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With countless biological details emerging from cancer experiments, there is a growing need for minimal
mathematical models which simultaneously advance our understanding of single tumors and metastasis,
provide patient-personalized predictions, whilst avoiding excessive hard-to-measure input parameters
which complicate simulation, analysis and interpretation. Here we present a model built around a
co-evolving resource network and cell population, yielding good agreement with primary tumors in a
murine mammary cell line EMT6-HER2 model in BALB/c mice and with clinical metastasis data. Seeding
data about the tumor and its vasculature from in vivo images, our model predicts corridors of future tumor
growth behavior and intervention response. A scaling relation enables the estimation of a tumor’s most
likely evolution and pinpoints specific target sites to control growth. Our findings suggest that the clinically
separate phenomena of individual tumor growth and metastasis can be viewed as mathematical copies of
each other differentiated only by network structure.

A
multitude of biological processes ranging from genetic and epigenetic mutations, DNA damage, to
complex intra- and intercellular signaling dynamics undoubtedly play key roles in triggering cancer in
a given patient1–6. However, for many of these biological processes the various detailed biochemical

reactions that take place are unknown. Similarly, the exact interplay between processes can also be ambiguous.
Rather, it is the qualitative effect of varying a particular reactant or altering the environmental conditions in a
systematic fashion that we observe, without necessarily understanding all of the underlying processes involved.
For example, once formed, tumors seem to evolve in a fairly generic way: They either lie dormant, or grow, fed by
the underlying network vasculature, capable of generating new vessels via angiogenesis when needed7. Generally,
an absence of nutrients will tend to reduce growth, while sufficient supply leads to a progression in tumor cell
behavior from differentiation and proliferation to migration7. Metastasis of cancer to lymph nodes and other
organs, thought to be the most lethal aspect of the disease, likewise may depend on myriad patient-specific factors
concerning the lymphatic system, immune response, micro-environmental factors and general patient health8.
However, once again, the actual process is fairly generic – involving the spread of cancer cells from the primary
tumor through the lymphatic and circulatory systems. Most fundamentally, at the heart of all these processes is
the essential interplay between an evolving population of cancer cells which is fed by – and feeds back on – an
underlying blood vessel network structure which supplies nutrients to the tumor and tissue, but simultaneously
provides a transport network through which cancer cells can metastasize to other parts of the body and drugs are
delivered to the tumor. Yet, the blood vessel structure is typically highly irregular in tumors, and further
complicated by the highly dynamic structural growth and degradation interplay with the evolving tumor mass,
making an averaged description for modeling purposes insufficient. These factors clearly emphasize the import-
ance of incorporating relevant network structures not only for tumor progression prognosis, but also for the
analysis of effective treatments. For these reasons, to model the progression of tumor growth behavior it may be
more productive and informative to implement universally observed, and biologically derived, qualitative beha-
vior in the model dynamics. Such qualitative mechanisms have proved to be useful in building models which
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correlate well with experimental findings, deepening our under-
standing of the basic underlying processes and making practical
predictions possible9.

Early tumor models often resembled a theoretical exercise, looking
at averaged behavior whilst neglecting the importance of environ-
mental heterogeneities at various length-scales – or were computa-
tionally too expensive due to the ambitiously detailed nature of the
model setup and sheer number of cells necessary to investigate long
term behavior9–11. All models by design are simplifications and
approximations based on assumptions of the true biological system.
Cancer models, regardless of mathematical rigor and modeling
complexity, are typically criticized as too simplistic for complex
tumor-related phenomena9. However, promisingly, a rapidly grow-
ing number of models have seen a close symbiotic collaboration
between theoreticians, biologists, oncologists and clinicians, which
has lead to novel predictions emerging from the model results, which
were subsequently experimentally verified9–16.

