[78]. The following miRNAs were identified as inducing resistance
to chemotherapy: downregulated expression of miR-4802, miR-
18*, miR-145, miR-17-5p and upregulation of miR-21, miR-215
and miR-625-3p; and resistance to molecular-targeted therapies:
upregulated miR-31, miR-302a, miR-100, miR-125b and miR-
199a-5p [78,80].

Considering their role in tumorigenesis and progression of GICs,
as well as the important therapeutic implications, miRNAs may be
a key step in elucidating the adequate treatment and management
of GIC.
6. Back to image-based classification

The returning to routine histopathological images was aided by
whole slide image (WSI) scanning and by Artificial Intelligence
(AI)-based technologies that seem to dominate the headlines,
especially in the field of diagnostics. Even though WSI was first
introduced commercially almost 22 years ago [81] and
Computer-Aided Diagnosis system began in 1980 [82], only after
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the developing of the deep learning (DL) technology which can
automatically learn the characteristics of the image through con-
volutional neural networks (CNN) and can search for similar fea-
tures through a lot of training [82], the field of digital pathology
changed completely. Neural networks (NN) were first proposed
in 1944 by Warren McCullough and Walter Pitts as a model of bio-
logical neuronal networks [83]. The implications were twofold, one
consisting in beginning to understand how neurons process infor-
mation and the other consisting in applications in computer
science. In NN paradigm, a problem is solved by the computer
not by a step-by-step deterministic algorithm i.e., rule-based
approach, but by learning from examples. The main advantage of
using NN to solve a problem is that the programmer does not need
to fully understand the intricacies of the problem or the process of
finding the solution. The programmer just needs to design an
appropriate NN architecture and collect loads of data for training
it. The main disadvantage is precisely that the programmer might
never understand these intricacies, or, in other words, the solution
lacks explainability. Recently some methods were proposed that
can potentially reverse engineer DL models; this may be a valu-
able tool to discover relationships and bring insights into a specific
problem [84] or even identify targets for the development of new
therapies [85]. Therefore, in some sense, the process of finding
the solution (or answer) lacks some sort of controllability as well.
The limitation of hardware resources of the last century put NN in
the shadow, but with the increase of computing power (e.g.,
Graphics Processing Units-GPUs), memory capacity and availabil-
ity of data in the last two decades (and especially the last decade),
Fig. 1. The two types of approach that may render insights through the AI are the statistic
understanding and causality, a type of approach that may give knowledge on morphoge
that gives the tumor it’s shape. Also considering the information provided by the usually
than meets the eye.
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NN (and AI in general) became the main focus of modern computer
science. Therefore, the researchers in the field are constantly
developing cleverly designed NN architectures. Nowadays, NN
can perform impressive tasks. In particular, CNN (and their state-
of-the-art architectural versions such as EfficientNet, AlexNet,
ResNet, Inception and so on), can obtain impressively high accu-
racy in image recognition tasks. As an example, the CNN Hover-
Net was developed for simultaneous segmentation and classifica-
tion of nuclei on WSI [86]. In Fig. 1 we depict the two possible
approaches that can link genotype to phenotype and provide
new diagnostic, prognostic and predictive tools in medicine.

A far less expansive and probably more accurate solution for the
stratification of GIC would be massive high-resolution acquisition
of histopathological images followed by large-scale implementa-
tion of algorithms based on deep machine learning, an original
and innovational technique [87]. Today, we are able by integrating
these methods to obtain an exceptionally large volume of informa-
tion from the usual H&E stained slides and by enabling their use
from the archives of cancer institutions no prospective require-
ment of patients is necessary. The impact of these great advances
in data acquisition and image processing have already improved
other areas of imaging and histological diagnosis [88,89].
Machine-learning (ML) algorithms identify specific elements of
the tumor to help with detection and differentiation from normal
tissue that are very important in GAC [90]. In addition to morpho-
logical features, the molecular characteristics that distinguish nor-
mal from tumoral tissue will improve the ML algorithms and will
bring these tools closer to the diagnostic and therapeutic seting
al model that is based on correlations and the mechanistical model, that is based on
nesis. Vasilescu et al. [70] hypothesized that miRNAs are the morphogenic triggers
stained H&E that currently the pathologist is not using, the AI seem to extract more
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[90]. DL technologies and quantitative image analysis are enabling
researchers to interrogate complex information with applications
in immune-oncology [91] and are showing a great potential in sub-
classifying tumors and predicting patient’s outcome [92,93]. Spa-
tial characteristics of tumors may have a key significance in
determining the prognosis [94]. They are a game changer in cancer
diagnosis and treatment, leading cancer therapy into the era of
personalized medicine [95].

