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Introduction
Cancer is a dangerous disease that presents numerous 
challenges for diagnosis and treatment. Because cancer cells 
are technically foreign, the host immune system is often slow 
to respond to tumor antigens,1,2 or the immune system can 
be evaded or suppressed in numerous ways.3 In addition, the 
patient may not experience symptoms for months or years after 
tumor initiation.4 The quiescent time between tumorigenesis 
and diagnosis is a window of opportunity for intervention. 
Unfortunately, until tumors are large enough to be detected 
by standard clinical methods, subclinical or presymptomatic 
detection is challenging. Biomarker molecules that are spe-
cific to the tumor are still very rare and become diluted in the 
bloodstream.5 Clearly, then, some form of amplification must 
be done to increase the tumor signal over biological noise.

DNA or RNA may present a biological molecule that can 
be amplified outside the host. By isolating a sufficient quantity of 

blood, one might capture enough tumor-specific nucleic acid 
molecules to amplify a signal. However, one must know target 
sequences, and nucleic acids are notoriously unstable, especially 
in historical samples. In contrast, antibodies are amplified by 
the body itself, are stable in blood, and are self-renewing. If a 
B-cell is stimulated, it will continue to produce its antibody in 
amounts up to 1% of the total circulating immunoglobulins. 
Therefore, it is quite possible that antibodies may provide a 
solution to the biomarker dilution problem.6–8 However, as with 
nucleic acids, the question remains: what antibody is the most 
predictive, sensitive, and accurate for a given disease?

There are 109 different antibodies circulating at any 
given time. Which antibody or group of antibodies is infor-
mative? There must be a way to interrogate antibodies in 
an unbiased way. Previously, immunosignatures have been 
shown to provide a “snapshot” of the humoral immune sys-
tem.9–12 Although these examples demonstrate the diagnostic 
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potential of the “signature,” there is no biological under-
standing conveyed, at least not directly. These demonstra-
tions of immunosignatures as diagnostic agents ignored the 
wellspring of information contained in the sequences of the 
signature peptides. Although not required for diagnosis, the 
sequences must convey some information about the antibod-
ies that make up the signature. Previous experiments with 
a relatively low-density peptide microarray of 10,000 (10K) 
different 20-mer peptides showed that epitope identification 
from these few random-sequence peptides was extremely dif-
ficult.13 Recently, we developed a 330,000(330K)-peptide 
microarray that greatly enhances identification of informa-
tive sequences.12

Immunosignature technology. Immunosignatures 
may provide a link between the genetic alterations that occur 
within tumor cells and the way in which the immune sys-
tem responds to aberrant cells.14 Immunosignatures repre-
sent the pattern of binding between serum antibodies and 
random-sequence peptides attached to a microarray surface. 
Technically, this interaction would be considered “off-tar-
get” or “nonspecific” because no actual epitopes or protein 
sequences were intentionally included as part of the peptide 
library. Statistically, in 330K short random-sequence pep-
tides, there would be little homology to existing proteins. 
Perfect matches to full epitopes are thus extremely rare. One 
might therefore expect little-to-no binding between these 
peptides and a monoclonal antibody. However, binding 
between antibody and peptide is enhanced when peptides 
are packed at a particular density, enabling local avidity to 
increase the apparent affinity by lowering the off rate.11 Low-
affinity interactions that would normally be dissociated dur-
ing a wash step are instead retained, generating reproducible 
patterns of binding between peptides and antibodies. Three 
general classes of signatures are typically seen when serum 
is processed on these immunosignature peptide microar-
rays: 1) signals that are person specific, with little-to- no 
population-specific disease information; 2) signals that are 
invariant regardless of person or disease state; 3) signals that 
change according to disease and are common within a dis-
ease cohort. This third class represents antibodies that are 
raised against a pathogen or against an aberrant cell, such as 
a tumor, commonly across persons with the same disease. The 
peptides that bind these antibodies become the “immunosig-
nature” for that disease.10–12,15 This implies that a disease, 
whether chronic,9,16,17 autoimmune,18,19 or infectious,12,15,20 
has some immunological stimulus that can be diagnostic or 
even prognostic.

Immunosignatures are composed of “features,” or pep-
tides, which define the diagnostic pattern. To date, very 
little has been done with the sequence information, mostly 
because early immunosignature arrays had only 10K pep-
tides.13 Computer lithography techniques have enabled 
logarithmic increases in peptide density; now, hundreds of 
thousands of peptides can be synthesized in smaller spaces.12 

With this increase in peptide number comes an increase in 
the ability to recognize epitope motifs within the feature 
peptides.21

A challenge faced when analyzing random-sequence 
peptide microarrays is how to integrate peptide sequences and 
mean fluorescence intensity (MFI) measurements to identify 
epitope sequences. Although mimotopes can be abundant, 
they do not help in tracking of an eliciting antigen. NNAlign 
is an algorithm that attempts to solve this problem by gen-
erating neural network models from subsets of the peptide 
array data and then combining those multiple models into 
a single motif.22 This algorithm provides a representation of 
amino acid probabilities at each position in the estimated 
motif. Another method for motif/epitope estimation uses 
regular expressions to estimate epitopes and includes a depen-
dence on the position of the subsequence within the peptide 
sequence.21

Random-sequence peptide microarrays differ from pan-
ning methods (phage display, mRNA display) and focused 
arrays containing only the proteome of interest23,24 in fun-
damental ways. Respectively, these methods require either 
biochemical selection with potential bias, possibly leading to 
loss of ancillary information, or assumptions about specificity 
within and between pathogen proteomes, which may prove 
too optimistic.

In this manuscript, we propose and explore a signal-
processing-based method to estimate epitope and mimotope 
sequences using random-sequence peptide microarrays. We 
then explore an example of finding epitopes of predicted 
frameshift antigens in serum samples from patients with brain 
cancer.

Methods
Immunosignature random-sequence peptide micro

arrays. The proposed algorithm is first validated using 
immunosignatures obtained from eight different monoclonal 
antibody samples. The immunosignature assay is performed 
by incubating antibodies on a microarray of random-sequence 
peptides. The peptides are synthesized on silicon dioxide 
wafers and diced into standard 25 mm by 75 mm slides. The 
330K random-sequence peptide microarrays have 330,034 
probes. The sequences are sufficiently long such that binding 
occurs between an antibody and a subsequence of the peptide, 
but probably not to the entire peptide sequence. The average 
length of the peptide sequences on the 330K microarray is 
11.2 amino acids, with a standard deviation of 1.3; 95% of 
the peptides are between 5 and 14 residues long, the maxi-
mum length being 22. From among the 20 different natural 
amino acids, cysteine, isoleucine, methionine, and threo-
nine are excluded. These lengths do not include the constant 
C-terminal sequence glycine–serine–glycine, which links the 
peptide to the array substrate.

Processing of the microarrays was done as published by  
Stafford et al.11, with the exception that the arrays were first 
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washed in dimethylformamide for 1 hour. The solvent phase 
was transitioned to an aqueous phase over a 6-hour period 
using a phosphate-buffered saline incubation buffer before 
incubating in the presence of antibodies or serum. To enable 
binding of the antibodies to the arrays, the arrays were 
washed in distilled water and then loaded into a multiwell 
24-up gasket. Each well received an incubation buffer and 
diluted antibody, typically at a final concentration of 500 pM. 
A secondary fluorescent detection antibody was applied to the 
array at 500 pM and allowed to bind to the primary antibody. 
After incubation for 1  hour, the arrays were washed using 
an enzyme-linked immunoassay plate washer. When using 
patient serum, a primary dilution of 1: 1500 was done, but all 
other steps remained the same. The arrays were dried, scanned 
at 1 µm resolution, and the resulting images were processed 
to provide raw microarray image data using GenePix Pro 
(Molecular Devices, Santa Clara, CA, USA). The antibody 
binding strength was measured by the fluorescence; stronger 
binding results when more antibodies bind to the peptide and 
thus more secondary antibodies bind to the primary antibod-
ies. A calibrated picture was taken of the fluorescing array, 
wherein pixels in the image had been associated with specific 
peptides.