We believe that the greatest shortcoming is the current lack of
implementation of clinical images into models as initial conditions
for patient specific prognosis9–16. Most are seeded with artificial
initial conditions of cancer size, shape and density, as well as environ-
mental parameters, struggling to combine the model with data gath-
ered from clinical images17–19. Great advances in imaging techniques
have enabled more and more accurate visualization of the problem
zone, allowing for a wide range in length scales, and time resolution,
particularly at the molecular level. However, these have not been
successfully implemented into tissue level cancer modeling mainly
due to multi-scale compatibility issues. Indeed, the majority of
models are inflexible to even the simplest extensions, modifica-
tions or re-scaling. A direct one-to-one mapping of all cells is unfea-
sible20–29, whilst modeling the global spatially-averaged behavior fails
to describe important cellular and environmental heterogeneities in
the system which may be particularly important during early tumor
growth12, 30–39.

Here we present a simple multi-scale model which addresses two
fundamental issues. First, the uncertainties in the details of the
biological processes are accounted for by describing behavior in
local regions by a well established averaged behavior growth equa-
tion, whilst preserving the heterogeneities in each region; second,
the ability to take advantage of invaluable data gathered from
patient images, to be used as seed for the model for comparison
and further development, taking an appropriately coarse-grained
length scale for the model to adapt to the image resolution. We
realize that many more details could be included in a model of
primary cancer growth or metastasis. Many models and methodo-
logies exist, ranging in length and time scale, capturing the biology
of intra and intercellular signaling up to tissue level dynamics,
each successfully mimicking some part of the complex emerging
phenomena such as tumor growth, angiogenesis and metastasis.
Yet each also comes with limitations. The primary purpose of the
presented model is a complementary one to existing models,
seeing how far one can go in explaining a wide range of clinical
data using a simplified and minimal, adaptive and multi-scalable,
yet most crucially, data driven approach to understand and predict a
patient’s highly personalized tumor progression from early growth
through to metastasis and even treatment strategy analysis using a
single model.

Our model seeded with in vivo data predicts robust growth corri-
dors of future tumor growth behavior in good agreement with a
murine mammary cell line EMT6-HER2 model in BALB/c mice, as
well as reproducing clinical human patient data of metastasis.
Moreover, the model predicts a hidden scaling relation between
the underlying nutrient supplying vessel structure and cancer co-
evolution, a finding which estimates a tumor’s most likely evolution,
and more importantly, pinpoints specific vessel target sites to optim-
ally control tumor growth.

Results
In vivo data implementation in mathematical model. A mathe-
matical model was developed to purposefully seed up-to-date
patient information for a personalized prognosis, and to bridge the
gap between the length scale extremes of current mathematical
modeling efforts (see Methods section for model description). A
minimal-mechanism of a co-evolving nutrient network and cancer
population is applied to the growth of a single tumor. Key to the
individualized prognosis is the implementation of in vivo images as
initial conditions. Later in the paper, we show how exactly the same
multi-scale mathematical model can be applied at the level of
systemic metastasis simply by making a change in the biological
interpretation of its network features.

Figure 1 illustrates the methodology of extracting and coarse-
graining information from immunofluorescent stained in vivo
images whilst preserving the heterogeneity of initial vessel density,
and hence nutrient supply, of a tumor. The cellular activity inside
local regions, created by the boxes of the imposed grid, is described
by the biologically ubiquitous discrete logistic map, which is a
good approximation of the universally observed Gompertzian
growth behavior of cancer40, which preserves the biological
importance of the unit cell, and accounts for the local cell-cell
and cell-microenvironment interactions41–43. From a mathematical
modeling point of view, previous applications of the logistic equa-
tion to cancer either apply the logistic equation to the entire
tumor44 or form a continuous time spatial diffusion equation
which allows the unrealistic transfer of arbitrarily small amounts
of cancer across space. The presented application is novel since the
discretization into smaller regions, forming a grid of coupled auto-
nomous logistic equations, allows universal growth behavior in
each region to be applied using appropriate growth rates extracted
from an image (regional vessel density), whilst coupling allows
inter-regional diffusion, migration and communication. Our
model specifically accounts for the fact that cancer consists phys-
ically of discrete units (cells) and hence there is a lower bound
below which a continuous formulation of cell density becomes
incorrect, yet above which the changing size and mass of cells
deems a continuous description valid.

