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Abstract: In addition to their well-characterized roles in metabolism, lipids and lipoproteins have
pleiotropic effects on the innate immune system. These undergo clinically relevant alterations during
sepsis and acute inflammatory responses. High-density lipoprotein (HDL) plays an important role
in regulating the immune response by clearing bacterial toxins, supporting corticosteroid release,
decreasing platelet aggregation, inhibiting endothelial cell apoptosis, reducing the monocyte inflam-
matory response, and inhibiting expression of endothelial cell adhesion molecules. It undergoes
quantitative as well as qualitative changes which can be measured using the HDL inflammatory index
(HII). Pro-inflammatory, or dysfunctional HDL (dysHDL) lacks the ability to perform these functions,
and we have also found it to independently predict adverse outcomes and organ failure in sepsis.
Another important class of lipids known as specialized pro-resolving mediators (SPMs) positively
affect the escalation and resolution of inflammation in a temporal fashion. These undergo phenotypic
changes in sepsis and differ significantly between survivors and non-survivors. Certain subsets
of sepsis survivors go on to have perilous post-hospitalization courses where this inflammation
continues in a low grade fashion. This is associated with immunosuppression in a syndrome of
persistent inflammation, immunosuppression, and catabolism syndrome (PICS). The continuous
release of tissue damage-related patterns and viral reactivation secondary to immunosuppression
feed this chronic cycle of inflammation. Animal data indicate that dysregulation of endogenous lipids
and SPMs play important roles in this process. Lipids and their associated pathways have been the
target of many clinical trials in recent years which have not shown mortality benefit. These results are
limited by patient heterogeneity and poor animal models. Considerations of sepsis phenotypes and
novel biomarkers in future trials are important factors to be considered in future research. Further
characterization of lipid dysregulation and chronic inflammation during sepsis will aid mortality
risk stratification, detection of sepsis, and inform individualized pharmacologic therapies.

Keywords: sepsis; lipids; lipoproteins; chronic critical illness

1. Introduction
1.1. Sepsis Overview

Deriving from the ancient Greek word ‘sepo’ meaning “I rot”, the semantics of sepsis
have proven nearly as complex as elucidating new treatments [1]. The current definition of
sepsis (Sepsis-3) is a “life-threatening organ dysfunction caused by a dysregulated host
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response to infection,” represented by an increase in the patient’s Sequential Organ Failure
Assessment (SOFA) score by 2 points or more [2]. The complexities of sepsis not only
include dysregulated inflammation, but also alterations in endothelial microcirculation,
metabolism, immune tissues, coagulation, microglial cells, and neurons [3].

According to the Centers for Disease Control and Prevention (CDC), at least 1.7 million
adults in America develop sepsis each year, leading to 270,000 yearly deaths, which
accounts for one in three in-hospital deaths [4]. Globally, there are an estimated 31.5 million
sepsis, and 19.4 million severe sepsis cases, with 5.3 million deaths annually [5]. From a
societal perspective, sepsis is one of the costliest in-hospital disease states to treat. In 2013,
sepsis accounted for $24 billion in hospital expenses, representing 13% of US hospital costs,
but only 3.6% of hospital stays [6]. Multiple studies have found the incidence of sepsis to be
increasing, while the mortality rates have been decreasing [7–9]. The increase is commonly
attributed to an aging population with more comorbidities, immunosuppressive use, drug-
resistant pathogens, more frequent invasive procedures, use of implantable medical devices,
changing definitions, and increased recognition [10,11]. These findings have recently been
challenged due to changing diagnosis and coding practices, and the incidence and mortality
rate may actually be relatively stable over the past decade [12]. Our group has focused on
the ongoing morbidity and mortality following recovery from the acute septic phase.

1.2. Dysregulated Inflammation Driving Organ Failure, Chronic Critical Illness, and Death

As sepsis survival improves, disparate short and long-term outcomes have become
more apparent. Analysis of Centers for Medicare and Medicaid Services (CMS) data from
2012–2018 found that those with sepsis-coded hospital admissions had three-times as
many deaths as non-sepsis coded beneficiaries within one week of discharge, and more
admissions to skilled nursing facilities [13]. These patients are more likely to die in these
facilities, or face readmission to acute inpatient hospitals or transfer to nursing homes.