The problem of identifying motifs from relatively short, 
random-sequence peptides is substantial. In a study conducted 
by our group21, we demonstrated several successes, but we were 
unable to correlate failures to any known mathematical or bio-
chemical source. We also did not examine samples where the 
target epitope is not a naturally occurring protein. We there-
fore wished to approach the problem using time–frequency 
(TF) mapping rather than multiple alignment methods, 
and we examined cancer rather than infectious disease. The 
approach that follows describes one possible path for using TF 
transformations, which might enhance the precision of motif 
identification, and we apply this method to an analysis of 
brain cancer. The description of the algorithm is provided in 
the context of the immunosignature data of monoclonal anti-
bodies against known, linear, contiguous peptide targets. We 
first describe how the peptides are dissected into subsequences 
and then explain how those subsequences are fed into a time-
variant transformation.

Forming peptide subsequences. Our objective is to 
detect and identify subsequences from the peptides obtained 
from the 330K random-sequence microarray. The peptides we 
examine are identified (down selected) by a feature-selection 
method described in the study by Stafford et al.10 Subsequences 
are partial sequences within the peptides selected. Note that 
the selected peptides from a given monoclonal antibody could 
correspond to the actual linear epitope or the peptides could be 
mimotopes, sequences with no homology to the cognate anti-
gen. We consider an immunosignature microarray consisting 
of M peptide sequences; we denote the mth peptide sequence of 
length Lm as Vm, where m = 1, … , M. As the maximum num-
ber of amino acids in a peptide sequence is 22 using the 330K 

microarray, the maximum value of Lm = 22. By shifting one 
amino acid at a time in the mth peptide sequence, we obtain at 
most Nm # (Lm – Λ + 1) unique, length Λ, subsequences of Vm. 
In particular, the γ th shifting operation, γ = 1, … , Nm, gener-
ates the γth subsequence, whose first and last amino acids cor-
respond to the γth and (γ + Λ)th amino acids of the peptide, 
respectively. We denote the aforementioned shifting function 
by hγ(Vm; Λ), γ = 1, … , Nm, m = 1, … , M. This function gener-
ates the length-Λγ th subsequence of the mth peptide Vm in the 
array by shifting the starting position of the subsequence from 
the first amino acid position of the peptide to the γ th amino 
acid position of the peptide. Using this function, we represent 
the γ th unique subsequence of Vm as follows:

	     χ γ γ, , ;d h Vm mΛ Λ( ) = ( )

Here, dm is the MFI of the mth peptide sequence Vm; it is 
the same value for all subsequences of peptide Vm. For exam-
ple, considering the Lm = 10 amino acid peptide Vm = ARV Y-
HKKHE, we can generate at most (Lm – Λ + 1) = 8 unique 
subsequences of length Λ = 3. The subsequences are χ (1, dm, 
3) = ARV, χ (2, dm, 3) = RVY, χ (3, dm, 3) = VYH, χ (4, dm, 3) 
= YHK, χ (5, dm, 3) = HKH, χ (6, dm, 3) = KHK, χ (7, dm, 3) 
= HKH, χ (8, dm, 3) = KHE. Because two of the subsequences 
are identical, χ (5, dm, 3) = χ (7, dm, 3) = HKH, the number of 
unique sequences is Nm = 7.

To achieve our objective, we find the number of times 
each unique subsequence of length Λ is repeated on the 
microarray. We form all possible unique subsequences as the 
union of all subsequences from the M microarray peptides. 
Specifically, there are at most J Nmm

M≤
=∑ 1

 unique subse-
quences, χj, where j = 1, … , J, in the set

	   
S dm

N

m

M m

Λ Λ= ( )
==

χ γ
γ

; ,
11
∪∪

In practice, it is uncommon for a single peptide to contain 
repeated subsequences. Even when this occurs, it is only for 
the smaller length subsequences of Λ = 4 or Λ = 5 amino acids 
at most. It is much more common that different peptides share 
the same subsequences.

TF mapping of peptide subsequences. The proposed 
peptide subsequence estimation algorithm is based on first 
mapping the peptide amino acids to unique signals and 
then using TF signal-processing techniques to detect recur-
ring patterns. The mapping uses the basic Gaussian signal, 
g t t t T Tb g g( ) exp( . ), ( , ).= − ∈ −−π 0 25 20 5 , as it is the most local-
ized signal in the TF plane. The effective duration 2Tg is nor-
mally chosen to ensure minimum computational processing 
complexity. The basic Gaussian signal has unit energy and is 
centered at the TF origin. We design the amino acid-to-signal 
mapping as follows. Considering Nm subsequences of length 
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L formed from the mth peptide Vm of length Lm, we map each 
amino acid to the time-shifted and frequency-shifted Gauss-
ian signal.

g t l k g t lT j kFt t lT T lT Tb g g; , exp , ,( ) = −( ) ( ) ∈ − +( )2π 	 (1)

The time-shift parameter lT is used to represent the lth 
amino acid in the peptide subsequence l = 1, … , Λ. The fre-
quency shift parameter, kF, k= 1, … , 20, is used to map the 
20 existing amino acids, as shown in Figure 1A. Using this 
mapping, the Λ-amino acid-long γ th subsequence χ (γ, dm, Λ), 
γ = 1, … , Nm, in Equation (1) can be represented by the linear 
combinaation of Λ TF-shifted Gaussian signals as follows:

x t g t l u

g t lT j u Ft t

m l
l

l

γ , ( ) ; ,

exp ,

= { } ( )
= −( ) { } ( )

=
∑ α

π α

1

2

Λ

∈∈ − +( ) +( )
=
∑ γ γT T T Tg g
l

, Λ
Λ

1

	
		  (2)

Note that we denote xγ ,m(t) to be dependent on m to clarify 
that the mapped signal originated from the mth peptide. This 
dependence is required for the estimation algorithm because 
we need to track the MFI of the subsequence. Both the peptide 
and any of its generated subsequences have the same MFI. The 
term k in Equation (1) is replaced by the function u[{l}], where 
u[{l}] is the integer-valued frequency shift that is used to map 
the type of the lth amino acid. Figure 1B provides an example 
of the mapping of the subsequence EEDFRV of length Λ = 6 
amino acids. Note, for example, that time shifts l = 1, 2, etc 
share the same frequency shift u[{α1}] = 14, because the type 
of amino acid (glutamate) is the same for both positions in 
the subsequence. Using the mapping, the weighted Gaussian 
signal representation for the mth peptide Vm is given by the 
following equation:

v t g t i u

g t iT j u Ft

m i
i

L

b li

m

( ) ( ; ,

exp

= { } ( )
= −( ) { } ( )

=
∑ α

π α
1

2 ,, ,t T T L T Tg m g
i

Lm

∈ − +( )
=
∑

1

	
		

