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Brain iron dyshomeostasis is a feature of Alzheimer’s disease. Conventionally, research

has focused on non-heme iron although degradation of heme from hemoglobin subunits

can generate iron to augment the redox-active iron pool. Hemopexin both detoxifies

heme to maintain iron homeostasis and bolsters antioxidant capacity via catabolic

products, biliverdin and carbon monoxide to combat iron-mediated lipid peroxidation.

The aim of the present study was to examine the association of cerebrospinal

fluid levels (CSF) hemopexin and hemoglobin subunits (α and β) to Alzheimer’s

pathological proteins (amyloid and tau), hippocampal volume and metabolism, and

cognitive performance. We analyzed baseline CSF heme/iron proteins (multiplexed mass

spectrometry-based assay), amyloid and tau (Luminex platform), baseline/longitudinal

neuroimaging (MRI, FDG-PET) and cognitive outcomes in 86 cognitively normal, 135

mild-cognitive impairment and 66 Alzheimer’s participants from the Alzheimer’s Disease

Neuroimaging Initiative-1 (ADNI-1) cohort. Multivariate regression analysis was performed

to delineate differences in CSF proteins between diagnosis groups and evaluated their

association to amyloid and tau, neuroimaging and cognition. A p-value ≤ 0.05 was

considered significant. Higher hemopexin was associated with higher CSF amyloid

(implying decreased brain amyloid deposition), improved hippocampal metabolism and

cognitive performance. Meanwhile, hemoglobin subunits were associated with increased

CSF tau (implying increased brain tau deposition). When dichotomizing individuals with

mild-cognitive impairment into stable and converters to Alzheimer’s disease, significantly

higher baseline hemoglobin subunits were observed in the converters compared

to non-converters. Heme/iron dyshomeostasis is an early and crucial event in AD

pathophysiology, which warrants further investigation as a potential therapeutic target.

Keywords: Alzheimer’s disease, amyloid, cerebrospinal fluid, hemoglobin subunits, hemopexin, iron, mild-
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INTRODUCTION

The amyloid cascade hypothesis remains the major framework
for explaining the pathophysiology of Alzheimer’s disease (AD)
(Hardy and Higgins, 1992). It assumes a serial model of causality
whereby β-amyloid (Aβ) drives tau hyperphosphorylation,
resulting in neuronal death and dementia. Cerebrospinal fluid
(CSF) communicates freely with brain interstitial fluid (Masters
et al., 2015), thus its composition reflects brain biochemistry.
CSF-based biomarkers for AD have been identified including
CSF Aβ and tau–these are now used alongside cognitive and
imaging biomarkers when diagnosing clinically probable AD
(Dubois et al., 2014). Importantly, AD pathology can be present
in individuals with mild cognitive impairment (MCI), with 10–
15% of these individuals progressing to AD annually (Petersen
et al., 1999). However, this group displays heterogenicity as not
all convert to AD. Additionally, with the recent failure of anti-
Aβ therapies, there is a need to identify alternative mechanisms
of disease pathogenesis, including the contribution of iron
dyshomeostasis. Indeed, we have recently provided evidence
of a form of iron-dependent cell death termed ferroptosis in
post-mortem AD brains (Ashraf and So, 2020; Ashraf et al.,
2020b).

Abnormal iron metabolism contributes to oxidative stress and
neurodegeneration in AD. While iron is essential for cellular
function, it is detrimental in excess (Shah et al., 2011; Ayton
et al., 2015; Ashraf et al., 2018, 2019b). Hemoglobins (Hb)
are iron-containing proteins that interact with Aβ and found
to be colocalized with Aβ plaques in AD brains at post-
mortem (Wu et al., 2004; Chuang et al., 2012). The augmented
expression of Hb subunits α and β have been demonstrated
in aged human and rat brains (Blalock et al., 2003; Richter
et al., 2009), and associated with cognitive deficits. The oxidation
of Hb subunits enables free heme to augment redox-active
iron, leading to lipid peroxidation via the Fenton reaction
(Papanikolaou and Pantopoulos, 2005). Heme/iron mediated
toxicity is attenuated through a scavenger protein hemopexin
(HPX), which avidly binds to and regulates heme biology to
ensure iron homeostasis (Tolosano and Altruda, 2002; Smith and
Mcculloh, 2015).

We have recently documented increased plasma hemopexin
levels to be associated with increased brain amyloid uptake
as measured by 18F-florbetaben position emission tomography
(amyloid PET), in a cohort comprising cognitively normal
(CN), MCI and AD (Ashraf et al., 2020a). Moreover, increased
plasma HPX was associated with a lower clinical dementia
rating (CDR), suggestive of improved cognition. Our plasma
analysis suggested iron dyshomeostasis is implicated in AD
pathogenesis. The aim of the present study was to extend our
previous findings of plasma to the CSF, albeit in a different cohort
CSF being a more direct measure of the brain metabolism. We
hypothesized that increased CSF HPX would be associated with
lower AD pathology, improved hippocampal volume and glucose
metabolism, and improved cognitive performance. Moreover,
we anticipated that CSF Hbβ levels would be associated with
worse outcomes.