There are likely numerous contributors to poor long-term outcomes among sepsis
patients. Persistent inflammation, immunosuppression, and catabolism syndrome (PICS)
describes a subset of patients with chronic critical illness (CCI) who are characterized by
persistent inflammation, reduced host immunity, ongoing organ injury, cachexia, metabolic
derangements, and myeloid dysfunction [14]. CCI is defined as an intensive care unit
(ICU) stay >14 days with ongoing organ dysfunction [15]. In PICS, elevations of the
inflammatory cytokines including IL-6, IL-8, IL-10 characterize these patients. PICS is
thought to initiate through two interrelated mechanisms. Firstly, immunosuppression
results as a consequence of hematopoietic stem cell (HSC) expansion following the massive
granulocyte demargination in early sepsis or trauma. This process is termed emergency
granulopoiesis [16]. Mobilization of these stem cells leads to generation of a heterogenous
group of immature myeloid cells known as myeloid derived suppressor cells (MDSCs)
which exhibit T-cell suppressive activity [17]. Secondarily, viral reactivation, nosocomial
infections, and MDSC infiltration of the kidneys and skeletal muscles drive the contin-
uous release of pro-inflammatory mediators known as alarmins and damage-associated
molecular patterns (DAMPs) [14,18].

While the exact mechanism driving MDSC proliferation in critical illness is un-
known, experimental data in tumorigenesis and atherogenesis show a link with energy
metabolism [19]. The ATP-binding cassette transporters A1 (ABCA1) and G1 (ABCG1)
transport cholesterol from membranes to nascent and mature high-density lipoprotein
(HDL), respectively, thereby regulating intracellular cholesterol homeostasis. Mice de-
ficient in these transporters have a marked leukocytosis which is ameliorated through
HDL-mediated prevention of HSC entry into the cell cycle, suggesting HDL can suppress
myeloid cell proliferation independently of these receptors [20]. Synthetic HDL particles
using human Apo-AI molecules have been shown to decrease MDSCs (in a murine model),
and independently inhibit T-cell suppression by MDSCs [21]. Further research is needed
to elucidate mechanisms and target interventions to prevent the development of CCI and
PICS in sepsis patients, but lipids and their mediators clearly play important roles.
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Despite comprising a minority of ICU patients, CCI patients account for a vastly
disproportionate amount of ICU bed-days and costs, and have higher mortality [22]. At
12 months post-septic insult, these patients have a mortality eight times that of rapid
recovery patients (40.1% vs. 4.8%) [23]. Not only is their long-term survival dismal,
they also have significantly decreased physical function and health-related quality of life
compared to rapid recovery patients [24].

2. Anti-Inflammatory and Protective Roles of Lipoproteins and Lipid Mediators
in Sepsis

Patients undergo many distinct changes in their lipid profiles during states of acute
physiologic stress. In addition to this, lipid mediators play a distinct role in innate immune
signaling. The discovery and characterization of new molecules and processes provide
new frontiers for targeting the septic response.

2.1. High-Density Lipoprotein

HDL is a complex biological molecule consisting mainly of two proteins known as
Apo-A-I and Apo-A-II surrounding a lipid core. It is the smallest and densest of the
lipoprotein molecules, and best characterized in reverse cholesterol transport, where excess
cholesterol is transported from peripheral cells to the liver. HDL has a myriad of biological
functions during inflammation described in Figure 1. Lipidomic studies have identified
over 200 different lipid species in each non-pathologic HDL molecule [25].

Figure 1. Functional high density lipoprotein (HDL) exhibits pleiotropic effects during an acute stress
response: (1) Supports endogenous corticosteroid stress-response; (2) Decreases platelet aggregation;
(3) Binds and clears bacterial toxins (lipopolysaccharide and lipoteichoic acid); (4) Inhibits endothelial
cell apoptosis [26,27]; (5) Reduces the monocyte inflammatory response; (6) Inhibits expression
of endothelial cell adhesion molecules vascular cellular adhesion molecule(VCAM)/intercellular
adhesion molecule (ICAM)/E-selectin.

In one study, HDL level at the time of emergency department (ED) admission in
septic patients was more predictive of multiple organ dysfunction syndrome and 28-day
mortality in receiver-operator curve (ROC) analysis than every other parameter measured,
including lactate [28]. In another study of 64 patients with severe sepsis, no patient with an
HDL >25 mg/dL on day 3 died, and the non-survivors had persistently declining HDL
levels [29]. Total cholesterol levels follow a similar trend. HDL additionally undergoes



J. Clin. Med. 2021, 10, 1693 4 of 20

qualitative changes, discussed later, which may contribute to further organ dysfunction
and mortality.