(3)

where Lm is the length of the peptide sequence, m = 1, … , M.
Peptide subsequence estimation algorithm. Once the 

set SΛ of all unique subsequences of length Λ on a microarray 
consisting of M peptides are formed as in Equation (2), we 
need to find the occurrence count (OCRC) of each subse-
quence. As we discuss in the section on “Peptide sequence 
down selection and bias normalization”, with details of fea-
ture selection, we perform a peptide down-selection process 
to reduce the computational cost, as not all peptides contrib-
ute to antibody binding.11,25 As a result, the OCRC of each 
subsequence is obtained by considering the M # M down-
selected peptides on a microarray. In particular, we want to 

detect the signal xγ,m(t) that represents the γ th subsequence 
χ (γ, dm, Λ) of length Λ, γ = 1, … , Nm, of the mth peptide 
within all possible signals vm(t), m = 1, … , M that repre-
sent the M down-selected peptides. This process is analogous 
to searching for similarity between a given subsequence and 
all the peptide sequences on the microarray. Essentially, we 
use this approach to estimate epitopes and identify candi-
date mimotopes. We perform the subsequence estimation 
and identification method in TF using the matching pursuit 
decomposition (MPD) algorithm. The MPD is an iterative 
signal expansion technique that can be used to represent a 
signal with time-varying spectral characteristics as a linear 
combination of basis functions. Normally, the basis functions 
are selected from a dictionary that consists of a basic Gauss-
ian signal that is centered at the TF origin as well as time-
shifted, frequency-shifted, and scaled transformed versions 
of this basic signal. Transformed Gaussian signals form the 
dictionary as they are highly localized in the TF plane; how-
ever, based on the application, the MPD can give a sparse 
representation if the dictionary is formed using real signals. 
If the signal under processing is well matched in TF to the 
Gaussian basis functions, then the algorithm converges after 
only a few iterations; otherwise, the MPD can be compu-
tationally intensive. For our application, the processed sig-
nals are perfectly matched to the Gaussian basis functions as 
we map the amino acids in the peptide sequences directly to 
Gaussian signals. Thus, the MPD will converge quickly when 
used to identify subsequences, provided that the time-shift 
and frequency-shift transformations of the MPD diction-
ary are selected to be integer multiples of the time- and fre-
quency-shift parameters T and F in Equation (3), respectively. 
Equation (1) provides the steps of our proposed approach to 
determine the OCRC of each unique subsequence χj = 1, … 
, J, of length Λ, in a microarray. To compute both the OCRC 
of each subsequence as well as keep track of the MFIs of 
the peptides that contributed to the count, we compute the 
OCRC of the length-Λ γ th unique subsequence χ (γ, dm, Λ) 
of the mth peptide, m = 1, … , M. The subsequence is repre-
sented by the signal xγ,m(t) with duration (ΛT + 2Tg) and MFI 
dm. To reduce computational cost, we need to ensure that we 

Figure 1. TF representations: (A) mapping amino acid type to frequency 
shifts; (B) the mapped amino acid subsequence EEDFRV.
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do not unnecessarily process two or more subsequences when 
their corresponding mapped signals xγ,m(t) and xy′m′(t), m ≠ 
m′ and any γ or γ ′, are identical; each subsequence to be pro-
cessed is generated only once because of how the subsequences 
are defined in Equation  (2). The algorithm computes inner 
products between the linear combination of Gaussian signals 
in xγ ,m(t) that represent the γ th subsequence and the linear 
combination of Gaussian signals vm(t) that represent the γ th 
peptide. A perfect match is determined only when the sum of 
the inner product outputs is exactly equal to Λ. The OCRC 
of the γ th subsequence is the total number of perfect matches 
after processing all down-selected microarray peptides.

Estimation of subsequences with single amino acid 
substitutions. Subsequences formed by replacing a single 
amino acid with another amino acid are called point muta-
tions or single amino acid substitutions. Although substi-
tuting one amino acid can significantly change the peptide 
structure and binding characteristics, sometimes the effect is 
unimportant to structure or binding. Silent mutations occur 
when the substitution is by an amino acid with similar pro
perties as the original amino acid, resulting in no significant 
change in functionality. As a result, single substitutions of 
amino acids with similar properties are important to consider 
for estimating specific types of subsequences such as epitopes 
and mimotopes.

Equation (1) can be modified to estimate subsequences 
with single amino acid substitutions at a time. In particular, 
the design of the proposed algorithm is inherently matched to 
handle substitutions with computational ease. This is because 
the algorithm only needs to find subsequence matches with 
identical mapped time shifts, as they represent the position of 
an amino acid in the sequence; all frequency shifts are allow-
able as they represent the amino acid type. Note, however, 
that we need to keep track of the exact amino acid substitu-
tion to determine the OCRC of a silent mutation. The result-
ing approach for estimating silent mutations is described in 
Equation (2).

Peptide sequence down selection and bias normali
zation. Although the 330K peptide microarray has a large 
number of unique peptides, not all peptides are applicable for 
detecting antibody subsequences that bind to specific anti-
gens. To avoid unnecessary processing, we down select the 
peptides using two different schemes. The first scheme down 
selects peptides with high MFIs; this is because only a small 
fraction of the peptides binds strongly and specifically to the 
monoclonal antibody samples. The remaining peptides bind 
weakly and nonspecifically, and thus do not provide sufficient 
information on the sample antibodies. Antibody peptides that 
bind specifically, but only somewhat strongly, to antigens are 
not down selected. These peptides can be down selected by 
the second scheme that is based on the Pearson’s correlation 
coefficient (PCC). The PCC down selects peptides that bind 
strongly to only one of the monoclonal antibody samples. It is 
calculated between a vector of MFIs and a reference vector, 

and it measures the similarity between the two vectors. PCC 
values of –1, 0, and 1 imply negative correlation, no corre-
lation, and positive correlation, respectively. For each of the 
M, peptides in the ρth microarray sample, ρ = 1, … , P the 
PCC is calculated as follows:

	   
r S S b

Pm m m P
T

Pρ ρ, = −( ) −





1
1

1

for m = 1, … , M. Here, Sm = [S1,m … SP,m]T, sρ,m is the mean 
MFI of the mth peptide in the ρth sample, S P sm