Tumor heterogeneity is not limited to inter-patient variations,
but also to intra-tumoral variations [96]. Spatial profiling of GAC
matched primary and locoregional metastases leads to the discov-
ery of principles of tumor spread, linking regional lymph nodes
metastasis to the deeper subregions of the primary tumors [96].
Spatial subregions in GAC revealed clinically significant genomic,
transcriptomic and phenotypical heterogeneity [96]. Already some
AI image-based classification of GIC variants exists in correspon-
dence to the histopathological subtypes: a DL model for classifying
the diffuse-type GAC on WSI [97], differentiating it from other gas-
tric pathologies, as well as glandular structure-guided classifica-
tion of colorectal WSI [98]. Yoshida et al. [99,100] evaluated if
automated image analysis software can accurately classify gastric
and colorectal biopsy specimens and even if there are some limita-
tions and requirements the results seem promising and may assist
the pathologist in near-future. This is utterly important for the field
of surgical pathology where it provides time-sensitive information
and is a key step for patient management. Also, DL can characterize
colorectal polyps and so can reduce the cognitive burden on
pathologist [101]. In GIC, AI applications extend to help make the
diagnosis, for prognostication, and for genetic and/or molecular
testing [102].

This rapidly developing field of digital pathology and computa-
tional pathology needed specific reporting guidelines in assessing
AI interventions and results. The Standards for Reporting of Diag-
nostic Accuracy Studies (STARD) 2015 statement is one of the most
widely accepted in presenting results for diagnostic studies, and an
AI-specific extension to it is being developed [103]. Luo et al. [104]
managed to join ML specialists, clinicians and statisticians to
develop a set of guidelines: first part referred to a list of reporting
items to be incorporated in a paper and second part, a set of steps
for developing predictive tools [104].

In regard to the ‘‘molecular revolution”, the question is if there
is enough information on routine stained histopathological images
in order to replace or complement the molecular classifications,
predictions of overall survival or response to therapy and have a
less expensive ‘‘image-based surrogate”. This hypothesis assumes
that genetic alterations in tumor cells induce functional changes
that modify the cell/tissue morphology [105]. The reverse of the
story is the replacement of the classical image-based pathology
by molecular biology methods (i.e. sequencing) that are more
specific and sensitive. In this scenario the H&E slide will be used
only to define the region for extracting DNA, RNA or proteins.
7. Current image-based classifications of GIC

Cancer is a heterogeneous disease and even though the molec-
ular classifications yields some insights, this analysis of tumor tis-
sue is a demanding task due to the genomic information coming
also from the stromal cells, immune cells, and healthy, normal ones
[106]. Genetic chaos seem to be a specific feature of solid cancers,
the complex pathogenetic mechanism being ruled by disordered
genetic and molecular events [107]. In 2012, Yuan et al. [106] used
the information rendered by the tissue architecture using a compu-
tational approach on standard H&E tissue sections and devised a
predictor for survival in negative estrogen receptor breast cancers
that integrated gene expression and image-based analysis, uncov-
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ering insights into breast tumor biology. In the same year, Cooper
et al. [108] went a step further and hypothesized that quantitative
morphometric analysis of WSI may provide mechanistic insides of
disease development giving the fact that morphologic variations
are often concerted to molecular aberrations.

The heterogeneity of sporadic CRC poses important difficulties
in assessing prognostic and treatment response. After performing
a molecular classification, Budinska et al. [109] evaluated the mor-
phological CRC patterns of the molecular subtypes, subsequently
Popovici et al. [93] shifted the approach from the molecular classi-
fication to a histopathological image-based classifier able to pre-
dict CRC molecular subtype, proving significant prognostic value
[93]. The underlying molecular traits of the disease seem to be
embedded in visual information of histologic specimens; this pro-
vide opportunities for integration with genomic analysis using
image analysis algorithms to examine the microscopic features of
WSI [110,111]. Furthermore, Sirinukunwattana et al. [92] provided
an image-based classification of CMS of CRC using DL that seems to
be a cost effective and reliable tool. This approach of image-based
detection of targetable molecular alterations may be the way to
understand and quantify genotype-phenotype links in cancer
[105]. Deep-learning classification systems exponentially evolve
into solving digital pathology problems. Until recently these sys-
tems depended on well annotated and large sets of data, but new
methods have been developed that perform a fully automated
demarcation of any tumor type as long as a specific staining is
available for learning [112].