Experimental in vivo growth data fitting to model. To test the
agreement of the model results to in vivo growth data, the model
was seeded with in vivo images of muscle vasculature from the flanks
of untreated BALB/c mice as initial condition, representing potential
regions of primary tumor growth (implantation zone in mouse
model). Figure 2 shows a growth corridor (blue shaded area)
predicted from our model. The corridor is formed by the blue
dashed line, which is the average growth curve of 2000 model
simulations, where the tumor seed was virtually implanted at
different locations on the image for each run, and the solid blue
lines are the standard deviation. Hence, Fig. 2 predicts the most
likely growth behavior if a cancer were to originate somewhere in
the environment depicted by the image. Assuming BALB/c mice
generally have similar initial conditions (image in Fig. 2), the
flanks of 5 mice were implanted with murine mammary cell line
EMT6-HER2, whose growth data (dark blue points) fall inside the
growth corridor with good agreement. Similar analysis was repeated
with many more images of various other regions of the flanks in
BALB/c mice confirming robust behavior in the predicted growth
corridors.

The yellow circle and box in Fig. 2 are representative regions with
fast and slow growth curves respectively. The three insets Fig. 2a–2c
show sample growth patterns of the virtual tumor. Interestingly, the
distance between high density vessel sources is of vital importance (as
analyzed Fig. 3). In the absence of angiogenesis, should the maxi-
mum radius, l, to which a tumor can grow from a single source be
smaller than the distance to the next vessel, d, then the tumor will
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remain a finite size, and eventually starve and die, as shown in Fig. 2b.
However, if l . d, Fig. 2c depicts how a neighboring source can
facilitate continued growth.

Systematic treatment strategy analysis. Also, we briefly illustrate
the efficacy of the model to systematically analyze all possible
treatment strategies (dosage, interval, frequency of which drug/
treatment combination), to predict personalized treatment
effectiveness. The dashed purple line in Fig. 2 shows that our
model’s predictions of treatment are also consistent with in vivo
experiments. Results are shown for BALB/c mice implanted with
cell line EMT6-HER2, and subsequently injected with aHER2-
huEndo fusion proteins45 which is an endostatin-antibody fusion
protein specifically engineered to target the HER2 receptor and
limit the growth of adjacent blood vessels through the action of a
fused anti-angiogenic endostatin domain. By measuring the
biological effect of a single injection of the endostatin-antibody
fusion protein on the tumor, the model subsequently simulated the
same number of injections and same time interval as in the in vivo
experiments with good agreement. A systematic analysis of all
possible treatment strategies of varying dosage, frequency, and
schedule will be presented elsewhere.

Universal growth behavior scaling from vessel location. Given the
dynamic interplay of the growing tumor with the underlying vessel

structure, Fig. 3 analyses the growth behavior in finite source
environments (Fig. 3a–3c), where the distance between vessels,
alluded to in Fig. 2a–2c, becomes important to the tumor’s
progression. For example, Fig. 3a shows an immunofluorescent
image of vessels inside an EMT6-HER2 tumor that has been
treated with an endostatin-antibody fusion protein45 resulting in a
finite number of short, small-clustered and scattered vessels. Model
results suggest that in cases where small clusters of cancer cells
survive around remaining vessels (even after anti-angiogenic
treatment) islands of re-growth can occur, as shown in the inset of
Fig. 3c, leading to a more aggressive re-growth rate than before
treatment. The heterogeneous nature of remaining vessel locations
not only presents the problem of indefinite re-growth of cancer by
movement beyond the finite radius each vessel can sustain
individually, but also the additional challenge of optimizing and
analyzing drug delivery strategies for efficacy and efficiency.
Specifically, the vasculature in a tumor is highly irregular in
structure creating regions completely void of vessels and regions
densely packed with vessels. This implies that drug delivery will be
highly disproportional not reaching all areas of the tumor48. Even
with the advent of a genetically targeted approach where a drug is
specifically designed for a patient, there still exists a need for delivery
analysis locally in primary tumors as well as globally via metastatic
spread. Our model is ideally suited to systematically analyze the effect
of vascular structure on delivery, in addition to the countless possible