MATERIALS AND METHODS

ADNI Study
Participants (n = 287) from the Alzheimer’s Disease
Neuroimaging Initiative-1 (ADNI-1) study were included (http://
adni.loni.usc.edu/). This group comprised 86 CN participants,
135 participants with MCI and 66 participants with AD. All the
participants underwent apolipoprotein E (APOEε4) genotyping.
ADNI uses serial clinical and neuropsychological assessments,
imaging and CSF biomarkers to monitor progression of MCI
subjects to AD. Written informed consent was obtained and
approved by the institutional review board at participating
centers for the use of human data in ADNI database. Data
used in the preparation of this article is available on the ADNI
database (adni.loni.usc.edu).

ADNI was launched in 2003 by the National Institute on
Aging (NIA), the National Institute of Biomedical Imaging and
Bioengineering (NIBIB), the Food and Drug Administration
(FDA), private pharmaceutical companies and non-profit
organizations, as a $60million, 5-year public-private partnership.
The primary goal of ADNI has been to test whether serial
magnetic resonance imaging (MRI), PET, other biological
markers, and clinical and neuropsychological assessment can
be combined to measure the progression of MCI and early
AD. Determination of sensitive and specific markers of very
early AD progression aids researchers/clinicians to develop
new treatments and monitor their effectiveness, and identifies
suitable participants for enrolment clinical trials. The Principal
Investigator of this initiative is Michael W. Weiner, MD, VA
Medical Center and University of California San Francisco,
with many co-investigators from a broad range of academic
institutions and private corporations. Subjects have been
recruited from over 50 sites across the U.S. and Canada, for
up-to-date information, please see http://www.adni-info.org/.

Inclusion/Exclusion Criteria
Enrolled subjects in the ADNI-1 cohort were 55–90 years of age,
accompanied by a study partner able to provide independent
evaluation of recruited participant’s functioning, and speak either
English or Spanish fluently. Participants must have a Hachinski
Ischaemic score ≤4, geriatric depression scale <6, visual and
auditory acuity adequate for neuropsychological testing, six
grades education or work history and not enrolled in other trials
or studies. Individuals on specific psychoactive medications
e.g., narcotic analgesics, neuroleptics, anticholinergic
agents, antiparkinsonian medications, investigational drugs,
benzodiazepines, antihypertensive agents with frequent central
nervous system side-effects, antidepressants, within the 4 weeks
prior to screening were excluded. Individuals with any serious
neurological disease other than AD, any history of brain lesions
or brain trauma, were also excluded.

CN subjects must have no significant impairment in their
cognitive domains or impaired activities of daily living, with a
mini-mental state examination (MMSE) score between 24 and
30, a CDR of 0, non-depressed, no MCI and non-demented. The
age range of CN individuals was matched to that of MCI and AD
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subjects. MCI subjects must also have an MMSE score between
24 and 30 but have a memory complaint, experience objective
memory loss measured by education adjusted scores onWechsler
Memory Scale Logical Memory II, a CDR of 0.5, although no
significant impairment in other cognitive domains and preserved
activities of daily living, and free of dementia. The AD cases
included in the study had MMSE scores between 20 and 26,
CDR of 0.5 or 1.0 and met National Institute of Neurological and
Communicative Disorders and Stroke-Alzheimer’s Disease and
Related Disorders Association criteria for probable AD (NINDS–
ADRDA).

Neuropsychological Assessments
All subjects underwent MMSE, Rey Auditory Verbal Learning
Test (RAVLT) and Alzheimer’s disease assessment scale 13
(ADAS-Cog13). MMSEmeasures orientation, attention, memory
(immediate and delayed recall) and language. RAVLT tests
episodic verbal memory by assessing an individual’s ability to
acquire a list of 15 words over five trials. The test comprised
a short-delay recall trial presented after a distracter list, and
a 30min long delay recall trial, and finally by a yes/no
recognition trial (http://www.adni-info.org). ADAS-Cog13 is a
13-item scale used for assessing learning, memory, language
production and comprehension, constructional and ideational
praxis, orientation, has number cancellation and delayed free
recall tasks. The word recall test was administered first, and the
word recognition task given at the end with other cognitive tasks
given in between. The two-word memory tasks were separated
so that the risk of individuals confusing words from the two
tasks wasminimized. Objective testing was followed by subjective
clinical ratings of language ability and aptitude of the participant
to remember test instructions (extended details can be found on
the ADNI website: adni.loni.usc.edu/wp-content/uploads/2010/
09/ADNI_GeneralProceduresManual.pdf).