P
m= =( / ) ,1 1Σρ ρ  

m is the MFI of all the mth peptides in the P microarray sam-
ples, 1P is a (Px1) column vector of ones, bρ is a (Px1) reference 
vector that is defined as the ρth column of a (PxP) identity 
matrix, and T denotes vector transpose. The reference vec-
tor indicates the correlation pattern needed to match the ρth 
array. Down selecting based on the PCC provides an effective 
ranking metric for various cases, as illustrated in the following 
three examples. The first example assumes that all P = 8 sam-
ples have approximately the same MFI. Such a situation can 
occur when all samples are either binding nonspecifically to 
something in the antibody or not binding to anything. Using 
the reference vector b1 = [107] for the sample ρ = 1, the PCC 
is computed as r1,m = 0.01 in equation directly above, and 0ρ is 
a (ρx1) vector of zeros. The second example assumes a specific 
binding at the microarray for which the PCC is computed. 
Specifically, as shown in Figure 2A, the MFI of the specific 
binding in the ρ = 1 sample is higher than the values of the 
nonspecific binding in the ρ = 2, … , 8 samples. Using refer-
ence vector b1, the PCC is r1,m = 0.98 for the ρ = 1 sample. In 
the last example, the specific binding is for the ρ = 2 sample, 
as shown in Figure 2B; using b1, the PCC for the ρ = 1 sample 
is r1,m = 0.22. Thus, the correlation for the MFI in Figure 2A 
is very large as the binary vector matches the MFI pattern, 
whereas the correlation for the MFI in Figure 2B is negative 
as the binary vector does not match the pattern. The PCC pro-
vides a better metric than MFI for ranking peptides with anti-
gen-binding subsequences. The nonspecific binding strength 
of some monoclonal antibody samples can be approximately 
the same as the specific binding. If that occurs, peptides with 
larger MFIs on the sample of interest, relative to the same 
peptide on other samples, will be retained due to that bind-
ing. This is demonstrated for the monoclonal antibody Ab8 in 
Figure 2C. Using the PCC instead of MFI to rank peptides 
resulted in a larger fraction of peptides with epitopes. This 
behavior was typical for most of the monoclonal antibody 
samples. In the few cases where MFI ranking resulted in a 
higher percentage of the selected peptides containing epitopes, 
the PCC also performed well in estimating the epitope. Note 
that when we used the MFI as the ranking metric for mono-
clonal antibody Ab8, the epitope was not correctly estimated. 
In some cases, it was found that the subsequence estimation 
performance increased when the MFIs of the down-selected 
peptides were normalized. The normalization tends to remove 
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biases in the data resulting from interexperimental variation 
(wafer-to-wafer synthesis variation, temperature, duration, 
and mechanical forces) or intraexperimental variation (sub-
wafer variation, peptide location effects). The normalization 
approaches used include logarithmic (log10) normalization 
(resulting in Gaussian-like characteristics), median normal-
ization, and linear model normalization. The effect of normal-
ization is demonstrated in Figure 2C for monoclonal antibody 
Ab8. For example, logarithmic normalization of the MFIs 
before computing the PCC resulted in more peptides with 
subsequences than combined logarithmic and median nor-
malizations. Note, however, that the best estimation results 
were obtained when the MFIs were not normalized, indicat-
ing that the data are of consistent quality.

Results
The data analyzed consisted of 330K peptide microarrays for 
eight monoclonal antibody samples. Algorithm 1 provides 
the steps for estimating epitopes and identifying mimotopes 
based on finding unique subsequences and their OCRC. The 
most frequently occurring subsequences in the down-selected 
peptides are selected as the estimated epitopes. The algorithms 
also provide a list of additional subsequences that do not occur 
as frequently as the epitope estimates but still occur a suffi-
ciently large number of times to warrant further investigation. 
These subsequences are proposed as potential antigen mimo-
topes as they appear to have readily permissible substitutions 
of the true epitopes.

Using the proposed algorithms, we estimated epitopes 
for the eight monoclonal antibody samples listed in Table 1A, 
together with their corresponding OCRC, OCRC (before 
down selection), and mean MFI. The estimate for each sample 
corresponds to the subsequence that occurred most frequently 
on the sample microarray after peptide down selection. As 

shown, the algorithms estimated exact subsequences for the 
full epitopes for five monoclonal antibodies, 2C11, A10, 
Ab1, Ab8, and DM1A; close matches were obtained for 
4C1, FLAG, and HA. The expanded results for monoclonal 
antibodies 2C11, A10, and HA are provided in Tables 2, 3, 
and 4, respectively, listed in descending order by OCRC. The 
tables provide details, further considered in the Discussion 
section, on how Algorithm 1 was applied to provide the final 
estimated epitopes in Table  1A. These results demonstrate 
both the diversity of the peptides on the microarray, span-
ning enough of the possible sequence space to bind all eight 
monoclonal antibodies, as well as the high performance of 
the epitope estimation algorithm in finding relevant epitopes. 
We also used the algorithms to identify potential mimotopes 
for the monoclonal antibody samples, as listed in Table 1B. 
Although these mimotopes do not match the amino acid sub-
sequences of the full epitopes, they can potentially act as sub-
sequences that uniquely bind to the monoclonal antibodies, 
without matching the amino acid composition of the epitope. 
We deduced the following considerations for potential mimo-
topes when analyzing random-sequence peptide microarrays: 
mimotopes are (i) distinctively different from the epitope of 
a specific monoclonal antibody sample; (ii) distinct across 
all eight monoclonal antibody samples; (iii) notably differ-
ent from other peptide subsequences when comparing bind-
ing strength and/or OCRC. From these considerations, we 
developed the following four criteria to identify potential 
mimotopes. A mimotope subsequence of a monoclonal anti-
body sample

C1: is not an exact or a single substitution match to a full 
or an estimated monoclonal antibody epitope.

C2: is not sufficiently similar to high–occurring peptide 
subsequences of other monoclonal antibody samples

C3: has a sufficiently large MFI

2000A

B

C

1800

1600

1400

Correlation

Fluorescence

Correlation - log10 transform

Correlation - median normalization

Correlation - log10 transform and median normalization

0.03

0.035

0.02

0.01

0
0 500 1000 1500 2000 2500

Number of selected peptides
F

ra
ct

io
n

 o
f 

p
ep

ti
d

es
 w

it
h

 
ep

it
o

p
e 

su
b

-s
eq

u
en

ce

3000 3500 4000 4500 5000

0.025

0.015

0.005

1200

1000

800

600

400

200

0

2000

1800

1600

1400

1200

1000

800

600

400

200

0

1 2 3 4 5 6 7 8
Monoclonal sample index

1 2 3 4 5 6 7 8

Monoclonal sample index

F
lu

o
re

sc
en

ce
F

lu
o

re
sc

en
ce

Figure 2. The MFIs in (A) and (B) are due to specific binding for the first and second monoclonal antibody samples, respectively, and nonspecific binding 
for all other samples; (C) fraction of peptides with epitopes for different numbers of down-selected peptides for monoclonal antibody Ab8.
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Table 2. Algorithm 1 results for 2C11 sorted in descending order according to OCRC; also listed are the estimated sequences (of varying 
lengths ), OCRC before down selection (no DS), and mean and maximum MFIs (the shaded rows correspond to estimated epitopes).

(a) 2C11 subsequences of length  = 5 (b) 2C11 subsequences of length  = 5 (c) 2C11 subsequences of length  = 7

Sub- 
seq.

OCRC OCRC  
no DS

Mean  
MFI

Max  
MFI

Sub- 
seq.

OCRC OCRC  
no DS

Mean  
MFI

Max  
MFI

Sub- 
seq.

OCRC OCRC  
no DS

Mean  
MFI

Max  
MFI

FEEQE 7 168 586 5,826 FFEEQE 7 116 636 5,826 VFFEEQE 7 85 694 5,826

FFEEQ 7 117 636 5,826 VFFEEQ 7 86 685 5,826 YVFFEEQ 3 22 805 2,089

VFFEE 7 87 676 5,826 DARWFN 4 10 1,197 65,535 AALEKDG 2 2,000 630 16,310

ARWFN 6 54 931 65,535 AWRGFN 3 7 997 1,692 ALEKDGY 2 111 701 16,310

AVNWF 6 64 760 187 FARLRE 3 9 1,183 3,327 AVARPFQ 2 2 1,849 2,182

PWFNK 6 139 848 2,144 FKYARL 3 24 1,208 2,414 AVGWQAR 2 3 1,922 16,130

WFNRL 6 3 1,010 1,704 HFFKAL 3 6 954 1,693 AWRGFNY 2 3 997 1,616

ARLRP 5 120 1,098 4,613 KARLRP 3 6 1,652 4,613 FARLREY 2 2 1,415 1,647

ARRVR 5 30 1,980 4,142 WFARLL 3 6 1,050 1,769 FEEQERY 2 13 656 1,559

DARWF 5 37 834 65,535 WFNGYA 3 12 938 1,470 FFEEQER 2 23 759 1,559
 

Table 1. (A) Epitope estimates with OCRC, OCRC before down selection (no DS), and mean MFI; and (B) potential mimotopes for the 
monoclonal antibody (mAb) samples.

