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The mammalian external ear houses extrinsic and intrinsic auricular muscles. There 
are three extrinsic auricular muscles—the posterior, superior, and anterior auricular 
muscles—and six intrinsic muscles—the helicis major and minor, tragicus, anti- 
tragicus, transverse and oblique muscles. These muscles have been considered ves-
tigial in humans. However, numerous therapeutic and diagnostic wearable devices are 
designed to monitor and alleviate the symptoms of neurological disorders, brainstem 
injuries, emotional states, and auditory functions, by making use of the neural networks 
of the auricular muscles and their locations, which are easily accessible for ergonomic 
wearable biomedical devices. They can also serve as a bio-controller of human neuro-
prosthetics. The functionality of these auricular muscles remains elusive and requires 
further experimentation for a more in-depth understanding of their anatomy. The aims of 
this review are (1) to provide a detailed account of the neural networks of the extrinsic 
and intrinsic auricular muscles, (2) to describe diagnostic and therapeutic functions of 
these muscles as demonstrated in the current literature, and (3) to outline existing and 
potential neuroprosthetic applications making use of the auricular muscles and their 
neural networks.
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inTRODUCTiOn

The auricle of humans and other mammals contains three extrinsic and six intrinsic muscles (1, 2). 
The extrinsic muscles are the posterior auricular muscle (PAM), superior auricular muscle (SAM), 
and anterior auricular muscle (AAM), whereas the intrinsic muscles are the helicis major (HMJM) 
and minor (HMNM), tragicus (TR), anti-tragicus (ATR), transverse auricular muscle (TAM), and 
oblique (OAM) muscles. These muscles have been considered vestigial in humans, though it has been 
suggested that during development in the womb they may exert forces on the cartilage and affect 
the shaping of the ear (2, 3). In postnatal humans, they are rarely under voluntary control (2, 4). 
However, the neural connections of the auricular muscles with the brainstem and other deep brain 
structures are intact (5–7), and these muscles are easily accessible for wearable neuroprosthetics. 
Hence, they have been used as targets for numerous existing and potential future neuroprosthetic 
applications, for the diagnosis and treatment of a large range of diseases and health conditions, 
including neurological disorders, brainstem injuries, emotional states, and auditory functions. They 
have also been used as a bio-controller for assistive devices.
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The aims of this review are (1) to provide a detailed account of 
the neural networks controlling the extrinsic and intrinsic auric-
ular muscles, (2) to summarize the diagnostic and therapeutic 
functions of these muscles as described in the current literature, 
and (3) to outline existing and potential future neuroprosthetic 
applications based on the auricular muscles and their neural 
networks.

innervation of the Auricular Muscles
In humans, three extrinsic auricular muscles—the SAM, AAM, 
and PAM—arise from the temporal aspect of the cranium and 
insert into the auricular cartilage (Figure  1A). They hold the 
auricles in place and are responsible for the reinforcement, posi-
tioning, and angle of the auricle (1, 8). They are innervated by the 
temporal (SAM and AAM) and PAM branches of the facial nerve 
(3, 9), and vascularized by the superficial temporal, posterior 
auricular, and occipital arteries (10).

The intrinsic auricular muscles have origins and insertions 
within the cartilaginous auricle (2). They play a role in the posi-
tioning and formation of the folds of the cartilaginous auricle 
by connecting the opposite margins of the fissures. Thus, the 
intrinsic auricular muscles contribute to the overall topography 
of the human ear. They also function as a sphincter of the external 
auditory meatus (3, 5, 8–13). The six intrinsic auricular muscles 
can be divided into two groups. The anterior group includes the 
HMJM, HMNM, TR, and ATR, and the posterior group includes 
the OAM and TAM (Figure 1A) (1). All the intrinsic auricular 
muscles are innervated by branches of the facial nerve and 
vascularized by branches of the superficial temporal, posterior 
auricular, and occipital arteries (1, 8). The temporalis branch of 
the facial nerve innervates the tragicus (TR and ATR) and helicis 
(HMJM and HMNM) muscles, but contributions of the poste-
rior (HMNM) and inferior auricular (TR) branches of the facial 
nerve have also been reported (14–19). The TAM and OAM are 
innervated by the auricular-occipitalis branch of the facial nerve 
(14–21).