2.2. Low Density Lipoprotein

Low-density lipoprotein (LDL) is molecule composed of a phospholipid monolayer
containing a single apolipoprotein B-100 molecule associated with 80 to 100 additional
proteins surrounding a hydrophobic core of polyunsaturated fatty acids (PUFAs) as well as
esterified and unesterified cholesterol molecules. LDL is endocytosed by different tissues
including the liver, through interaction of apo-B100 with the LDL receptor. Normal LDL
lacks the multitude of immunoprotective functions as HDL, but plays an important role
in endotoxin clearance. LDL, HDL, and very-low-density lipoprotein (VLDL) all bind
and sequester lipopolysaccharide (LPS) from bacterial cell walls, although HDL has the
highest affinity [30]. In addition to binding free LPS, LDL also facilitates release and
binding of CD14-bound LPS from myeloid cells [31]. The LDL receptor (LDLR) later
facilitates uptake of bound LPS as well as lipoteichoic acid (from gram positive bacteria) in
a pathway negatively regulated by PCSK9 [32]. During inflammatory states, LDL becomes
a dysfunctional and pathologic molecule termed oxidized LDL (oxLDL). Low LDL levels
have been associated with higher long-term rates of community-acquired sepsis [33].

2.3. Specialized Pro-Resolving Mediators

Resolution of sepsis and inflammation is an active process mediated by specialized
pro-resolving mediators (SPMs), a family of lipids discovered in the last decade that include
lipoxins, resolvins, protectins, and maresins. Each of these compounds have their own
novel biosynthesis pathways and receptors mediating physiological actions [34]. They
directly mediate resolution of inflammation due to sepsis through effects on platelets,
endothelium, and cyclooxygenase-2 (COX-2) expression [35]. The arachidonic acid deriva-
tives known as prostaglandins and leukotrienes play an early role in vascular perme-
ability and leukocyte chemotaxis [36]. As these mediators accumulate, prostaglandin E2
(PGE2) promotes a shift of eicosanoid biosynthesis towards lipoxin A4 (LXA4) generation,
which opposes polymorphonuclear neutrophil (PMN) infiltration as well as functional
responses [37]. Furthermore, LXA4 stimulates a concentration-dependent uptake and
removal of apoptotic PMNs in tissue by monocyte-derived macrophages [38]. This pro-
resolving process is dependent on PGE2, a product of cyclooxygenase-2 (COX-2), and
inhibition of COX-2 activity has been shown to prolong inflammation rather than to pro-
mote resolution [39]. Sepsis non-survivors have elevated levels of certain SPMs, lipid
mediators, and cytokines that suggest a failure of systemic resolution and possible failure
or resistance of SPM receptors [35]. Appropriate phlogistic response is a delicate balance of
both a suitable escalation of inflammation and its timely resolution; SPMs facilitate both.
Our group is currently studying these mediators in a cohort of septic patients at 28–90 days
post-sepsis to better characterize their role in the resolution of sepsis.

In addition to their promising anti-inflammatory role, SPMs have been found to
enhance the native immune response. Resolvins in murine cecal ligation and puncture
(CLP) models of sepsis reduce bacterial load, prevent excessive PMN activation, and
enhance therapeutic effects of antibiotics [40,41]. Lipidometabolomic analysis of plasma
from septic patients found sepsis non-survivors to have higher levels of proinflammatory
prostaglandin F2 (PGF2) and leukotriene B4 (LTB4), as well as higher anti-inflammatory
resolvins (RvE1, RvD1, RvD5, and Protectin D1 (PD1)) compared to survivors [35]. The
mediators RvD2, RvE2, and LXB4 were associated with survival. These same species
of resolvins show promise as important regulators in animal models of sepsis [40,41].
Increased levels of Protectin DX (PDX), an isomer of PD1 are highly predictive of ARDS
(p < 0.001), even more so than APACHE II scores [35]. PD1 may also attenuate airway
inflammation and hyperresponsiveness in human patients with asthma [42]. SPMs depend
on a more complex network of ligand–receptor interactions than is currently understood.
Lipid mediators exert their actions through G-protein coupled receptors (GPCRs) [43].
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GPCR families are susceptible to downregulation, degradation, and signal modulation; all
potentially affecting SPM interactions depending on the internal cellular environment.