(A) Sample  
mAb

Full Epitope Estimated  
Epitope

OCRC OCRC no DS Mean MFI (B) Sample  
mAb

Full Epitope Potential  
Mimotope

2C11 NAHYYVFFEEQE VFFEEQE 7 22 805 2C11 NAHHYYVFFEEQE DARWFN

A10 EEDFRV EDFRV 20 34 65,535 4C1 LQAFDSHYDY ADSWP

Ab1 NTFFRHSVVV RHSVV 186 209 65,535 A10 EEDFRV EWDVA

Ab8 TFSDLWKLLPE DLWKL 6 63 1,174 Ab1 NTFFRHSVVV –

DM1A AALEKDYEEVGV AALEKD 5 2,053 2,368 Ab8 TFSDLWKLLPE –

Flag DYKDDDDK AALEKD 1,323 2,001 44,567 DM1A AALEKDYEEVGV –

4C1 LQAFDSHYDY GYDSR 13 21 8,731 Flag DYKDDDDK ALEKDGD

HA YPYDVPDYA YDAPE 14 16 61,414 HA YPYDVPDYA EDLPD
 

Table 3. Algorithm 1 results for A10 sorted in descending order according to OCRC; also listed are the estimated subsequences (of varying 
lengths ). OCRC before down selection (no DS), and mean and maximum MFIs.

(a) A10 subsequences of length  = 4 (b) A10 subsequences of length  = 5 (c) A10 subsequences of length  = 6

Sub- 
seq.

OCRC OCRC  
no DS

Mean  
MFI

Max  
MFI

Sub- 
seq.

OCRC OCRC  
no DS

Mean  
MFI

Max  
MFI

Sub- 
seq.

OCRC OCRC  
no DS

Mean  
MFI

Max  
MFI

WDVA 52 272 17,534 65,535 EDFRV 20 34 65,535 65,535 DFRVDW 8 22 35,188 65,535

DVAW 52 473 8,790 65,535 EWDVA 15 41 65,535 65,535 FRVDWK 8 40 5,252 65,535

DSAW 46 442 8,763 65,535 EDVAW 14 35 65,535 65,535 EDFRVD 5 6 65,535 65,535

WQEA 46 135 65,535 65,535 WFEGA 14 53 65,535 65,535 EDVRPF 5 10 39,784 65,535

DAAW 40 385 11,101 65,535 WDVAP 13 33 65,535 65,535 PWQEAS 5 7 65,535 65,535

DVSW 36 239 19,765 65,535 DAAWP 11 52 16,042 65535 AVWFEG 4 11 7,222 65,535

QEYA 35 323 37,316 65,535 DVAWG 11 57 10,288 65,535 DVAWPF 4 12 22,508 65,535

EDVA 34 242 20,428 65,535 EWDAA 11 44 31,044 65,535 EDARSG 4 6 34,672 65,535

WFEA 34 267 8,875 65,535 PWFEA 11 69 10,370 65,535 EDVAPN 4 9 60,074 65,535

EWDA 32 346 10,617 65,535 WDVAW 11 42 19,322 65,535 EDVAWP 4 6 65,535 65,535
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C4 : has a large OCRC, obtained using the down-selected 
monoclonal antibody peptides.

By following these criteria, we were led to potential 
mimotopes for the monoclonal antibody samples 2C11, 4C1, 
A10, FLAG, and HA shown in Table 1B. Subsequences of 
the remaining monoclonal antibody samples did not meet all 
of the aforementioned criteria, and thus they were not identi-
fied as potential mimotopes. The expanded results that dem-
onstrate the choice of identified mimotope for samples 2C11, 
A10, and HA are also provided in Tables 2, 3, and 4, respec-
tively. Given these results, we examined data generated using 
the same 330K peptide microarrays. Glioblastoma multifor-
mae (GBM) is a dangerous and difficult-to-diagnose stage 
IV astrocytoma, a very aggressive brain cancer.26,27 Twenty 
patients with clinically diagnosed GBM donated blood before 
surgery and chemotherapy (ASU IRB# 0905004024, samples 
kindly donated by Dr Adrienne Scheck, Barrow Neurological 
Institute, Phoenix, AZ, USA). Twenty GBM patients were 
compared to 20 healthy nondisease controls and 20 patients 
each with esophageal, breast and ovarian cancer. The immu-
nosignature platform possesses high specificity relative to 
diagnosis of cancer. The low-density 10K-peptide microarray 
can distinguish a blinded cohort of patients with five different 
cancers10 simultaneously; the higher-density 330K peptide 
microarray can distinguish seven cancers and seven infectious 
diseases simultaneously.12 The peptides selected for GBM 
were filtered for cross-reactivity against the other cancers 
from Figure 5 and should be considered highly specific for 
GBM. Previously, we demonstrated that the low-density 10K-
peptide microarray was able to discriminate GBM patients 
with and without methylation of O(6)-methylguanine-DNA 
methyltransferase,14 suggesting that immunosignatures were 
composed of reactivity to both known molecular biomarkers 
as well as other antigens. In Figure 5, we show the peptides 
selected for GBM. At first glance, one can see short, common 

motifs. By using more rigorous alignments, we find motifs 
common to translated mRNA libraries from GBM patients. 
The top right panel of Figure 5 lists a subset of the random-
sequence peptides that specifically react with antibodies from 
patients with GBM but not with samples from patients with 
breast, esophageal, or ovarian cancer. The red letters high-
light the conservation of a given motif and are aligned to the 
translated GBM mRNA library. The boxes are alignments 
with a different library of peptides, those from the low-den-
sity 10K-peptide microarrays run in a previous experiment. 
In some cases, the 10K library peptides align with peptides 
from the 330K library. Figure 6 shows the polymerase chain 
reaction results using primers flanking the region containing 
the frameshifts. The target RNA was obtained from GBM 
tumor tissue lysate (obtained from Dr Adrienne Scheck, Bar-
row Neurological Institute, Phoenix, AZ, USA). Nearly all of 
the mRNA amplified is the frameshifted sequence, with little 
wild-type sequence. Peptides from samples of breast, ovar-
ian, and esophageal cancers were also compared to the GBM 
sequences, and no significant alignments were identified.

Discussion
Herein, we examine a method by which antigen motifs may 
be estimated from very short random-sequence peptides. The 
peptides were obtained from a process known as “immunosig-
naturing,” a process by which sera or monoclonal/polyclonal 
antibodies are exposed to random-sequence peptides in a 
microarray format. Disease diagnosis can be made without the 
need to determine epitope information9–12,14,15,17–22 from the 
peptides. Early low-density 10K-peptide microarrays provided 
almost no legible motifs, even when examining peptides from 
monoclonal antibodies against known linear targets.13 How-
ever, the 330K-peptide high-density arrays12 have provided 
far more precision in motif identification.21 We therefore 
attempted a signal-processing method to extract epitope 

Table 4. Algorithm 1 results for HA sorted in descending order according to OCRC; also listed are the estimated subsequences (of varying 
lengths ), OCRC before down selection (no DS), and mean and maximum MFIs.

(a) HA subsequences of length  = 4 (b) HA subsequences of length  = 5 (c) HA subsequences of length  = 6

Sub- 
seq

OCRC OCRC  
no DS

Mean  
MFI

Max  
MFI

Sub-  
seq.

OCRC OCRC  
no DS

Mean  
MFI

Max  
MFI

Sub- 
seq.