Cortical and Subcortical networks
The auricular muscles have direct or indirect neural connections 
with a network that comprises brainstem structures and multiple 
cortical zones. At the brainstem level, the motor nucleus of the 
facial nerve contains motor neurons that directly control all the 
auricular muscles. In 1948, Szentágothai demonstrated that when 
the entire facial nucleus was lesioned, all three extrinsic auricular 
muscles showed 100% degeneration (22). In 1978, Schmidt and 
Thoden demonstrated that the cortical representation of the 
auricular muscles is closely associated with the region of cortex 
representing the frontalis and orbicularis oculi muscles (23). In 
2001, Morecraft et  al. investigated the projections to musculo-
topically defined subsections of the facial nucleus from the motor 
cortices, including the supplementary motor cortex and rostral 
cingulate cortex, in the rhesus monkey (24). Both cortical regions 
project bilaterally to the facial motor nucleus (25–27). The area 
of cortex that controls the upper facial muscles is innervated 
bilaterally by the facial subnuclei, while the lower facial mus-
cles are innervated contralaterally by the facial subnuclei (28). 
Evidence for bilateral cortical control of the auricular muscles has 

been further consolidated by the following studies. It has been 
demonstrated that stimulation of area 8b of the frontal cortex 
[renamed later as the premotor ear-eye field] and Brodmann Area 
9 are involved in both ear and eye movements (29–33). In addi-
tion, the supplementary eye fields (SEF), including the parietal 
eye field (PEF) in the parietal cortex, the frontal eye field (FEF), 
and the dorsolateral and medial prefrontal cortex, are reported to 
be involved in control of ear movements and transformation of 
auditory–visual sensory stimuli (34). However, microstimulation 
studies of the cortical ear motor control areas were unable to 
induce ipsilateral ear movements. Mainly bilateral responses were 
observed; only in specific subdivisional zones were contralateral 
responses elicited (7, 30). At the subcortical level, ear movements 
are controlled by the superior colliculus (SC) and its associated 
neural networks, including the inferior colliculus, reticular 
nucleus, and the motor nuclei of the cranial nerves, including the 
facial nerve (34–37) (Figures 1B and 2A).

eXiSTinG AnD POTenTiAL FUTURe 
neUROPROSTHeTiCS FOR eXTRinSiC 
AURiCULAR MUSCLeS

Continuous Monitoring and Detection  
of Auditory Function, intracranial Facial 
nerve Palsy, and Brainstem injury with  
the Aid of PAMR
Auditory stimuli such as clicks or tone-bursts can induce an elec-
trical potential in the PAM in awake humans, which is referred to 
as the postauricular reflex (PAMR) (38–40). The muscle activity 
of the PAM in the PAMR can be measured using an EMG record-
ing electrode placed on the posterior auricular skin superficial to 
the PAM (41). The PAMR produces a bilateral response even from 
a monoaural sound stimulus (42). Binaural stimulation causes a 
response that is equivalent in both amplitude and latency to the 
sum of the monaural responses (43). In this context, a unilateral 
design of a wearable ear neuroprosthetics might be convenient for 
continuous recording or monitoring of the PAM.

Although the precise circuity remains elusive, the proposed 
subcortical neural pathway underlying the PAMR includes the 
cochlea and cochlear nucleus as the first two steps, after which it 
splits into two pathways, through the superior olivary complex 
(bilaterally) and lateral lemniscus (Figure  1B). The pathway 
that conveys signals bilaterally to the superior olivary complex 
ultimately targets the inferior and superior colliculi. The SC con-
nects to the reticular nucleus via the pedunculopontine nucleus 
(PPN). The reticular nucleus also receives the second pathway 
from the cochlear nucleus via the lateral lemniscus (Figure 1B). 
In the final link of the PAMR reflex, the paralemniscal zone (PLZ) 
and reticular nuclei activate the facial motor nucleus to contract 
the PAM (Figure 1B) (35–37, 44).