DL-based classifiers are used to detect MSI and EBV status from
H&E slides in order to predict the response to immunotherapy in
GAC, being an inexpensive biomarker after prospective validation
[113]. Another application of DL was classification and mutation
prediction of small cell lung cancer [114] and forecast the outcome
of CRC patients [115]. Some studies emerged proving an associa-
tion between microsatellite instability in CRC and routine stained
WSI [116–118]. Table 1 presents a compendium of studies using
digital pathology in GAC and CRC, representing the current state
of knowledge in the field.

Another technique used to detect architectural changes in WSI
was developed using methods from algebraic topology, as persis-
tent homology. This method was implemented on prostate cancer
WSI and clustered it through a ranked persistence vector, suggest-
ing that it can be a robust quantification method with higher gran-
ularity than the existing semi-quantitative measures [119]. The
same approach was used to assess the architectural differences
between low and high grade prostate cancers with promising
results [120]. Another proposed method was based on the associa-
tion of features extracted by multiscale and multidimensional frac-
tal techniques: Haralick descriptors and CNN for pattern
recognition [121]. This method was used in CRC, breast cancer
and non-Hodgkin lymohomas with promising results [121].
Because of chaos typically results in the appearance of fractals
[122], various studies suggested that there is a connection between
fractals and cancer [122]. Fractal geometry emerged as a useful
tool in describing not only the pathological architecture of tumors,
but yield insights into tumor growth mechanisms and angiogene-
sis that complement the modern molecular methods [123]. Fractal
dimension of chromatin was proposed as a potential molecular
marker for cancer progression [124–126]. During carcinogenesis
and tumor progression it has been shown that the fractal dimen-
sion of the stained nuclei increased for intraepithelial lesions of
the uterine cervix, anus, adenocarcinomas of the pancreas or oral
squamous cell carcinoma [124]. Fractal geometry has been used
to unravel the complexity of signaling networks in cancer [127]
and even in the detection of colonic cancer images [128]. This
method emerges as an useful tool in pathology research [129].



Table 1
A compendium of most relevant studies that used image-based classification for gastrointestinal tract cancer classification.

Year, Author, Journal Tumor type Aim of the study Method Results/conclusion

2017 Popovici V.[93], Bioinformatics CRC Predict the molecular subtypes based on image
analysis

Deep CNN Considerable prognostic value as molecular classification

2017 Awan R. [130], Sci Rep CRC Objective grading using computer algorithms NN Distinguishes between normal and cancer cells with 97 % accuracy and with
91 % accuracy between normal cells, low- and high-grade cancer.

2018 Bychkov D [115], Sci Rep CRC Foresees outcome, without any histopathological
classification

Recurrent NN DL can obtain more prognostic data than an experienced human observer

2019 Geessink OGF [131], Cell Oncol (Dordr) RC Computer-aided quantification of intra tumoral
stroma in RC WSI

NN DL-based technology may be a significant aid to pathologists in routine
diagnostics

2019 Kather JN [132], PLoS Med CRC Extraction of prognostic markers directly from H&E–
stained tissue slides

Deep CNN CNN can predict prognosis directly from histopathological images

2019 Shapcott M [133], Bioeng. Biotechnol CRC Identify prognostic features DL CNN Tissue morphology relates with a range of clinical features as cell
identification algorithm uncovers them

2019 Kather JN [117], Nat. Med. GIC Predict MSI from digital tissue slides Deep residual
learning

May identify the subset of patients that benefit from immunotherapy

2020 Kather JN [105], Nature Cancer CRC, GAC,
panc. cancer

Predict molecular alterations from digital tissue
slides

NN DL has the potential to infer mutations, molecular subtypes, gene expression
patterns and biomarkers from digital tissue slides

2020 Skrede OJ [134], Lancet CRC Develop a prognostic biomarker after primary CRC
resection by analyzing digital H&E tissue slides

CNN Stratification of CRC stage II and III patients into prognostic groups

2020 Fu Y [135], Nature Cancer CRC, GAC Predict genomic alterations based on digital tissue
slides; Cancer classification

DL Infer genomic alterations, mutations, immune infiltration and gene
expression profiling

2020 Sirinukunwattana K.[92], Gut CRC Image-based approach to predict CRC molecular
subtypes from standard H&E sections

NN with domain
adversarial learning

CRC molecular subtypes can be predicted from digital H&E tissue slides

2020 Echle A [116], Gastroenterology CRC Identify mismatch-repair deficiency (dMMR) on H&E
slides

Shufflenet DL 96 % accuracy in predicting dMMR

2021 Bilal M [136], Lancet Digit Health CRC Assess the status of major molecular pathways and
mutations on H&E slides

DL framework
involving 3 separate
CNN

Identify patients for targeted therapies faster and with lower costs

* CNN– convolutional neural networks, NN– neural networks, DL- deep learning, CRC- colorectal cancer, GAC- gastric adenocarcinoma, GIC- gastrointestinal cancer, MSI- microsatellite instability, panc. cancer – pancreatic cancer.
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8. The way to computational pathology