OCRC OCRC  
no DS

Mean  
MFI

Max  
MFI

YDAP 44 91 6,400 65,535 YDAPE 14 16 61,414 65,535 FNYDP 4 6 2,146 65,535

DAPE 31 114 1,537 65,535 PYDAP 10 11 44,289 65,535 GYDAPE 4 4 59,422 65,535

ADAP 27 285 864 65,535 YDSPE 9 13 12,542 65,535 NQYDAP 4 4 47,437 65,535

DVPE 25 93 1,008 65,535 FDAPV 8 12 9,961 56,901 NYDSPE 4 4 11,997 65,535

DAPG 24 168 1,122 65,535 PFDAP 8 8 47,053 65,535 AALEKD 3 2,053 694 11,285

DVPD 24 33 31,506 65,535 QYDAP 8 10 31,196 65,535 ALEKDG 3 2,002 697 11,285

DAPV 23 112 1,027 65,535 YDVPE 8 9 51,759 65,535 APYDAP 3 3 44,289 65,535

YDVP 23 47 4,846 65,535 ADAPE 7 18 10,457 65,535 EDHPDG 3 3 4,984 40,563

LDVP 20 153 823 65,535 EDLPD 7 15 1,706 11,385 EDLPDS 3 4 6,698 11,385

FDAP 18 47 2,071 65,535 FYDAP 7 11 5,583 65,535 FFYDAP 3 3 6,135 65,535
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information from hundreds or thousands of short, random-
sequence peptides. We tested the concept using monoclonal 
antibodies and then present a use case where sera from patients 
with GBM were used to generate an immunosignature, from 
which peptide sequences are compared to a translated mRNA 
library from GBM tumor lysate. We show that motif finding 
in short random-sequence peptides is possible and, in some 
cases, can offer details about eliciting epitopes.

Epitope estimation performance analysis. The epitope 
estimation performance is analyzed in Tables 2–4 for mono-
clonal antibody samples 2C11, A10, and HA. We first obtain 
estimates using Algorithm 1 as the subsequences that occur 
most frequently within the down-selected peptides for varying 
subsequence lengths L = 5, L = 6, L = 7. Then, we declare the 
estimated epitope to be the longest, consistent top subsequence. 
Considering monoclonal antibody sample 2C11, the shaded 
length L = 5 subsequences FEEQE, FFEEQ , and VFFEE in 
Table 2A all have maximum OCRC = 7; in Table 2B, the two 
shaded subsequences, FFEEQE and VFFEEQ , of length 
L =  5 have maximum OCRC =  7. The resulting top subse-
quences from these two tables infer that there must be a lon-
ger-length epitope subsequence. This is shown in Table 2C, 
in which the shaded subsequence VFFEEQE of L = 7 is the 
only one with the highest OCRC. Similarly for HA, the top 
shaded subsequences in Table 4A are YDAP and DAPE; in 
Table 4B, the highest OCRC subsequence is YDAPE. While 
this sort of trend is seen in many of the monoclonal antibody 
samples, occasionally, the binding strength appears to be 
dependent on a more complete epitope. An example of this 
is seen for A10 in Table 3B, where the top L = 5 subsequence 
EDFRV is the epitope estimate. Subsequences EDFR and 
DFRV of L =  4 are not seen in Table 3A; however, DFRV 
and FRV are present in the top three L = 6 subsequences in 
Table 3C. We followed these two trends to determine which 
length subsequence to choose as the epitope estimate for each 
of the monoclonal antibody samples.

Factors affecting algorithm performance. As the 
microarray peptides are typically much longer than the esti-
mated epitopes, the monoclonal antibodies must bind to only 
a fractional portion of a peptide. It is therefore possible to 
infer that a particular subsequence contributed to the bind-
ing if that subsequence is present on multiple peptides with 
large mean MFIs. The success of the estimation algorithm 
also depends on the diversity of the microarray peptides; this 
is achieved using the sufficiently large 330K random-sequence 
peptide microarray – the earlier 10K printed microarray had 
longer 20-mer peptides but did not perform well enough to 
estimate epitopes.13 In particular, many of the shorter-length 
subsequences were found to repeat numerous times through-
out the 330K library. As a result, this increased the robustness 
of the estimation algorithm and also allowed for an analysis 
of single amino acid substitutions based on binding strength. 
To determine how well subsequences of different lengths are 
represented, we list the number of potential subsequences on 

the microarray in Table 5. On the 330 K-peptide microarray, 
approximately 90% of Length = 4 and 50% of Length = 5 sub-
sequences occur on the array. Moreover, many of these sub-
sequences are repeated multiple times, as shown in Table 6. 
As observed, most of the L =  4 and L =  5  subsequences of 
the monoclonal antibody epitopes are present on the array and 
repeated multiple times. This occurs for the epitopes of mono-
clonal antibody samples 2C11, A10, Ab1, Ab8, and DM1A, 
for which we obtained exact epitope estimates. The results 
for the remaining three monoclonal antibody samples, 4C1, 
FLAG, and HA did not provide exact matches to the actual 
epitopes but did to similar epitopes. This is likely due to the 
low OCRCs on the microarray of the real epitopes. By nature, 
the arrays are limited in the number of sequential repetitive 
residues, due to the method by which the peptides are syn-
thesized.12 The subsequences of partial matches would have 
only moderately strong binding, which is what was seen. It is 
important to emphasize that the performance of the proposed 
estimation algorithm depends on the design of the random 
peptides on the microarray. More specifically, the performance 
depends on how frequently subsequences of the full epitope 
occur, whether the actual perfect subsequences are present, 
how strongly the antibodies bind to the peptides with these 
subsequences, and how promiscuous single antibodies are.

The performance of the epitope estimation algorithm is 
tightly coupled to the frequency and diversity of the subse-
quences in a microarray. By “frequency,” we mean how often 
a specific subsequence (of fixed length) occurs in the whole 
microarray. This is important because it affects the total num-
ber of peptides to which the antibodies bind. As a result, the 
number of down-selected peptides containing an epitope 
subsequence increases. Those subsequences are at the top of 
the OCRC. “Diversity” implies the variety of peptide subse-
quences that are included in the entire 330K library. As it is 
not possible to provide the details of every selected epitope, 
to demonstrate the effect of these factors and the data trends 
on algorithm performance, we next discuss specific subse-
quences for monoclonal antibody samples Ab1, 4C1, FLAG, 
and HA.

Our analysis demonstrated that it is possible that the 
full epitope does not correspond to the subsequence with the 
highest binding strength. This is demonstrated for the mono-
clonal antibody sample Ab1, with full epitope NTFFRHS-
VVV. Table 7A lists the matched subsequences, their OCRCs, 
and the corresponding mean MFIs for Ab1. Although the 
residue T occurs in the full epitope, we do not consider this 
residue in our estimation as it was not used to generate the 
peptides.33 Furthermore, when computing the OCRC of a 
short subsequence whose identical amino acid pattern appears 
in a longer subsequence, we do not include the OCRC of 
the longer subsequences. For example, when computing the 
OCRC of HSVV, we did not include the peptides that contain 
RHSVV, RHSVVV, or any other higher-length subsequences 
of NTFFRHSVVV. This is because we wanted to ensure that 
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Table 5. Number of possible and unique subsequences of varying lengths on the microarray.

Subsequence length # of unique subsequences # of possible subsequences % of unique subsequences

4 58,700 65,500 89.5%

5 550,000 1,050,000 48.1%

6 1,490,000 1,680,000 9%

7 1,880,000 2,680,000 0.7%
 

Table 6. Percentage of subsequences of varying lengths that are repeated on the microarray at least G times.