Conversion of MCI to AD
Tracking the rate of conversion from MCI to AD is a primary
outcome measure of the ADNI protocol. Site physicians review
participants’ data and completes diagnostic summaries. If a
physician triggers a change in diagnosis from MCI to AD,
the clinical monitor onsite reviews the neuropsychological
assessments for that visit. The clinical monitor will resolve
any issues with the site’s primary investigator and instruct the
diagnosis to be reversed if incorrectly reported. An ADNI clinical
co-investigator subsequently reviews the data and requests
the clinical monitor to resolve any scoring issues. When this
review is finalized, the ADNI conversion committee is then
commissioned with the task of reviewing all patient reports and
a consensus on the conversion status of participant is achieved
as per the NINDS-ARCDA (please refer to general procedures
manual; http://adni.loni.usc.edu/). Although a neuropathological
diagnosis is required to confirm diagnosis of AD, studies have
shown high sensitivity and specificity using neuroimaging and
neuropsychological assessments for determiningMCI conversion
to AD (Davatzikos et al., 2001, 2011; Fan et al., 2008; Petersen
et al., 2010; Cabral et al., 2015). Of the 135 MCI subjects, 85

converted to AD (MCI-c), while the remaining 50 MCI non-
converters (MCI-nc) did not in a period of 7 years, with most
continuing to satisfy the criteria for MCI except for four, who
became CN.

CSF Analysis
CSF samples were obtained in the morning following overnight
fasting at the baseline visit. The time from collection to
freezing was ∼1 h, with processing, aliquoting and storage at
−80◦C as per ADNI Biomarker Core Laboratory Standard
Operating Procedures. CSF Aβ1−42, phosphorylated tau (ptau)
and total tau (ttau) were measured using the Luminex platform
as described previously (Jagust et al., 2009; Shaw et al.,
2011). CSF APOE levels were determined using a Myriad
Rules Based Medicine platform (Human Discovery MAP, v1.0).
A multiplexed mass spectrometry (MS)-based assay using
multiple reaction monitoring (MRM) was used to detect CSF
levels of HPX (NFPSPVDAAFR), Hbα (FLASVSTVLTSK) and
Hbβ (EFTPPVQAAYQK). The methods were developed by
Caprion Proteomics in collaboration with the ADNI Biomarker
Consortium Project team. The technology, quality control and
validation of the MRM platform is fully described in the “Use
of Targeted Mass Spectrometry Proteomic Strategies to Identify
CSF-Based Biomarkers in Alzheimer’s Disease Data Primer” on
the ADNI website (ida.loni.usc.edu) and elsewhere (Percy et al.,
2014; Spellman et al., 2015).

Structural MRI Volumes
Subjects underwent structural MRI at 1.5T using a 3D sagittal
volumetric magnetization prepared rapid gradient echo (MP-
RAGE) sequence (Jack et al., 2010). The acquisition parameters
were: repetition time, 9ms; echo time, 4ms; flip angle 8◦,
with a 256 × 256 × 170 acquisition matrix in the x-, y-
and z-dimensions with a nominal voxel size of 0.94 × 0.94
× 1.2 mm3. MRI was performed at baseline, 6 months,
1 year, then yearly for 6 years. FreeSurfer (version 4.1.0)
was used to calculate hippocampal volumes and described
previously (Fischl et al., 2002, 2004). Briefly, MRI volumetric
images initially underwent motion correction (Reuter et al.,
2010), hybrid watershed or surface deformation removal of
non-brain tissue (Segonne et al., 2004), automated Talairach
transformation, and then segmentation of subcortical white
and deep gray matter structures (Fischl et al., 2002). This
was followed by intensity normalization (Sled et al., 1998),
tessellation of gray and white matter boundary, and automated
topology correction (Segonne et al., 2007). The hippocampus
and amygdala have similar signal intensities, but their spatial
location is quite consistent relative to one another, the amygdala
is always in front of and above the hippocampus. To ensure
the segmentations were anatomically plausible, the Markov
random field model was used and modified to be spatially non-
stationary (Fischl et al., 2002, 2004; Fischl, 2012). This involves
separately modeling the probabilities of the hippocampus above
and below the amygdala, resulting in accurate identification
of the hippocampus. Hippocampal volume was calculated
by multiplying the number of hippocampal voxels by the
voxel volume.
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[18F] Fluorodeoxyglucose ([18F]FDG-PET)
[18F]FDG-PET scans were acquired on multiple scanners
at various resolutions at 6 months, 1, 1.5, and 2 years
(Jagust et al., 2010). The scans were acquired as 6 ×

5-min frames, from 30min after injection of 5 mCi of
18F-FDG (full details at http://www.adni-info.org/Scientists/
doc/PET-Tech_Procedures_Manual_v9.5.pdf). The FDG-PET
images were pre-processed according to standard ADNI
procedures with frames co-registered, averaged and reoriented
along the anterior-posterior commissure line and resliced
to a 1.5mm isotropic voxel space. Each PET image was
spatially normalized to Montreal Neurological Institute (MNI)
space and the mean hippocampal FDG uptake (normalized to
pons uptake) measured (http://adni.loni.usc.edu/methods/pet-
analysis/pre-processing/).