3. Alterations of Lipid Metabolism in Sepsis Contribute to Failed Inflammation
Resolution

It has long been known that humans and animals undergo significant changes to their
endogenous lipid profiles during periods of critical illness [44]. Serum cholesterol levels
drop by nearly 50% in severe sepsis [45]. HDL and LDL levels inversely correlate with
levels of tumor necrosis factor α (TNF-α), IL-6, and IL-10 [29,46]. Multiple studies have
shown hypocholesterolemia, especially of HDL, in septic patients on presentation and
later in their clinical course to be predictive of non-survival [29,46–48]. Decreased hepatic
synthesis and secretion of apolipoproteins caused by cytokines may contribute to critical
illness-induced hypocholesterolemia, though causes and mechanisms have not been clearly
delineated [49]. While inflammatory cytokines decrease hepatic lipoprotein synthesis, they
also rapidly induce hepatic fatty acid (FA) and triglyceride synthesis, suppress fatty acid
oxidation, and decrease triglyceride clearance by lipoprotein lipase [50–55]. Peripheral
tissue lipolysis is stimulated during sepsis as well, further increasing plasma fatty acid
levels [56]. Plasma fatty acid composition also undergoes significant alterations, with an
overall decrease in polyunsaturated fatty acid (PUFA) levels and an increase in the ratio
of omega-6 to omega-3 fatty acids [57]. Elevated plasma fatty acid levels in critical illness
have been shown to decrease lymphocyte proliferation, promote neutrophil apoptosis and
necrosis, and are associated with cardiac damage [58,59]. High triglyceride levels are an
independent predictor of mortality in sepsis [60,61]. Intensive control of blood glucose has
beneficial mortality effects in the critically ill (hypoglycemic events notwithstanding), with
the greatest reduction of mortality in septic patients [62]. Normalization of the plasma lipid
profile by insulin therapy through reduction in plasma FA level, and increases in plasma
HDL and LDL are partially responsible for this benefit [63–65].

While the changes in lipid and lipoprotein metabolism during sepsis are well-characterized,
the mechanisms underlying the lipid and lipoprotein changes are unknown. Genetic
factors play a role. Gain-of-function variants in cholesterol ester transfer protein (CETP) in
human studies have been associated with increased mortality from sepsis, and inhibition
of CETP in humanized mouse models has been associated with preserved HDL levels and
increased survival [66]. However, clinical trial data from cardiovascular trials have shown
a concerning increase in severe infections among patients treated with the CETP inhibitor
torcetrapib, an indicator of the metabolic complexity of lipid metabolism [67].

HDL levels are strongly determined by Apo-A-1 production and catabolism. Adiponectin
levels, a protein hormone secreted by adipocytes, are inversely associated with Apo-A-1
catabolism, independent of obesity, insulin resistance, and HDL triglyceride content. Its
levels are decreased significantly during sepsis as well as obesity [68,69]. While lower
adiponectin levels are correlated with obesity, visceral fat loss has not been shown to signif-
icantly raise levels [70]. This is possibly related to differences in dietary and endogenous
adipose fatty acid composition.

Low omega-6 to omega-3 ratios are associated with increased levels of adiponectin in
obese and normal body mass index (BMI) patients [71–73] and the Western diet contains
a high 15/1 ratio of omega-6 to omega-3 fatty acids [74]. Administration of omega-3
polyunsaturated fatty acids has been shown to raise serum adiponectin levels [75]. During
the lipemia of sepsis, we propose the increase in omega-6 and omega-3 fatty acid ratio
negatively affects the adipocytokine profile altering lipid and lipoprotein function [57].
Considering these factors and prior clinical trial data (see “Lipid Emulsions” section), we
hypothesize administration of an omega-3 containing lipid emulsion will stabilize HDL
levels in sepsis and favorably alter inflammatory profiles.