Subsequence Length % of subsequences repeated at least G times

G = 5 G = 10 G = 50 G = 100 G = 500 G = 1,000

4 99.8% 99.5% 95.2% 90% 69.1% 46.1%

5 94.2% 89.2% 61.5% 38.6% 1.2% 0.3%

6 57.8% 37% 2.6% 0.4% 0.2% 0.2%

7 5.9% 1.2% 0.2% 0.2% 0.1% 0.1%
 

Table 7. Subsequences of varying lengths Λ for (A) Ab1 and (B) HA1, and (C) HA2 subsequences that do not occur as often or that have lower 
binding strength.

(A) Ab1 sample OCRC Mean MFI (B) HA1 sample OCRC Mean MFI (C) HA2 sample OCRC Mean MFI

 = 4  = 4  = 4

FFRH 44 1,394 YDAP 75 5,028 YPYD 22 813

FRHS 28 2,711 DAPE 98 884 PYDV 18 688

RHSV 87 3,119  = 5 YDVP 42 3,377

HSVV 402 11,455 YDAPE 16 61,414 DVPD 28 21,429

SVVV 5 1,087 VPDY 19 746

 = 5 PDYA 462 757

FFRHS 4 2,250  = 5

FRHSV 2 1,308 YPYDV 0 –

RHSVV 208 65,535 PYDVP 1 31,435

HSVVV 7 2,062 YDVPD 3 65,535

 = 6 DVPDY 1 65,535

RHSVVV 1 10,502 VPDYA 0 –

 = 6

YPYDVP 0 –

PYDVPD 1 65,535

YDVPDY 0 –

DVPDYA 0 –

the OCRC metric for HSVV is not influenced by the binding 
strength of longer subsequences. From Table 7A, we can con-
clude that although RHSVV has the highest binding strength, 
the smaller HSVV also has a high binding strength when com-
pared to other subsequences. No conclusions can be made from 
the single occurrence of RHSVVV because some variability 
exists in the MFI measurements and because multiple subse-
quence occurrences are required to disambiguate which subse-
quence on a peptide caused the antibody binding. Moreover, 
longer subsequences such as FFRHS, FRHSV, and HSVVV 

have very low binding strength. Thus, the results for Ab1 are 
apparently typical for other samples in that not all sub-subse-
quences of the epitope bind strongly to the antibody. Typically, 
the longest subsequence was estimated and is listed in Table 1A. 
This often corresponded to the most dominant subsequence – 
the subsequence with the highest binding strength. For Ab1, 
the dominant subsequence was RHSVV (shaded in Table 7A). 
Note that not only RHSVV but also HSVV occurred more 
frequently than the other L = 4 and L = 5 epitopes. However, 
RHSVV has comparatively larger binding strength.
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The exact epitope was not estimated for the monoclonal 
antibody HA. The full epitope of this monoclonal antibody 
is YPYDVPDYA. The estimated epitope YDAPE appears to 
be a substitution (at positions 3 and 5) of the exact epitope 
YDVPD. We thus selected this nonexact epitope as our 
estimate because the exact subsequence occurred very infre-
quently on the array. Tables 7B and 7C show the occurrences 
of different epitope subsequences and the mean MFIs for the 
antibody epitope subsequence YDVPD and the estimated 
epitope sequence YDAPE, respectively. Although the anti-
body epitope sequence YDVPD occurred on the array with 
a high binding strength, the estimated epitope subsequence 
YDAPE occurred more frequently and with almost as high 
binding strength. The exact epitope was also not estimated 
for the monoclonal antibody FLAG. The nonexact estimate 
for FLAG was ALEKDGD. The similarity of this estimated 
epitope for FLAG, and the true epitope of DM1A, may be due 
to the similarities between their true epitopes and the scar-
city of sufficiently long true epitope subsequences of FLAG. 
The important overlap between these two epitopes is the KD 
amino acid pair and the permissive binding of FLAG anti-
bodies, which may reflect its unusual highly charged epitope.

The sparse distribution of true epitope subsequences of 
FLAG on the array is seen in Table 8A. The only true epitope 
subsequence with high binding strength was DYKDD; 
however, this subsequence only occurred twice on the array, 
which is not very frequent for a length L = 5. Therefore, it 
is difficult to identify it as an important subsequence. The 
overlap between the epitopes of the monoclonal antibodies 
FLAG and DM1A is the amino acid pair KD. The MFI 
effects of this overlap can be seen by comparing the MFIs of 
peptides that contain subsequences similar to the epitopes. 
Figure 3A and B provides MFI scatter plots for all the pep-
tides on the array that contain L = 4 or longer subsequences 
of peptide ALEKDGD. In Figure 3A, the MFIs of HA are 
plotted with respect to the MFIs of FLAG. As expected, the 
MFIs for HA are low as this sample has the unrelated true 
epitope YPYDVPDYA. This is in contrast to the scatter plot 
in Figure 3B, which shows the MFIs of DM1 A with respect 

to the MFIs of FLAG, which have similar epitopes. There-
fore, we surmise that the peptides containing these subse-
quences are bound most strongly.

Substitution analysis. The epitope estimates are derived 
from the array peptides that contain that specific epitope 
subsequence. In addition to that specific subsequence, there 
are other peptides on the array that contain that same sub-
sequence, but with a single amino acid substitution. Our 
proposed algorithm for detecting subsequences using single 
amino acid substitutions is provided in Algorithm 2. Using 
this algorithm, we can analyze how these single residue sub-
stitutions affect the binding strength. In so doing, we see that 
antibody: peptide binding is not exact, but that some of the 
amino acids in the epitopes can be substituted without much 
of a loss in binding strength. In some cases, these substitutions 
increase the binding strength. We have previously reported 
on this phenomenon.11,28 However, specific residues in the 
epitope subsequence are also absolutely required for the bind-
ing. Substituting them with different amino acids can dramat-
ically decrease the binding strength. One example of this is 
seen in Tables 9 and 10, which show amino acid substitutions 
at positions that are tolerant of substitutions and intolerant of 
substitutions, respectively. Figure 4A and B contains plots of 
the MFIs listed in the tables; the plots clearly show how much 
more tolerant of substitutions 4C1 is for epitopes in the first 
amino acid of the subsequence YDS than it is for substitutions 
in the third amino acid of the subsequence GYS. The toler-
ance for amino acid substitutions is particularly helpful when 
trying to estimate an epitope whose exact subsequences do not 
appear frequently on the array. This is true for FLAG, where 
the third residue of the exact subsequence KDDD is substi-
tuted to form subsequence KDGD. This subsequence appears 
more frequently on the microarray.

Mimotope identification performance analysis. The 
proposed approach identified some potential mimotopes in 
Table  1B, for five of the monoclonal antibody samples we 
analyzed. As discussed in the Results section, we provide 
selected criteria that we developed using mimotopes to mono-
clonal antibodies. Although our mimotope analysis is only the-

Table 8. (A) Subsequences of varying length Λ for FLAG and (B) identified mimotopes for five monoclonal antibody samples with corresponding 
OCRC, OCRC without down selection (no DS), mean MFI, and maximum MFI.