STATISTICAL ANALYSIS

Statistical analysis was performed using SPSS IBM version 24.0.
GraphPad Prism 8.4.2 (GraphPad Inc., San Diego, CA) was
used to compute heatmaps. We used MANCOVA modeling
to assess the differences in CSF proteins (HPX, Hbα, and
Hbβ) across diagnostic groups, with age, sex and APOEε4
genotype included as covariates. The advantages of using
MANCOVA extends the capabilities of ANCOVA by enabling
assessment of multiple dependent variables simultaneously.
MANCOVA require additional p-value correction as in the
case of univariate analysis, hence the error rate equals the
significance level. Moreover, MANCOVA assesses the pattern
between multiple dependent variables which is not detected in
ANCOVA analysis, leading to greater statistical power to locate
differences between groups.

We also repeated the MANCOVA analysis (as above), but this
time to assess differences across CSF biomarker negative CN,
and biomarker positive MCI and AD subjects, rather than solely
across diagnostic groups. Subjects were stratified according to
the previously published CSF total tau/Aβ ratio threshold ratio
(Ayton et al., 2015; Shaw et al., 2018): a ratio<0.27 being negative
and ≥0.27, positive.

In addition, we undertook partial correlation analysis adjusted
for APOEε4 genotype and disease status to understand the
relationship of CSF HPX, Hbα, and Hbβ to baseline levels of CSF
APOE, Aβ, ptau, ttau, neuroimaging (hippocampal volume and
metabolism) and cognitive (MMSE, RAVLT and ADAS-Cog13)
measures. We also examined the association of CSF proteins with
longitudinal changes in neuroimaging and cognitive measures,
which were computed using the following equation:

longitudinal change

=
Follow-up timepoint measure − Baseline measure

Baseline measure

We extended the findings from the partial correlation analysis
by conducting multivariate regression modeling to confirm
the associations. Since follow-up times were different between
subjects, follow-up time was included as a covariate. A minimal
model-based approach was utilized using the Akaike information

criterion (AIC) and Bayesian information criterion (BIC) to yield
the most appropriate fitted model.

MCI is known to be a heterogeneous group, with differing
rates of progression to AD, these individuals were a focus of
this study. We grouped MCI subjects according to their CSF
biomarker status, to examine relationships between biomarker
status and levels of HPX, Hbα, and Hbβ. We also compared
baseline HPX, Hbα, and Hbβ levels between MCI-c and MCI-
nc, but only in those MCI individuals who were CSF biomarker
positive, to determine if they are altered prior to conversion
from MCI to AD. Two-tailed t-tests were computed to assess
the differences.

For statistical analysis, we tested data satisfied assumptions
by checking for collinearity, normal distribution of residuals,
maintenance of homoscedasticity and normality of error terms,
using Levene’s test, Box’s test of equality of covariance matrices,
histogram, P-P and Q-Q plots. The regression standardized
predicted values were plotted against standardized regression
residuals and if points were found to be equally distributed
with no obvious pattern, homoscedasticity was confirmed. Aβ,
ptau and ttau were log-transformed to ensure normality. Values
were quoted as mean ± standard deviation (S.D.). A p-value
≤ 0.05 was considered significant for MANCOVA and multiple
regression analysis. A false discovery rate (FDR) correction set
at Q of 5% was then applied to correct for multiple comparisons
for t-tests (corrected p ≤ 0.0397) and partial correlation analysis
(corrected p ≤ 0.036).

RESULTS

Demographic Details
Of our ADNI cohort, most participants were white non-Hispanic
(n= 273) while the remaining were white Hispanic (n= 4), black
non-Hispanic (n = 10) and asian non-Hispanic (n = 3). The age
ranges for CN (75.70± 5.54 years), MCI (74.69± 7.35 years) and
AD (74.98 ± 7.57 years) were similar. The CN group had 49%
females, MCI had 33% while AD, 29%. The years of education
was similar in CN (15.64± 2.97), MCI (16± 2.97) and AD (15.11
± 2.96). APOEε4-positivity was observed in 24% of CN, 53% of
MCI and 71% of AD.