Artificial Intelligence (AI) encompasses the techniques for a
machine to replicate or to overrun human intelligence, mainly
in the rapid processing capabilities of complex data. In a tradi-
tional rule-based approach to AI, the programmer overtly encodes
the know-how coming from the pathologist. In contrast, ML uses
statistical methods to discover essential patterns from a set of
training data without explicit a priori instruction from the pathol-
ogist. DL is a novel ML tool, inspired from neurobiology networks,
used to represent data employing multiple levels of simple but
nonlinear modules. While there are numerous applications and
research projects employing AI in image analysis in medical field,
the vast majority are either relying on DL to solve classification
problems, or using image pre-processing applied globally, like
thresholding and masking, to extract features, which are analyzed
using statistical methodologies to facilitate conclusions [102,137–
139]. Both strategies offer good results, but with some disadvan-
tages. DL alone could offer high accuracy predictions, but it lacks
explainibility, which is crucial in the scientific research. A CNN
will learn how to identify the different elements that constitutes
a tissue and then to recognize various pattern that makes the tis-
sue fall into a particular category. In the end, a CNN will be at
most capable of labeling the image and highlighting some ele-
ments in the image in terms of importance for the decision (i.e.
attention maps). As an example, let us consider images of fractals.
CNNs will definitely be able to recognize different fractal objects,
but our goal is to find a way to extract information about the gen-
erating rules of the fractal in question. For instance, in this illus-
trative scenario, we would be interested in defining and
estimating the fractal dimension of a fingerprint. This invariant
would be a link between the ’genotype’ and the ’phenotype’ of
the entities in this scenario.

One approach is to attach numerical invariants to the
histopathological features in order to identify the type of tissue
or a particular class, especially regarding cancer. Ideally, these
invariants should belong to a continuous domain, should be as
few as possible, and should correlate with the specific class i.e.,
each class should be associated with a well-defined subdomain
of values for the invariants. The fewer the invariants, the easiest
is to find a biological interpretation for them.

Considering this, we can emphasize again that the best way a
NN to produce values that can be called numerical invariants is
by using a bottleneck architecture called autoencoder. For exam-
ple, the size/shape/color of individual nuclei is indeed important,
but there are straight forward procedures dedicated to analyzing
these features. Thus, we will ignore these aspects and concentrate
on the more interesting problem of their configuration as points in
the real plane.

Potential methods:

M1: One method for analyzing the configuration of nuclei called
local structure correlation diagram (LSCD) is described by
Tanase et al. [140].
M2: Second method comes from algebraic topology and is
called persistent homology. It consists in calculating homologi-
cal invariants (Betti numbers) that persists across different
scales [119].
M3: Third method originates in fractal geometry and consists in
computing the Fourier coefficients of the histogram associated
with the local fractal dimension map [141].
M4: Forth method derives from the perspective of dynamical
systems, a version of Lyapunov exponent(s) can be computed
for an image [142].
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By aggregating the data computed by such methods, we aim to
obtain a precise model of the shift between classes in terms of con-
figurations of histopathological features and understand the image
as a fingerprint of a dynamic process.

Another related research topic developed recently is that of spa-
tial transcriptomics. This technologies capture coding transcripts
expression across biological tissue space [143]. There are many
technologies available: Spatial Transcriptomics, Slide-seqV2, MER-
FISH, GeoMxTM, DBiT-seq and Stereo-seq, some of them allow, in
some cases, even for subcellular detection of RNA [143]. Unfortu-
nately, even these novel methods often rely on defining the tumor
cells and stromal cells before performing the analysis, hence
image-based segmentation tools are highly necessary.
9. Concluding remarks

There are several challenges that need to be addressed in the
field of AI based diagnosis in pathology.

First, is the implementation of AI in daily practice. There are
many barriers in what concerns the WSI scanners, and the massive
acquisition of images needed to train the CNN and their proper
storage. Nowadays there are cloud-based telepathology systems
tested in order to evaluate their effectiveness [144], but questions
still remain regarding cyber security, access to large data, and
ethics. Most probably this challenge will be addressed in the near
future, for example it is already widely accepted the advantage of
archiving pathology slides in a digital format, in this way they are
immediately available for later comparison and analysis (especially
in case of recurrences). The digital format also permits the transfer
of slides to renowned specialists whose expert-opinion can be con-
sulted for definitive diagnosis. Additionally, the digitalization of
slides solves the problem of a physical storage place for the slides.