Dysfunctional HDL

Though HDL is generally thought to be protective against sepsis, we and others
have shown that when subjected to acute or chronic inflammation, HDL becomes prooxi-
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dant and proinflammatory [76–80]. In addition to quantitative changes during the acute
phase response (APR), HDL undergoes reductions of enzymes critical for its function
including lecithin cholesterol acetyltransferase (LCAT), cholesteryl ester transfer protein
(CETP), paraoxonase (PON), and platelet-activating factor acetylhydrolase (PAF-AH) [81].
Replacing these molecules are proinflammatory serum amyloid A (SAA), Apo-J, and
phospholipase A2 (PLA2) [82]. In addition to the alterations in the protein components
of HDL, internal esterified cholesterol decreases and triglyceride content increases [83].
These changes seriously impair its immunomodulatory functions, converting it from an
anti-inflammatory molecule to a proinflammatory one (Table 1).

Table 1. Mechanisms of HDL dysfunction during sepsis by alterations in HDL-associated proteins.

Enzyme Level Function Pathology during Sepsis

LCAT ↓ Promotes cholesterol efflux from cells to nascent
HDL [84]

Diminished adrenal glucocorticoid function [85]
Reduced LPS-neutralizing ability of HDL [86]

CETP ↓
Exchange of CE & TG between HDL and

Apo-B-containing lipoproteins; promotes HDL
maturation [87]

Missense variant in sepsis patients associated with HDL
reduction, decreased survival, and increased organ failure [88]

PLTP ↑ Transfer of amphipathic molecules including
phospholipids [89]

Regulates HDL size and composition [90]
Recombinant PLTP in mice decreases bacterial growth and

accelerates LPS detoxification [91]

PON ↓ Hydrolyzes lipid peroxides Declines 71% in sepsis day 1–3 [92]
Fails to inhibit oxLDL [93,94]

PAF-AH ↓ Hydrolyzes PAF

Declines 90% in sepsis day 1–3 [92]
Failure to hydrolyze PAF, leading to immune cell activation,

platelet activation, vascular permeability, and hypotension [95]
Recombinant PAF-AH had no mortality benefit when used in

septic patients [96]

EL ↑ Hydrolyzes HDL particles to liberate FFAs [97]

Upregulation leads to reduced HDL levels [98]
Upregulation in inflammatory states may play a role in the

resulting low-HDL state [99]
EL knockout mice had increased survival to LPS-induced

inflammation [100]

SAA ↑ Cytokine-like, propagates APR, modifies HDL
transport [101]

>1000-fold increase during APR, displacing Apo-A-I [102]
Comprises up to 80% of the proteins in higher-density HDL

molecules [103]
Increased HDL catabolism [104]
Enhanced MDSC survival [105]

PLA2 ↑ Hydrolyzes phospholipids to generate an FFA and
lysophospholipid

Elevated lipoprotein-associated levels independent predictor of
mortality in sepsis [106]

Mainly mobilizes AA [107]

The ability of HDL to inhibit oxLDL formation and LDL-induced monocyte-chemotactic
activity (MCA) determines the HDL inflammatory index (HII) [108]. This is quantified
using assays that fluoresce in the presence of LDL oxidation and MCA. In the absence of
any HDL, the fluorescence level is normalized to 1.0. When the assays are incubated with
test HDL, values >1.0 are termed dysfunctional HDL (dysHDL) and values <1.0 are anti-
inflammatory. Our group has found dysHDL to be present in sepsis, correlate with adverse
outcomes, and to predict the severity of organ failure [76,77]. Myeloperoxidase (MPO) is
an enzyme most abundantly produced by neutrophils which catalyzes the generation of
nitrating oxidants. These oxidants directly modify amino acid sites on ApoA-I, impairing
its functional ability and creating dysHDL [79,80]. This oxidative damage limits the ability
for lipid-free liberation of Apo-A-I from HDL, which is necessary to bind ABCA1, form
nascent HDL, and clear cholesteryl esters from macrophages [78,109,110].
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DysHDL fails to protect against accumulation of oxLDL, a type of LDL containing
peroxidated lipids, lipoproteins, or their metabolites. OxLDL mediates leukocyte ac-
tivation, proinflammatory cytokine secretion, leukocyte adhesion molecule expression,
cellular degranulation, reactive oxygen species (ROS) release, and endothelial dysfunc-
tion contributing to cellular and tissue damage during sepsis [111]. OxLDL is bound
by the lectin-like oxLDL receptor (LOX-1), which is found on endothelial cells, smooth
muscle cells, intestinal cells, and macrophages. LOX-1 is upregulated by LPS, oxidative
stress, and the presence of oxLDL [112]. LOX-1 deletion decreases mortality in murine
sepsis [113]. This immune dysfunction caused by oxLDL is promoted through interactions
with inflammasomes [114].