As the PAMR neural arc passes through the cochlea but not 
the vestibular system (45), it has been suggested as a useful basis 
for the diagnosis of auditory dysfunction in infants and children 
(46). Until recently, however, the PAMR has not been used rou-
tinely in the clinic, because of its variability within and across 
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FiGURe 1 | (A) Location of the extrinsic and intrinsic auricular muscles. The three extrinsic muscles (red shaded) are the superior auricular muscle (SAM), posterior 
auricular muscle (PAM), and anterior auricular muscle (AAM). The six intrinsic muscles (brown shaded) are the helicis major (HMJM) and helicis minor (HMNM) 
muscles, tragicus muscle (TR), anti-tragicus muscle (ATR), transverse auricular muscle (TAM), and oblique muscle (OAM). (B) The neural network of the acoustic 
PAMR reflex in the brainstem (11, 12). PPN, pedunculopontine nucleus; IC, inferior colliculus; SC, superior colliculus; FEF, frontal eye field; PLZ, paralemniscal zone.
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FiGURe 2 | (A) Neural network acting on the auricular muscles, via the facial nerve and other cranial nerves. STN, subthalamic nucleus; PreSMA: pre-
supplementary motor area; Nc, nucleus cuneatus; THA, thalamus; PEF, parietal eye field; FEF, frontal eye field; PPN, pedunculopontine nucleus; III, oculomotor 
nerve; IV, trochlear nerve; V, trigeminal nerve; VI, abducens nerve; VII, facial nerve; IX, glossopharyngeal nerve; X, vagus nerve. (B) Horizontal gaze and TAM 
coactivation networks—PPRF, paramedian pontine reticular formation; PLZ, paralemniscal zone; MLF, medial longitudinal fasciculus; VII, facial nerve motor nucleus; 
SC, superior colliculus; FEF, frontal eye field; TAM, transverse auricular muscle.
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individuals (37). O’Beirne (44) improved the signal-to-noise ratio 
of the PAMR by placing a reference electrode on the pinna rather 
than the forehead and proposed an objective hearing test device 
using the PAMR (44). In this context, a design for a wearable 
device for PAMR monitoring, with an embedded acoustic stimu-
lator, an EMG recorder for the PAM, and a ground electrode on 
the pinna can be conceptualized.

Another possibility for recording the acoustic PAMR is facial 
nerve monitoring. The facial nerve contains the efferent pathway 
(Figure 1B) that generates this response, as the reflex mechanism 
is seen on the ipsilateral side in individuals with intracranial facial 
nerve palsies (45). Thus, the PAMR could potentially be a tool 
for determining facial nerve conduction velocities. A biomedical 
device with a capability for bilateral EMG recording of the PAMR 
could help to determine the level of brainstem injury, as it would 
be affected by midline-crossing pathways (Figure  1B). As an 
antidromic approach, electrostimulation of the PAM might also 
help expedite neurorecovery of injured centers within the PAMR 
reflex pathway.

The magnitude of the auditory-evoked PAMR can be altered 
by eye rotation (45, 47). EMG activity in the PAM increases when 
the eyes rotate laterally, and thereby produces an enhancement of 

the PAMR (48) (Figure 2A). A complex neural network is respon-
sible for this effect. The visual cortex and SEF, including the PEF 
and FEF, project to the SC via direct and indirect pathways, after 
which the SC activates the reticular formation via mesencephalic 
locomotor region structures, including the PPN (34, 49–52) 
(Figure 2A). The FEF and dorsolateral prefrontal cortex can also 
modulate the SC via a pathway through the caudate nucleus and 
the substantia nigra pars reticulata, and function as a secondary 
system to modulate the reticular formation (49–51) (Figure 2A). 
A somewhat simplified approach to the neural network architec-
ture begins by splitting the reticular formation in the brainstem 
into subdivisions, including the rostral mesencephalic reticular 
formation (RMRF), paramedian pontine reticular formation 
(PPRF), and reticular nuclei. Stimulation of the reticular forma-
tion can activate motor cranial nerves in addition to the facial 
nerve motor nucleus (35–37). Each subdivision of the reticular 
formation has specific functions, and they project to the relevant 
cranial nerve motor nuclei (Figure 2A). The RMRF is responsible 
for vertical eye movements via the oculomotor and trochlear nerve 
motor nuclei (53, 54), whereas the PPRF is responsible mainly for 
horizontal eye movements via the oculomotor (contralateral) and 
abducens motor nuclei in the midbrain and pons, respectively  
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(55, 56). Because the PAMR correlates with lateral gaze, in addition 
to facial nucleus and reticular formation (nuclei) connections, it 
can be postulated that the reticular formation sends signals to the 
SC and cortical ear–eye control centers to align the gaze and the 
ear to the same stimuli (Figure 2A). Therefore, the PAMR neural 
pathway can also be used as a proxy signal to determine the level 
and extent of a brainstem injury that might include the motor 
nucleus of oculomotor (midbrain), abducens (pons), and facial 
(pons) cranial nerves, if it is performed with and without lateral 
gazing. PAMR systems with integrated eye-tracking glasses could 
be developed for objective and quantitative assessments.