Second, it is necessary to evaluate their performance of these
tools in real-life clinical setting, prospective studies need to be con-
ducted to show the true benefit of AI [87]. The prospective studies
need to validate these very new and interesting findings in a real-
life clinical setting, where for example core biopsies contain very
limited amount of tumor tissue or many cancers are treated with
neoadjuvant chemotherapy and the morphology is dominated by
regressive changes. Moreover, there needs to be a standardized
method of reporting the results. Only in this way the results can
be reproduced between groups and methods can be implemented
in the clinical setting.

Another issue is related to explainability – can we use a diag-
nostic tool that we cannot understand? Because of this point many
groups perform an explainable pathology, in this way a ready to
use tool can be developed. There is also the reverse of this question,
we can develop a tool that lacks explainability to obtain a more in
depth understanding of cancer biology and by reverse engineering
to discover unknown mechanisms.

Finally, there is an important question regarding medical ethics
– can we accept to be diagnosed by an algorithm, even an explain-
able one, instead of a medical doctor? Who will be to blame for the
diagnostic errors?

We believe that DL through CNN may be the key into under-
standing the relationship between genotype and phenotype. If
the method is validated through clinical studies, this may open
new opportunities for adequate pathological classifications, sur-
vival predictions and most important, a tailored treatment. Even
though it seems that analyzing the WSI by AI may render enough
information on the genotype it is early to draw definitive answers.
Nonetheless a de novo and unsupervised image-based classification
of GIC could be an alternative approach. This could shed new light
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on our understanding of these malignancies, but this will have to
be backed up by in depth molecular characterization of the
researched tumors and it would need an impressive cohort size.

We also consider that by having a better understanding of the
molecular mechanisms that shape the morphology of the tumors
could rapidly aid the development of digital pathology. As outlined
in this review and our previous manuscript [70], miRNAs that
could play a role as morphogenic inhibitors, could be the missing
link between genotype and phenotype. Hence, a combination
between image analyses methods and the molecular methods is
the ideal strategy. Furthermore, the AI can be used to additionally
integrate miRNA expression patterns in the tumor border obtained
by In Situ Hybridizations (ISH). Such integrative analyses will
extract more information from tumor slides. Revealing such miss-
ing mechanistic elements could be sometimes the much quicker
way compared to scanning tens of thousands of slides and not
knowing what you are looking for.
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Glossary

Betti numbers: the ranks of the homology groups capturing information about holes
of different dimensions in a topological space.

Cancer invasion front (CIF): the border between an infiltrating neoplasia and normal
tissue.

Convolutional Neural Networks (CNNs): a class of neural networks that use convo-
lution filters to analyze images.

Convolutional Neural Network Hover-Net: a branched CNN which within a single
network can perform segmentation and classification of nuclei.

Deep learning (DL): the algorithm(s) used to modify the parameters of a neural
network model based on the response of the network to training input data in
order to increase its accuracy (i.e. it is a learning method for neural networks).

Diffusion coefficient: the quantity of a given substance that diffuses across a unit of
space in one second under the influence of a gradient of one unit.

EfficientNet, AlexNet, ResNet, Inception: examples of special state-of the-art CNN
architectures.

Fourier coefficients: complex numbers that form the frequency spectrum of a signal.
Graphic Processing Units (GPUs): specialized electronic circuit designed for parallel

processing of information.
Haralick descriptors: a texture descriptor composed of several statistical features.
Lyapunov exponent(s): a quantity that characterizes the rate of separation of

infinitesimally close trajectories that reflects chaotic behavior of a dynamical
system.

microRNA (miRNA): small non-coding RNA molecule that inhibits messenger RNA
translation at a post-transcriptional level.

Machine learning (ML): a class of algorithms capable of learning from data to
improve performance of a given task.

Molecular classification/molecular subtypes in oncology: the use of molecular big data
(transcriptomics, genomics, epi-genomics) to sub-classify a cancer type.

Neural networks (NN): a class of algorithms based on model inspired from the study
of the brain neurons that is capable of finding patterns in the input data in order
to generate a desired output.

Reverse engineer deep learning models: understanding how a deep learning model
produces its output for a given input.

Segmentation (in image analysis and processing): the process of dividing an image
into disjointed areas so that each area represents a different pattern/structure/
object (for example tumor tissue, stroma, cells).
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