Baseline Characteristics
The baseline levels of CSF HPX (p = 0.836), Hbα (p = 0.814),
and Hbβ (p= 0.997) were similar in CN, MCI and AD (Table 1).
Likewise, stratification of subjects according to their CSF
biomarker status, i.e., including only CSF biomarker-negative
CN and CSF biomarker-positive MCI and AD individuals), did
not result in significant changes in CSF HPX (F = 0.437, p =

0.646), Hbα (F = 0.230, p = 0.795) or Hbβ (F = 0.074, p =

0.929) between diagnostic groups. Expectedly, CSF Aβ levels (p
= 2.369 × 10−7) were significantly decreased with advancing
disease (CN > MCI > AD). CSF ptau (p = 6.051 × 10−8) and
ttau (p = 1.492 × 10−7) were significantly increased in MCI and
AD. Meanwhile, hippocampal atrophy (p = 6.587 × 10−16) and
glucose hypometabolism (p = 1.438 × 10−17) were pronounced
in MCI, with further worsening observed in AD. The cognitive
performance measured by MMSE (p = 3.255 × 10−48), RAVLT
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TABLE 1 | Baseline levels of CSF proteins, neuroimaging and cognitive measures stratified by diagnosis.

CN MCI AD F p-value

N 86 135 66 – –

HPX (a.u.) 29.242 ±0.715 29.291 ±0.745 29.368 ±0.795 0.180 0.836

Hbα (a.u.) 15.426 ±2.959 15.212 ±2.863 15.660 ±2.983 0.206 0.814

Hbβ (a.u.) 12.484 ±4.741 12.377 ±4.422 12.722 ±4.970 0.003 0.997

Aβ (pg/ml) 209.256 ±53.386 161.024 ±49.963 141.326 ±35.729 16.148 2.369 × 10−7

ptau (pg/ml) 24.117 ±11.968 35.252 ±15.127 41.955 ±20.601 17.683 6.051 × 10−8

ttau (pg/ml) 70.333 ±27.638 102.993 ±51.677 126.172 ±60.691 16.666 1.492 × 10−7

HipVol (mm3 ) 7159 ±845 6212 ±1075 5681 ±1099 39.879 6.587 × 10−16

HipFDG 1.310 ±1.290 1.200 ±0.129 1.070 ±0.135 44.900 1.438 × 10−17

MMSE 29.060 ±1.033 26.920 ±1.737 23.520 ±1.850 168.169 3.255 × 10−48

RAVLT 43.240 ±8.514 29.940 ±8.452 22.580 ±7.569 102.377 7.620 × 10−34

ADAS-Cog13 9.337 ±4.215 19.013 ±6.106 29.288 ±8.291 143.448 3.231 × 10−43

Data is presented mean ± standard deviation. Age, sex, APOEε4 genotype adjusted MANCOVA. For the analysis, Aβ, ptau and ttau were log-transformed to ensure normality. A

p-value < 0.05 was considered significant; significant values are in Bold. HPX, Hemopexin; Hbα, Hemoglobin α; Hbβ, Hemoglobin β; Aβ, β-amyloid; ptau, phosphorylated tau; ttau,

total tau; HipVol, hippocampal volume; HipFDG, hippocampal FDG; MMSE, mini-mental state examination; RAVLT, Rey Auditory Verbal Learning Test; ADAS-Cog13, The Alzheimer’s

Disease Assessment Scale–Cognitive Subscale. HPX, Hbα, and Hbβ was measured in arbitrary units (a.u.) on a natural log scale.

FIGURE 1 | Heatmap of partial correlations between CSF proteins adjusted for APOEε4 genotype and diagnosis. The scale-bar represents the correlation coefficient

(r). Aβ, ptau and ttau were log-transformed to ensure normality. An FDR-corrected p-value ≤ 0.036 was considered significant. *p ≤ 0.036; **p ≤ 0.005, ***p ≤

0.0005. HPX, Hemopexin; Hbα, Hemoglobin α; Hbβ, Hemoglobin β; APOE, Apolipoprotein E; Aβ, β-amyloid; ttau, total tau; ptau, phosphorylated tau; HipVol,

hippocampal volume; HipFDG, hippocampal 18F-fluorodeoxyglucose; MMSE, mini-mental state examination; RAVLT, Rey Auditory Verbal Learning Test;

ADAS-Cog13, The Alzheimer’s Disease Assessment Scale–Cognitive Subscale.
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FIGURE 2 | Partial correlations adjusted for APOEε4 genotype and diagnosis illustrating significant associations (shown in heatmap in Figure 1) between (A)

hemopexin with (i) APOE, (ii) β-amyloid (Aβ), (iii) longitudinal changes in hippocampal glucose (FDG) metabolism and (iv) longitudinal mini-mental state examination

(MMSE) change; (B) Hemoglobin α with (i) Hemoglobin β and (ii) phosphorylated tau (ptau); (C) Hemoglobin β with ptau. An FDR-corrected p-value ≤ 0.036 was

considered significant.

(p = 7.620 × 10−34) and ADAS-Cog13 (p = 3.231 × 10−43) was
significantly impaired with advancement in disease.