Figure 1 | Model setup. Schematic of implementing in vivo immunofluorescent image data into the mathematical model as initial condition. The right

half illustrates the step-by-step procedure of extracting and coarse graining information from the in vivo images. The tumor growth behavior in each box

is modeled as Logistic growth, and the model equations capture the fundamental interplay between an evolving population of cancer cells which is

fed by – and feeds back on – an underlying nutrient network, and its spreading through transport processes. The blue inset shows the time ordering of

events at each time step of the mathematical model.
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multiple drug therapies48, to help optimize experimental design by
taking into account the heterogeneities of the system which usually
cause variation and hence unpredictability.

Much like forest fires49 or nutrient source manipulation in con-
servation corridor analysis50, the distance between vessel sources is

key in determining the most likely progression of a tumor. Hence, in
Fig. 3, we identify a measure based on the distance between sources to
predict its evolution, and hence identify the key targets which allow
control and limitation of the final tumor growth size. The results of
Fig. 3g show that as long as the initial vasculature heterogeneity can

Figure 2 | Model substantiation. Fit of in vivo experimental growth data to a growth corridor determined by the model seeded with an image of initial

muscle vascular structure in BALB/c mice. The growth corridor (shaded region) is formed by the average growth curve of virtual tumor implantations

(blue dashed line), and standard deviation (solid blue lines), showing good agreement with growth data. The yellow circle and box are representative

regions with fast and slow growth curves respectively. The three insets show sample growth patterns of the virtual tumor with (a) necrotic core and

proliferating ring46 (b) diffusive growth in nutrient rich environments47 (c) multiple source growth. The purple data points show growth data of EMT6-

HER2 tumors treated with an endostatin-antibody fusion protein, and the dashed purple line model results, where we mimicked the decreasing effect of

the protein on the vasculature. The model used the same number of injections and time interval as in the in vivo experiments.

Figure 3 | Growth behavior in finite source environments. Finite number of sources may be due to anti-angiogenic treatment. For example, (a) is an

immunofluorescent image of short, scattered vessels inside an EMT6-HER2 tumor treated with an endostatin-antibody fusion protein, (b) is the coarse-

grained result for model implementation, and (c) shows the remaining sources if a threshold is applied. Model results suggest that small clusters of cancer

cells remaining around vessels can lead to more aggressive re-growth (inset of (c)). (d) – (g) illustrate the collapse of data points onto a linear relationship

by accounting for appropriate average distance between sources and final radius of tumor (see inset illustrations). The distance between sources is

calculated of (d) all sources when maximally distributed, (e) all sources in the system at actual position, (f) sources inside the tumor (g) sources inside the

tumor yet neglecting the sources on the perimeter of the tumor where the tumor cell density is too small to result in growth.
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be quantified, the diversity in final tumor size disappears under an
universal scaling. The initial vasculature structure can be used to
assess where a particular patient’s tumor sits on this scaled curve
thereby providing a prediction of its final size.

Figures 3d–3g show the same data using different measures of
average distance between sources and each dot is one realization of
the model simulations. Central to the universal scaling of Fig. 3g is
identifying which sources to include, as illustrated in the insets of
Figs. 3d–3g. In Fig. 3d, we calculated the average distance between all
sources, where the sources were assumed to be maximally separated,
and plotted against the final radius of the tumor, rmax. Figure 3e
calculates the average distance between all sources using the actual
position of the sources within the system. Yet, as argued in Fig. 2a–2c
sources only become significant if their distance is smaller than the
potential radius of the growing tumor. Hence, in Fig. 3f, only the
distances between sources on or inside the final tumor boundary
were included. This resulted in the clusters of points below the red
line of Fig. 3e to be pushed closer to the red line, as indicated by the
blue arrow. Finally, the scatter below the red line of Fig. 3f can be
explained by circumstances where the growing tumor does reach
another source, yet the cancer cell density pushed into them is below
a critical threshold, too little to result in cell proliferation. Hence,
eliminating such cases resulted in the final plot Fig. 3g.