(A) Flag  
Sample

OCRC Mean  
MFI

(B) Sample  
mAb

Full Epitope Potential  
Mimotope

OCRC OCRC  
no DS

Mean  
MFI

Max  
MFI

 = 4 2C11 NAHYYVFFEEQE DARWFN 4 10 1,197 65,535

DYKD 16 947 4C1 LQAFDSHYDY ADSWP 10 20 12,769 65,535

YKDD 9 799 A10 EEDFRV EWDVA 15 41 65,535 65,535

KDDD 2 523 Flag DYKDDDDK ALEKDGD 250 267 65,535 65,535

DDDK 90 391 HA YPYDVPDYA EDLPO 7 15 1,706 11,385

 = 5

DYKDD 2 23,744

DDDDK 22 376
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oretical, we found that our criteria seem to match mimotope 
identification approaches in recent publications.20,29,30 More 
specifically, in the study by Roche et al.8, mimotopes were iden-
tified from peptide sequences by T cells with common receptors 
as they resulted in increased antigen-specific immunity. As the 
authors discuss, optimizing the identification of mimotopes can 
lead to improvements in antigen-specific vaccines. Mimotopes 
were identified for a monoclonal cancer antibody using phage 
display screening of random peptide libraries.6 Similar to our 
findings, the mimotopes were selected based on their strong 
binding to the original peptides. It was also noted that stronger 
binding was obtained with single residue substitutions. In the 
study by Reineke, et al.30, mimotopes for monoclonal antibod-
ies were investigated for biomarker assay development. It was 
found that the diversity of mimotopes is inversely correlated 
with binding strength.31

Tables 2–4 contain information about the potential mim-
otopes for monoclonal antibody samples 2C11, A10, and HA. 
For example, the potential mimotope for 2C11 is the lightly 
shaded subsequence DARWFN in Table  2B. This subse-
quence meets the four criteria C1–C4 listed for mimotopes in 
the Results section. Furthermore, some of its subsequences, 
ARWFN, ARWF, and WFN, are seen in the L = 5 lightly 
shaded subsequence in Table  2A. Similarly, the potential 
mimotopes for A10 and HA meet the necessary criteria, and 
subsequences of these mimotopes are seen in the top OCRC 

lists of smaller lengths. Table 8B provides additional informa-
tion on how we identified the mimotopes for the five mono-
clonal antibodies in Table 1B. For each monoclonal antibody, 
the four criteria in the Results section are met. In particular, 
all these mimotope subsequences have very large median or 
maximum fluorescence intensities.

Applications. As seen in Figure  5, the 330K-peptide 
microarray is capable of identifying peptides for disease-
specific antibodies even through the milieu of nondisease 
antibodies that compose the humoral immune repertoire. For 
each disease in Figure 5, there are hundreds of peptides that 
specifically bind to patient sera for a given cancer type, but not 
to sera from patients with other types of cancer. The peptides 
selected in this way probably have reasonably high selectivity 
for the disease of interest, in this case GBM, a grade IV astro-
cytomal brain cancer. Peptides are shown on the top right of 
Figure 5, and simple alphabetical sorting illustrates a strong 
tendency to common motifs that extend to the N-terminus of 
these peptides. Deeper searches reveal common motifs bur-
ied within the peptides, and some found near the C-terminal 
linker. A simple alignment against a three-frame translated 
mRNA tumor library reveals numerous “hits” when the brain 
cancer peptides are aligned to the brain cancer mRNA library 
but not when aligned to esophageal, breast, or ovarian can-
cer mRNA libraries. In fact, when these GBM samples were 
processed on the 10K-peptide low-density arrays, some over-
lap was seen between the 10K library and the 330K library, 
although there was no intentional overlap in these libraries. 
To ensure that the RNAs thus identified were actually gener-
ated in diverse tumor samples and were not an artifact of the 
RNA library construction, a tumor lysate from multiple GBM 
patients was used as the source for extracting RNA. These 
RNA molecules were amplified using flanking primers to the 
predicted frameshift mutations. In every case, the predicted 
frameshift was amplified. Although there are probably many 
nonlinear or nonprotein, or even wild-type, autoantigens 
generated by tumors, this experiment demonstrates that the 
principles espoused in this manuscript may enable deciphering 
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Figure 3. Scatter plots of the MFIs of FLAG compared to the MFIs of (A) 
HA and (B) DM1A.
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of the eliciting antigens produced by tumor cells in the same 
way that the monoclonal antibodies were deciphered.

Conclusion
We propose an advanced signal-processing technique for 
detecting unique subsequences from microarray peptide 
sequences. The technique combines a unique mapping of the 
peptide amino acids to highly localized Gaussian signals and 

a time–frequency processing method that iteratively extracts 
Gaussian signals undergoing the same time and frequency 
shifts. We use the technique with the immunosignature of 
random peptide sequences to effectively estimate epitope 
antigen subsequences. We demonstrated this result by ana-
lyzing eight monoclonal antibody samples, for which we esti-
mated the exact (or close-to-the-exact) epitope subsequence 
matches. As our approach inherently allows mapping and 

Figure 5. Specificity of immunosignatures (left) and mapping of Glioblastoma multiformae-specific peptide motifs to translations of RNA libraries from 
tumor libraries: Upper left: heatmap demonstrates the differences in immunosignatures among four different cancers, stage III breast cancer, esophageal 
adenocarcinoma, Glioblastoma multiformae (GBM, a stage IV astrocytoma), and stage IV (A and B) ovarian cancer. Peptide intensities are shown on 
the Y-axis, and patients on the X-axis. Peptides and patients are grouped by hierarchical clustering based on the data, indicating which patient samples 
show reactivity with which peptides. The principal components analysis map (PCA) immediately below the heatmap shows further grouping by inter- and 
intragroup variances. Top right: panel lists peptides reactive in GBM patients. Below right: panel shows the alignment of sequences from a translated RNA 
tumor library obtained from GBM patients, with the alignment of GBM-specific immunosignature peptides and the particular gene or gene constituents 
(if a translocation) preceding each line. The red letters indicate the motifs found in the GBM-specific peptides found using the 330,000-peptide (high-
density) library, with the height indicating the amount of conservation in that position. The larger the letter, the more often that amino acid was found 
at that specific position in the translated library. Squares indicate that a motif was also found using a 10,000-peptide (low-density) printed peptide 
microarray.
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Table 9. Amino acid substitutions for GY_S with OCRC and mean MFI.

AA A R N D Q E G H L K F P S W Y V

OCRC 267 195 26 158 13 21 6 20 165 42 13 47 21 16 9 37

mean MFI 803 1,011 947 3,667 873 805 867 784 784 859 775 837 813 856 780 751
 

Table 10. Amino acid substitutions for _YDS with OCRC and mean MFI.

AA A R N D Q E G H L K F P S W Y V

OCRC 11 19 100 6 85 129 158 201 5 67 107 55 9 50 6 16

mean MFI 1,457 982 977 3,792 1,776 4,337 3,667 1,337 693 1,119 883 2,503 1,624 1,194 844 855
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Figure 6. Molecular evidence of frameshift RNA sequences in brain cancer tumor samples: samples are listed on the left (ME, MER, TX, and TK). Only 
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as a control (far right). Arrows indicate the correct size of the predicted frameshift product.

processing of amino acid substitutions in peptide sequences, 
we were also able to analyze the effect of substitutions on the 
binding strength of the estimated subsequences. In particu-
lar, we showed that shorter subsequences, with lengths of four 
or five amino acids, resulted in many single amino acid sub-
stitution subsequences on the peptide array. We also applied 
the technique to identify plausible mimotope antigen subse-
quences, and we found a number of potential mimotopes for 
the monoclonal antibody samples. Using actual human serum 
samples from patients with advanced brain cancer, we dem-
onstrated that subsequence epitope identification can work 
even within the complex mix of nondisease immunoglobulins. 
Immunodiagnostics and immunotherapeutics are possible 

results from this research. Although mimotopes as vaccines 
and therapeutics may not have been the panacea once envi-
sioned, this method enables a rapid screen on inexpensive 
microarrays with fair-to-high resolution of both natural and 
mimotope targets.
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