Association of CSF Heme Proteins to AD
Pathology, Neuroimaging and Cognitive
Measures
Using partial correlation analysis adjusted for diagnosis and
APOEε4 genotype (Figures 1, 2), higher levels of CSF HPX were
significantly associated with increased CSF APOE (r = 0.143,
p = 0.017) and CSF Aβ (r = 0.147, p = 0.014) levels; and
improved longitudinal changes in glucose metabolism (r= 0.149,
p= 0.013), MMSE (r = 0.135, p= 0.023) and RAVLT (r = 0.123,
p = 0.038, but did not remain significant after FDR correction)
scores. A positive correlation was observed between CSF Hbα
and Hbβ levels (r = 0.800, p = 4.317 × 10−64). High levels of
CSF Hbβ were related to lower levels of CSF Aβ but at a non-
significant level (r = −0.103, p = 0.085). Higher levels of CSF
Hbα (r= 0.253, p= 1.687× 10−5) and Hbβ (r= 0.257, p= 5.878
× 10−5) were significantly associated with increased levels of CSF
ptau. CSF HPX (r = −0.065, p = 0.276), Hbα (r = 0.021, p =

0.728) andHbβ (r= 0.046, p= 0.446) levels were not significantly
associated with CSF ttau.

Multivariate Modeling Confirms
Associations
Initially, we devised our model using CSF HPX, Hbα, and Hbβ
as independent variables, with baseline CSF APOE, Aβ, ptau
and longitudinal changes in hippocampal metabolism, MMSE

and RAVLT scores as dependent variables. The ttau levels,
baseline scores of neuroimaging and cognitive performance
were not included as they showed no association with either
CSF HPX, Hbα or Hbβ based on partial correlation analysis.
Further, as CSF Hbα and Hbβ showed significant positive
correlation, multicollinearity was detected, which renders the
relative strength of predictor variables and their interaction
effects unreliable. To ensure absence of collinearity, we selected
CSF Hbβ and excluded CSF Hbα as the former was a
better fit for the model. In the process, the model fit was
improved from an AIC of 492.719 and BIC of 602.504 to
471.186 and 548.035, respectively. To ensure the central theorem
hypothesis (and multivariate normality) was maintained, we
had to remove longitudinal change in the MMSE variable. The
finalized model included CSF HPX and Hbβ as predictors to
the model which included CSF APOE, Aβ, ptau, longitudinal
changes in hippocampal metabolism and RAVLT as dependent
variables. The finalized model had an improved AIC of 285.768
and BIC of 351.638, confirming the achievement of a best-
fitted model.

Higher levels of CSF HPX were associated with increased CSF
APOE (β = 0.289, ε = 0.090, p= 0.002) and CSF Aβ (β = 14.190,
ε = 4.889, p= 0.004) levels, improved longitudinal hippocampal
glucose metabolism (β = 2.870 × 10−3, ε = 9.828 × 10−5, p =

0.004) and RAVLT performance (β = 0.066, ε = 0.029, p= 0.024;
Figure 3). No correlation was observed between CSF HPX and
ptau levels (β=−0.924, ε= 1.635, p= 0.573). Meanwhile, higher
levels of CSF Hbβ were associated with deteriorated longitudinal
hippocampal glucose metabolism (β =−3.885× 10−5, ε = 1.481
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FIGURE 3 | APOEε4, diagnosis and follow-up time adjusted multivariate analysis demonstrating significant positive association between CSF hemopexin (HPX) and (i)

apolipoprotein E (APOE), (ii) β-amyloid (Aβ), (iii) hippocampal glucose (FDG) metabolism and (iv) Rey Auditory Verbal Learning Test (RAVLT). Unstandardized coefficient

(β), standard error (ε) and p-values are stated along with correlation graphs. A p ≤ 0.05 was considered significant.

× 10−5, p = 0.010) and non-significantly decreased CSF Aβ

(β = −0.768, ε = 0.737, p = 0.299), and significantly increased
ptau (β = 0.857, ε = 0.246, p= 0.001) levels.

Relationships Between Baseline CSF HPX,
Hbα and Hbβ With MCI Conversion to AD
Since MCI represents a heterogenous group at heightened
risk of converting to AD, we assessed baseline levels of
CSF HPX, Hbα and Hbβ and determined their relationship
with disease progression. Baseline CSF HPX levels were
significantly lower in MCI biomarker-positive individuals
compared to MCI biomarker-negative individuals (p = 0.012).
However, CSF Hbα and Hbβ were higher in biomarker-
positive MCI individuals compared to those that were MCI that
was biomarker-negative (p = 0.022 and 0.0034, respectively;
Figure 4). The significant changes observed in MCI were
not evident in the CN group (Figure 4). When evaluating
conversion status only in those MCI subjects that were
biomarker-positive, baseline levels of Hbα and Hbβ were
significantly higher in MCI-c compared to MCI-nc (p = 0.0068
and 0.0048, respectively; Figure 5), while HPX levels were
similar (p= 0.453).