Control of Assistive Devices with the PAM
The extrinsic auricular muscles can be used to produce signals 
to control assistive devices (57). This is particularly useful for 
individuals with neurological disorders such as quadriplegia, 
because the facial nerve that innervates these muscles is unlikely 
to be affected by high-level spinal lesions. In 1999, Friedman 
et al. found that the extrinsic auricular muscles can be activated 
voluntarily and can generate action potentials up to 680 pV in 
amplitude. They used PAM potentials to control a paddle in a 
computerized ping–pong task (57). Their finding is further sup-
ported by a recent study that presented a myoelectric auricular 
control system based on the activation of the PAM, allowing 
tetraplegic individuals to control wheelchairs (58). One of the 
limitations for using the PAM to control assistive devices, how-
ever, would be the influence of emotions on PAM activity.

Monitoring emotional States with PAM, 
SAM, and AAM
The PAMR can be used, along with the acoustic startle blink 
reflex, for monitoring the emotional states of patients (e.g., with 
post-traumatic stress disorder). The PAMR can be potentiated by 
pleasant pictures and inhibited by aversive pictures, particularly 
pictures that have high emotional intensity (59). Generally, the 
magnitude of the PAMR is larger during pleasant stimuli, includ-
ing happy expressions, pictures, and sounds, whereas aversive 
stimuli, including angry faces, result in a smaller magnitude 
(60–62). This is the opposite of the modulatory effects on the 
startle blink reflex and suggests the potential value of the PAM 
for monitoring emotional state, as an adjunct to monitoring the 
acoustic startle blink reflex.

It has been demonstrated that the underlying neural network 
for influence of emotion on PAMR response involves mainly the 
visual pathway that conveys the emotional component of the 
visual stimulus to the amygdala via the SC and thalamus (63, 64). 
When the amygdala (e.g., the central nucleus) is stimulated, it 
acts on the reticular formation directly or via the PPN (63, 64) 
(Figure 2A). Consequently, it modulates facial muscle responses, 
including those of the auricular muscles.

In addition to the PAMR, the SAM and AAM may also show a 
reflex response as an effect of emotional modulation (65, 66). It is 
notable that these two muscles have different sizes than the PAM. 
The SAM is the largest of the three extrinsic auricular muscles, 
followed by the PAM, and then the AAM. The differences in size 
may provide a mean level of difference in the reflex magnitude, 

based on the area of the muscles (45). In principle, all the extrinsic 
auricular muscles could be targets for wearable emotion monitor-
ing devices. Conversely, because none of them is free of emotional 
modulation, a better option for control of assistive devices would 
be the intrinsic auricular muscles such as the helicis major and 
minor; so far there is no report of emotional modulation of this 
group of intrinsic muscles.

inTRinSiC AURiCULAR MUSCLeS

Detection of Brainstem Lesions: TAM
The oculo-auricular phenomenon is a bilateral coactivation of the 
TAM during lateral gaze of the eyes (67, 68). Coactivation of ear 
and eye muscles is common in mammals, as discussed previously. 
The SC is involved in this coactivity. Several studies have found 
that when the SC was electrically stimulated, contralateral gaze 
deviations and bilateral pinna movements took place (69–73). The 
SC, the contralateral PPRF (at the level of the pons), the ipsilateral 
oculomotor nerve in the midbrain, the contralateral abducens 
nerve in the pons, and the ipsilateral and contralateral facial 
nuclei are involved in the production of these movements, via 
their effects on interneurons in the ipsilateral PLZ (Figures 2A,B) 
(74–83). The levels of midline-crossing axons were reported to 
be at the pons (80) and midbrain (84). These extensive neural 
connections of the TAM allow its EMG signals to be used as a 
proxy to monitor the integrity of the relevant networks. A study 
of 1,186 patients with brainstem lesions demonstrated that the 
absence of TAM coactivation ipsilateral to a lateral gaze indicates 
supranuclear brainstem lesions, because the tracts decussate at 
the mid-pontine level. The lesions in these patients were found to 
be in the ipsilateral mid-pontine or contralateral midbrain areas 
(6) (Figure 2B).