The results of Fig. 3 illustrate the important possibility of system-
atically targeting specific vessels. For example, in Fig 3c, say a cancer
seed originating from the three sources in the centre is predicted to
result in a final tumor radius depicted by the red circle determined
from Fig. 3f. Inside the radius is a fourth source, highlighted by the
green arrow in Fig. 3c, which would facilitate further growth to a new
radius. Hence, one could minimally target the single source (green
arrow) to prevent further growth, rather than taking more invasive
measure, and thus, perhaps preserve functionality of the affected
system. This analysis has a powerful consequence, in that, it gives
the surgeon an exact size of tumor to remove, or which vessel sources
to block in order to control the final size of the tumor.

Multi-scalability of local model to predict global metastasis data.
Finally, we explore the extendibility and multi-scalability of the
model to the global phenomenon of metastasis. Metastasis is
usually treated as an entirely separate topic in modeling since the
underlying biology is different. However, as illustrated in Fig. 4, we
successfully apply the same model equations to both single tumors
and metastasis, simply by changing the interpretation of the terms:
Instead of the cancer cell diffusion to neighboring boxes on a regular
lattice representing free space for growth, the boxes represent lymph
nodes and the underlying inter-box connections the lymphatic
system. As shown in the lower panel of Fig. 4, the growth within
each box is now a macro-level version of the single tumor model in
which we use the logistic growth map to apply to the entire space in
which a tumor may grow. In other words, we simply apply our exact
same mathematical equations (Eqns. (1)–(3) in Methods) on a
different scale, and with a different network for diffusion (Fig. 4).
As discussed in Ref. (8), cancer cells can spread to other organs at
every time step from the beginning of the primary tumor’s growth.

Interestingly, as shown in Fig. 4, the results do not depend sensi-
tively on the choice of network – as long as it is irregular (e.g. random
or scale-free). The upper panel shows metastasis on different under-
lying networks: random (blue solid) and scale-free (orange solid).
Clearly, the clinical data (red circles) lies somewhere between the two
types of networks. Generally, diffusion on networks is reasonably
insensitive to the network structure as long as the distribution of
links is fairly broad, and the distance over which the diffusion takes
place is short. In other words, the cancer does not spread far enough
into the network to feel the difference between a random network
and scale-free network - at least, to first order. This implies that
knowledge of people’s precise lymphatic network details are not

required in order to make a first-order prediction of the probability
that n nodes will be positive. The red dashed line in Fig. 4 is a fit to the
clinical data53. The green dashed line shows the Poisson comple-
mentary cumulative distribution function with mean equal to the
mean number of affected sites from the clinical data, which demon-
strates that the empirical data and theory are fat-tailed compared to
purely random.

Discussion
The ever increasing number of discoveries about the biological pro-
cesses underlying tumor progression, set against the many aspects
which still remain unknown or ambiguous, has led to the creation of
many extremely complex mathematical descriptions (perhaps moti-
vated by the desire to include as many biological details as possible)
which are computationally intensive and include many unknown
parameters. These models can be generally categorized into two
extremes: The molecular level, trying to understand the intra and
intercellular signaling dynamics of individual or small clusters of
cells, and the tissue level, modeling the emergence of phenomena
such as angiogenesis and metastasis. Yet, the molecular models are
difficult to scale up to enough cells to comprise a full organ, whilst the
tissue level models often lack the heterogeneities vital to an accurate,
and personalized, prediction.