DISCUSSION

Consistent with our hypothesis, we demonstrate higher levels
of CSF HPX were associated with improved: (1) CSF APOE,
(2) CSF Aβ levels, (3) hippocampal glucose metabolism and
(4) cognitive performance. Moreover, CSF Hb subunits were
significantly higher in MCI-c compared to MCI-nc and were
associated with decreased CSF Aβ and increased CSF ptau. The
present CSF study extends our recent plasma study (Ashraf et al.,
2020a), and solidifies evidence for the involvement of heme/iron
dyshomeostasis in the pathogenesis of AD.

Since iron is required for Hb oxygen transport, alterations
in CSF levels of Hbα and Hbβ chains support the hypothesis
of disrupted iron homeostasis in AD (Altinoz et al., 2019). We
observed higher CSF Hbα and Hbβ levels in MCI-c compared
to MCI-nc while no significant differences were obtained
between CN, MCI, and AD according to syndrome diagnosis–
with or without further stratification by CSF biomarker status.
Apparently, high Hb subunit levels increase the risk of AD
pathogenesis. We suggest elevated CSF Hb subunits are due to
leakage from damaged neurons (Richter et al., 2009) in the more
toxic milieu of the MCI-c brain. Note, a stringent methodology
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FIGURE 4 | Violin plots showing CSF levels of (i) hemopexin, (ii) hemoglobin subunits α and (iii) hemoglobin subunits β in (A) cognitively normal (B) and mild-cognitive

impaired individuals, stratified by biomarker status based on a threshold of total tau/Aβ (<0.27, depicts biomarker-negative and ≥0.27, biomarker-positive). Two-tailed

t-testing was used to assess differences with values reported as median and interquartile range as well as t and p-values. An FDR corrected p-value ≤ 0.0397 was

considered significant. Hemopexin and hemoglobin subunits were measured in arbitrary units (a.u.) on a natural log scale.

was employed to ensure removal of plasma proteins from CSF
samples and avoid false results (Spellman et al., 2015).

Hb breakdown leads to the release of free heme, which
is prevented from generating free radicals by being bound
to HPX (Hvidberg et al., 2005; Hahl et al., 2013, 2017).
HPX appears to confer neuroprotection as we demonstrated
higher levels of HPX are associated with improved hippocampal
metabolism and maintained cognitive performance. The heme-
HPX complex is internalized by cells and then detoxified
through induction of heme-oxygenase 1. Heme-oxygenase
1 degrades heme into iron, which is safely scavenged by
ferritin. The remaining heme porphyrin ring is degraded to
produce the anti-oxidants, biliverdin and carbon monoxide
(Eskew et al., 1999; Sung et al., 2000; Vanacore et al.,
2000). Combined, such metabolism maintains neuronal iron
homeostasis and provide neuroprotection. Previously, Aβ has
been shown to bind to heme (Atamna and Boyle, 2006), our
finding of decreased CSF Aβ and so increased parenchyma

Aβ deposition (Grimmer et al., 2009) is associated with
lower levels of CSF HPX suggests that opportunistic Aβ as
opposed to HPX, forms complexes with heme in the brain
parenchyma (Figure 6). This precludes detoxification via HPX-
heme complexes promoting peroxidation (Pramanik and Dey,
2011; Lu et al., 2014; Flemmig et al., 2018). The peroxidase
activity of Aβ-heme complexes have been shown to induce
peptide dimer formation, which in turn enhance Aβ fibrillization
(Al-Hilaly et al., 2013). This proposition is favored by our
concomitant finding of decreased CSF Aβ (increased brain
amyloid deposition) is associated with increased CSF Hbβ (with
Hbα excluded from analysis due to collinearity with Hbβ).
Additionally, formation of the Aβ-heme complex can decrease
heme bioavailability resulting in functional heme deficiency
(Atamna and Boyle, 2006). Moreover, the positive association
between Hb subunits and ptau we observed may reflect
excessive build-up of Hb-derived heme that aggravates tau-
derived N-terminal free-amine (R1T) aggregation, prolonging
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FIGURE 5 | Violin plots showing CSF levels of hemopexin and hemoglobin subunits α and β in individuals with mild-cognitive impairment (MCI-nc) remaining stable

and those converting (MCI-c) to Alzheimer’s disease. Only those MCI subjects that are CSF biomarker-positive were included in the analysis. The biomarker status

was based on a threshold of total tau/Aβ (<0.27 is biomarker-negative and ≥0.27 is biomarker-positive). Two-tailed t-testing was used to assess differences with

values reported as median and interquartile range as well as t and p-values. An FDR corrected p-value ≤ 0.0397 was considered significant. Hemopexin and

hemoglobin subunits were measured in arbitrary signal intensity units on a natural log scale.