Inflammasomes are cellular protein complexes that comprise part of the innate im-
mune system, and regulate the activation of caspase-1, to produce the mature form of the
proinflammatory cytokine IL-1β [115]. The nod-like receptor pyrin domain containing 3
(NLRP3) inflammasome requires two signals for activation: priming by an NF-κB signal
(such as LPS binding TLR4); and activation by ligands such as DAMPs and pathogen asso-
ciated molecular patterns (PAMPs) [116]. It can also be activated by buildup of intracellular
cholesterol [117]. NLRP3 plays a significant role in the respiratory, cardiac, renal, and
central nervous system dysfunction found in sepsis [118]. Specific pro-resolving mediators
have been shown to interact with and directly inhibit inflammasomes, thereby decreasing
IL-1β production and the inflammatory response [119–121]. This reduces inflammatory
cytokines that have been associated with increased mortality in sepsis [122].

The complex relationship between NLRP3 and SPMs is not yet fully understood.
Ligand-receptor interactions may play a role in this complexity. For instance, the resolvin
RvD2 is recognized by G-protein receptor 18 (GPR18), present on many cells including
PMNs. Septic patients have less GPR18 expressed on PMNs and survivors have signifi-
cantly higher expression than non-survivors [123]. The regulation of GPR18 expression is
unknown. Synthetic RvD2 restores normal neutrophil migratory phenotype and improves
survival after double-injury in burn/septic insult in mice [124].

SPMs are affected by lipoproteins and their associated enzymes. In vitro, healthy
HDL attenuates macrophage proinflammatory lipid mediator production, and promotes
pro-resolving mediator formation, notably RvD2 [125]. DysHDL not only fails to yield
measurable RvD2 (among others) but also produces de novo proinflammatory LTB4. This
provides a direct link between dysHDL and a dysregulated phlogistic response.

These pathways (Figure 2) play a role in acute sepsis, but also contribute to long-term
organ dysfunction. Continuous low-grade inflammation such as diabetes, aging, and
chronic illness lead to persistent low levels of circulating LPS termed low-grade endotox-
emia. Even relatively low levels of endotoxin are sufficient to significantly impair HDL
function [126]. Ongoing muscle catabolism and renal tubular injury causing DAMP release
contribute to the pathogenesis and maintenance of CCI [14]. MDSC-related immunosup-
pression and latent viral reactivation continually feed this cycle of inflammation/impaired
resolution as well.
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Figure 2. Dysfunctional HDL (Dys HDL) fails to regulate and actively impairs the innate immune response (see Figure 1).
Elevations in triglycerides and fatty acids, which have innate signaling properties contribute to this impairment. This leads
to tissue damage, organ failure, and immune cell dysfunction. These factors contribute to complex interactions between
sustained inflammasome activation and dysregulated lipid pro-resolving mediators, maintained by low grade endotoxemia
and DAMPs, leading to an inappropriate inflammatory response. SPMs, specialized pro-resolving mediators; PAMPs,
pathogen-associated molecular patterns; DAMPs, damage-associated molecular patterns.

4. Lipid-Based Therapies

Despite over 150 failed clinical trials, sepsis mortality has seen only modest improve-
ment, mainly the consequence of earlier recognition and treatment, and reduced iatrogenic
harm, rather than therapies directly modulating the septic response [3,127]. Subgroup
analysis does occasionally demonstrate benefit, such as with afelimomab, granulocyte-
macrophage colony-stimulating factor, anakinra, and trimodulin, but the clinical utility
of these secondary data is unclear [128–131]. Over the past 20 years, lipid-based ther-
apeutics and investigations into sepsis have greatly increased. The inflammatory and
anti-inflammatory mechanisms of lipid mediators that have been elicited are mainly thanks
to research into coronary artery disease and atherosclerosis. Lipids and innate immunity
represent an enticing frontier in modulation of the septic response.

4.1. Statins

Statins are 3-hydroxy-3-methylglutraryl coenzyme A reductase inhibitors, whose pri-
mary therapeutic action is through decreasing mevalonate levels, a precursor for cholesterol
synthesis, thereby decreasing LDL levels.