In this paper, we presented a model which aims to bridge this gap,
and provide a practical, multi-scale model capable to be seeded with
in vivo images to predict the most likely tumor growth behavior
through prediction corridors, as well as subsequent spreading beha-
vior of metastasis. For both length scales, the model results show
good agreement to in vivo growth data of a cell line EMT6-HER2
model in BALB/c mice, as well as clinical human patient data of
metastasis. Furthermore, we outline the use of the model for system-
atic treatment analysis, focusing on the effect of vascular structure on
drug delivery. A novel scaling relationship between the tumor and
the underlying nutrient sources not only predicts the most likely
progression of the tumor, but also identifies key vessel target sites
to optimally control tumor growth.

Despite its quantitative accuracy and simplicity, our model’s neg-
lect of the wealth of known biological details associated with cell
biology and physiology, may attract criticism of our minimal-model
approach as resembling the ‘Consider a spherical cow...’ cliché typ-
ically levied at physicists. However, the existing gap between model
sophistication and clinical need demands the exploration of such an
approach in our opinion. The unique coupling of image data with the
mathematical model allows information about the heterogeneity of
the system to be preserved, and more importantly, be utilized for
individualized prognosis. Hence, the model cancer growth is directly
driven by in vivo information and demonstrates a new approach to
modeling cancer growth using patient specific data, showing good
agreement at multiple length scales for a variety of phenomena. As
such it complements existing theoretical approaches rather than
replacing them, and can be integrated with them in the future.

Methods
Mathematical model. The blue inset of Fig.1 shows the time ordering of events at
each time step of the mathematical model, and corresponds to two coupled, discrete
equations applied within each box of the grid. The first equation is:

Ci,n
Dt ~ri,nCi,n

0 1{Ci,n
0

� �
ð1Þ

where Ci,n
0 and Ci,n

Dt are the cancer concentrations at the beginning and end of time
interval Dt. The tumor growth rate, ri,n, at time step n in box i is assumed to be directly
proportional to the vessel density in box i extracted from the image. As described
below (see Image information extraction), the initial cancer, Ci,n~0

0 , and endothelial
cell densities, ri,n50, are extracted from in vivo images stained for both types of cells at
time t 5 0.

At this stage only vessel density is considered as the primary driving force of growth
rate. Nutrients determine individual cell behavior and thus population response. Yet,
rather than applying a single r as was done in previous models44, we split the system
for maximal heterogeneity, making the model highly non-deterministic.
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Figure 4 | Model implementation and results of metastasis. Metastasis uses the same model as for single tumor growth. The upper panel shows average

cumulative distribution plotted for different underlying networks: random (blue solid) and scale-free (orange solid). The clinical data (red circles) lies

somewhere between the two types of networks suggesting that the precise network structure does not matter to make a first-order prediction. The red

dashed line is a fit to the clinical data by varying the r distribution51. Finally, the green dashed line shows the Poisson complementary cumulative

distribution function with mean equal to the mean number of affected sites from the clinical data. It is the expected curve based on the assumption that

nodes get infected independently (i.e. random), and illustrates that the empirical and theory are fat-tailed compared to purely random. The lower panel

shows a schematic of the similarities of single tumor growth and metastasis using the same model.
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Furthermore, the model equations capture the tendency of any overcrowding of
cancer cells to crush the vasculature or cause it to regress, leading to lower nutrient
supply52 and thus slower growth. Hence, the equation for vessel density (i.e. cancer
growth rate) is given by:

ri,n~ri,n{1 1{aCi,n
0

� �
ð2Þ

Following our methodology of implementing a coarse grained view of an univer-
sally observed growth behavior, the single parameter a incorporates all details which
may contribute to the vessel density such as vessel stabilizing and/or destabilizing
factors, (anti) angiogenic growth factors, as well as any therapeutic agents. This may
be crude and biologically unsatisfying, yet due to its observation driven nature, in
short, this setup captures the co-evolving, dynamic, feedback-driven interplay
between cancer and the underlying nutrient network52.