FIGURE 6 | Free heme liberated from hemoglobin subunits α and β is scavenged by hemopexin. However, in the presence of accruing Alzheimer’s pathology, this

binding between hemopexin and heme may become disrupted enabling free heme to interact with β-amyloid (Aβ), thus promoting iron dyshomeostasis. This may lead

to tau aggregation and oxidative stress mediated neurodegeneration in Alzheimer’s disease.

peroxidation and perpetuating neuronal oxidative stress (Pirota
et al., 2016).

Since AD is a complex disorder characterized by multifaceted
disease processes, the effect sizes we obtained in this study were
small, albeit significant. This suggests that HPX and Hb subunits
may not be the most appropriate biomarkers to differentiate
between diagnostic groups. However, this study highlights their

importance in disease pathogenesis, especially as Hb subunits are
elevated in AD-affected brain regions e.g., inferior temporal gyrus
(Wu et al., 2004).

Low baseline CSF HPX levels were observed in MCI
individuals who are CSF biomarker-positive, concomitant with
elevated levels of CSF Hbα and Hbβ subunits, which would
contribute to inefficient HPX scavenging of heme in AD
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pathogenesis. This is consistent with the association of low CSF
HPX levels with low CSF Aβ, high CSF ptau, increased glucose
hypometabolism and cognitive decline, i.e., disease progression
(although not MCI conversion to AD). In our previous study
(Ashraf et al., 2020a), plasma HPX was associated with brain
amyloid deposition, albeit from a different cohort. HPX is
an abundant plasma protein that is also expressed by both
neurons and glia (Morris et al., 1993), with the majority of
CSF HPX produced intrathecally in normal human subjects
(Garland et al., 2016). While matched plasma and CSF were
not available from the present cohort, considering our previous
plasma (Ashraf et al., 2020a) and current CSF HPX findings,
we suggest the decreased CSF HPX associated with decreased
CSF Aβ and increased ptau, and disease progression (albeit not
MCI conversion to AD), may result from: abnormally greater
HPX export from the CSF to the plasma compartment; decreased
neuroglial HPX synthesis; and/or increased brain parenchymal
low density lipoprotein receptor-related protein 1 (LRP1)-
mediated scavenging (Hvidberg et al., 2005). Interestingly, LRP1
is rather a promiscuous receptor andAPOE andAβ are all ligands
(Ashraf et al., 2019a) as well as HPX (Hvidberg et al., 2005). We
have previously suggested that low CSF melanotransferrin (MTf)
levels in MCI-c compared to MCI-nc (diagnosed according to
clinical syndrome) may have been due to attenuated competitive
clearance of Aβ due to its low levels in the CSF (Ashraf et al.,
2019a). We propose a similar situation may occur here, with low
CSF HPX levels arising from increased export from the CSF to
the blood at the choroid plexus, due to lesser competition from
Aβ and APOE, whose levels are low in the CSF when HPX is low,
via their common receptor, LRP1. Evidently, not only does the
relationship between CSF and plasma protein levels needs to be
elucidated withmatched samples from the same subjects, but also
the relationship between brain parenchymal and CSF protein.

It is worth noting that the correlations in this study are
weak but significant. Since correlational analysis does not equate
to causation, further studies need to be undertaken, including
measurement of HPX and Hb subunits in a separate set of
samples, preferably with matched CSF and plasma samples, to
assess the reproducibility of the associations observed in the
ADNI dataset. Further investigations are required to determine a
possible causal relationship between HPX and AD pathogenesis.
Importantly, studies should temporally evaluate CSF HPX and
Hb subunits in prodromal AD subjects to understand how
the levels of proteins fluctuate with disease progression. Since
we did not assess the functional status of HPX, it is possible
that there is loss of the scavenging capabilities of HPX due to
oxidative modification (Hahl et al., 2017) in AD. Additional
studies will help to assess whether replenishing HPX function
through resurrection of normal heme and iron biology would
be a useful therapeutic approach to ameliorate oxidative stress-
mediated neurodegeneration.

We did not find significant alterations in CSF protein levels
between CN, MCI and AD. This could be attributed to local
regional variability in their levels, particularly in disease-affected
brain areas that may not lead to changes in CSF proteins levels,
since CSF levels results from the summed metabolism of the
whole brain.

Most importantly, iron dyshomeostasis is an attractive
proposition to investigate, as it is not specific to AD, but also
observed in other neurodegenerative diseases. The close ties of
iron to the pathological proteins (Robinson et al., 2018), Aβ,
tau, α-synuclein and TDP43, means that successful therapeutic
targets involving iron biology would be translatable to several
neurodegenerative diseases.

In conclusion, heme/iron dyshomeostasis is an early and
crucial event in AD pathophysiology, which warrants thorough
investigation as a potential therapeutic target.
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