The oculo-auricular phenomenon in the TAM may not be 
restricted to lateral gaze (and PPRF), but may also apply to verti-
cal gaze. In 1978, Schmidt and Thoden reported that the TAM 
was coactivated (43%) with vertical eye movements; however, it 
is worth noting that this response was not confirmed by others  
(6, 23). Vertical eye movement is modulated by the midbrain 
vertical gaze center in the RMRF of the midbrain (53, 54) 
(Figure 2A). The RMRF stimulates the motor nuclei of the ocu-
lomotor and trochlear nerves to drive vertical eye movements 
(53, 54) (Figure 2A). Thus, EMG recordings of the TAM may be 
used to clarify the neural circuits in the midbrain, including the 
vertical gaze center in the RMRF and the two cranial nerve nuclei 
in the midbrain (trochlear and oculomotor nerve). However, the 
existence of an oculo-auricular phenomenon for the TAM with 
vertical gaze needs to be validated by further studies.

Monitoring Stroke Manifestations 
(Swallowing, Mastication,  
inspiration): TAM
Monitoring the TAM also has potential value for assessing stroke-
related motor dysfunctions. Although it is innervated by the facial 
nerve, activation of the glossopharyngeal and vagal nerves during 
coughing, swallowing, and inspiration also results in activation 
of the TAM (23) (Figure  2A). The TAM is also influenced by 

http://www.frontiersin.org/Neurology/
http://www.frontiersin.org
http://www.frontiersin.org/Neurology/archive


6

Liugan et al. Neuroprosthetics for Auricular Muscles

Frontiers in Neurology | www.frontiersin.org January 2018 | Volume 8 | Article 752

mastication, indicating coactivation by the motor division of the 
trigeminal nerve (Figure 2A). Disorders in mastication, breath-
ing, and swallowing (dysphagia) occur in up to 50% of stroke 
patients and may cause aspiration pneumonia or poor nutrition 
(85–88). EMG monitoring of the TAM with wearable devices may 
allow an opportunity to continuously monitor the status of all 
these disorders.

Alleviation of Parkinson’s Symptoms: 
HMJM, HMnM, TR, and ATR
Recently, Cakmak et  al. (89) stimulated the TR, ATR, and 
HMNM muscles with a wearable electrostimulator in a double-
blind randomized clinical trial and demonstrated a clinically 
significant improvement in the motor symptoms of Parkinson’s 
disease. The proposed mechanism of action was the stimulation 
of the subthalamic nucleus (STN) and potentially the pre- 
supplementary motor area, reticular formation, and mesence-
phalic locomotor region, which includes the PPN and nucleus 
cuneatus (Figure 2A).

The upper part of the facial muscles shows bilateral hemi-
spheric control by the facial nerve (90). It has been reported 
that unilateral STN stimulation induces bilateral motor-evoked 
potentials in the orbicularis oculi muscle in Parkinson’s patients 
(91). The intrinsic auricular muscles (TR and ATR) have also 
been shown to contract simultaneously with the orbicularis oculi 
muscles (5); this provides indirect evidence of bilateral cortical 
and STN connections to the intrinsic auricular muscles. Bilateral 
STN stimulation is a common modality of deep brain stimulation 
for alleviating Parkinson’s disease motor symptoms, especially 

non-axial symptoms. Axial symptoms, such as postural instability 
and gait difficulties, are related to the PPN (92, 93).

A recent fMRI study demonstrated that stimulation of the 
anti-tragicus muscle zone can activate the nucleus cuneatus, 
which receives proprioceptive input from the neck muscles (94). 
The nucleus cuneatus and the PPN are the two major compo-
nents of the mesencephalic locomotor region, which modulates 
posture and gait (95) (Figure  2A). In this context, stimulation 
of the intrinsic auricular muscles could potentially modulate the 
mesencephalic locomotor region, thereby influencing posture 
and gait (Figure 2A).

COnCLUSiOn

The extrinsic and intrinsic auricular muscles have extensive 
and intact neural connections within the brainstem, deep brain 
structures, and the cortex, including motor and limbic neural 
structures. Although the neural networks of the auricular muscles 
are not fully understood, this review provides an insight of their 
connections with neural networks to underline their existing and 
potential future use for the diagnostic and therapeutic devices.
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