Finally, cancer cell mobility to neighboring boxes is modeled via simple diffusion:

Ci,nz1
0 ~Ci,n

Dt 1{b½ �z b

8

X

i’=if g
Ci’,n
Dt ð3Þ

where again, similar to a, b represents all properties of the environment, which could
influence the ease of cancer cell diffusion53, as well as other local gradients such as
chemotaxis and haptotaxis. More specifically, a is some function of growth pro-
motion (negative a) and inhibition (positive a) factors which influence angiogenesis
and nutrient deprivation conditions via the adaptive and feedback-driven value of ri,n

at all time steps. Despite a long list of possible influences, we expect as a first
approximation that the values of a and b will take on similar values for patients from
similar risk groups. In the future, we will make a and b functions of specific factors,
making the model more biologically accurate and hence more patient specific. For
example as a first proof-of-principle, we show in Fig. 2 that the effect of an anti-
angiogenic endostatin-antibody fusion protein which breaks down the vessel
structure and halts angiogenesis (as verified by in vivo images), can be successfully
mimicked by reflecting the fusion proteins destructive effect on the vessels by means
of a positive value of a in the model.

Image information extraction. Without loss of information the image colors are
converted to grayscale for easier manipulation. A grid is imposed, where each box size
of the grid is chosen to correspond to approximately 100 cells. The box size can be
adapted according to the system and type of image. Finally, the individual pixel values
contained in each grid are added and averaged, to represent the average vessel density
in each box. These values then provide the initial condition for the tumor’s evolution,
making the model as patient-specific as desired. This procedure can be repeated for
any property of interest.

In vivo imaging procedure. In vivo immunofluorescent images of the muscle
vascular structure in the flanks of BALB/c mice were taken prior to implantation s.c.
contra-laterally of murine mammary tumor cell line EMT6-HER2 (13106 cells per
mouse). Two mice were sacrificed for blood vessel analysis. Histologic sections of
muscle from the sacrificed mice were analyzed using immunofluorescent staining for
DAPI (red color; example image has 103 magnification).

Growth corridor analysis. We only seeded blood vessel structure for Fig. 2 since an
analysis was done prior to implantation of the tumor seed. Hence, we virtually
implanted a tumor in the mathematical model, recorded the resulting growth curve,
and repeated this procedure 2000 times (corresponding to approximately a 10%
sample size), each time using a different location. Furthermore, this procedure was
repeated with images from various locations in the flanks of the BALB/c mice. Similar
initial conditions can be seeded into the model concerning the size and location of an
already growing tumor. Immunofluorescent images can be taken of the growing
tumor, and hence, a similar procedure can be performed. The chosen parameter
values for the presented results are at this stage arbitrary, yet our general findings are
robust to variations in a and b. A table of parameter values for various cell line types
will be presented elsewhere.

Endostatin-antibody fusion protein treatment. BALB/c mice (n54 per group) were
implanted s.c. contralaterally with EMT6 and EMT6-HER2 (13106 cells per mouse),
followed on day 4 by equimolar injections every other day (7 time treatments) of
aHER2-huEndo-P125A (42 mg), or PBS. On day 12, two mice were sacrificed for the
blood vessel analysis after four treatments. We analyzed histologic sections of tumors
from the sacrificed mice using immunofluorescent staining for PECAM (vessels) and
DAPI for counter-staining of the nucleus. Although still a preliminary result, the
dashed purple line in Fig. 2 is an average of 1000 model results where we mimicked the
inhibitory effect of the protein on the vasculature formation.

Metastasis network analysis. For each of the 100 sites (or nodes), we drew ri from a
normal distribution N(m51, s50.2) and took a, b for non-primary tumor sites to be
b50.8, a50.2. Furthermore, for each trial we seeded the tumor at a randomly picked
primary site with C050.5, and b’50.6, a’50.4. The average cumulative distribution
of 3000 trials is plotted for both types of networks, where a new network was
generated for each trial. The clinical data was fitted by varying the r distribution; in
this case a skewed distribution with peak close to r 5 0.01. However, the same fit can
be achieved by starting from a random network and simply adding more and more
links, slowly tending towards a scale-free network.
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