Interest in the therapeutic use of statins in critical illness began in the early 2000s
due to their known anti-inflammatory effects through depletion of nonsterol cholesterol
precursors regulating the inflammatory response. Following this reasoning, Liappis et al.
first showed a significant reduction in mortality in bacteremic patients previously treated
with statins [132]. It is important to note that the patients with prior statin use often are
older and have a higher prevalence of comorbidities including obesity, diabetes, tobacco
use, and ischemic heart disease [133]. Randomized controlled trials have failed to show
the same mortality benefits as retrospective observational and cohort studies [134]. Wide
study heterogeneity including characteristics of prior statin-users such as socioeconomic
background, primary-care visits, and comorbidities confounds results, and correcting for
confounding variables tends to diminish survival benefit [135]. Two single-center trials,
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Atorvastain in Reducing the Severity of Sepsis (ASEPSIS) and Hydroxymethylglutaryl-
Coenzyme A Reductase Inhibition for Acute Lung Injury (HARP), both in statin-naïve
patients, showed reductions in development of severe sepsis and SOFA score, respec-
tively [136,137]. There remains opportunity to examine the role of statins in preventing
critical illness progression in naïve patients.

Many lipid-independent mechanisms have been suggested for statins such as inhibi-
tion of T cell activation through inhibition of CD11a/CD18, antioxidant properties through
the inhibition of superoxide production, inhibition of nitric oxide production which may
prevent vasopressor-resistance [135], and even direct antimicrobial activity [138]. In the
largest retrospective statin study performed to date, Lee et al. [139] examined the effect
in sepsis of 52,737 patients previously treated with different statins. The authors used
propensity score matching to match statin users with non-statin users and found both
30- and 90-day mortality benefit among users of atorvastatin and simvastatin, but not
rosuvastatin. They conclude that the effects of statins on sepsis are not correlated to their
lipid-lowering potency.

4.2. L-Carnitine

The primary biochemical function of carnitine is in the transport of long chain fatty
acids through the carnitine acyltransferase system (CAT) (also called carnitine palmi-
toyltransferase) into the mitochondrial matrix for β-oxidation. Carnitine acyltransferase
controls the acetyl CoA/CoA ratio, thereby controlling pyruvate metabolism and creating
a reciprocal relationship between glucose and fatty acid oxidation [140]. This system is in-
fluenced during critical illness by LPS-induced alterations in CAT and a relative L-carnitine
deficiency secondary to sepsis [141,142].

The Rapid Administration of Carnitine in SEPSIS (RACE) randomized clinical trial
was a phase II clinical trial comparing 3 doses of L-carnitine vs placebo and its efficacy in
reducing the Sequential Organ Failure Assessment (SOFA) score of patients with septic
shock [143]. The primary outcomes were SOFA change from enrollment to 48 h, and 28-day
mortality. The study was powered to predict a posterior probability of the high dose (18 g)
levocarnitine being superior to placebo, and only reached 0.78 rather than the 0.9 a priori
benchmark. These results are confounded by the multitude of sepsis phenotypes, and
variability in patient drug response to L-carnitine supplementation, several of the authors
have suggested pharmacologic probes using L-carnitine to target subgroups of septic
patients more likely to respond to therapy [144]. The variability of these data highlight the
need for further research into pharmacogenomics and personalized medicine approaches
to sepsis therapeutics.

4.3. Lipid Emulsions

Enzymatic action on omega-6 fatty acids generates pro-inflammatory and anti-inflammatory
lipid mediators through the arachidonic acid pathways. The omega-3 fatty acids eicos-
apentaenoic and docosahexaenoic acid (EPA/DHA), lead primarily to anti-inflammatory
and cytoprotective pro-resolving lipid mediators discussed previously [145]. The primary
biochemical evidence for the anti-inflammatory contribution of EPA is secondary to its
derivative, the E-series resolvins [146]. These EPA/DHA derivatives function to regulate,
enhance, and promote a self-limited immune response [147]. Omega-3 fatty acids have
also been shown to inhibit the NF-κB pathway and inhibit Toll-like receptor (TLR-4) activa-
tion [148]. Finally, EPA increases the functionality of HDL by increasing Apo-A1, thereby
stabilizing PON, as well as directly activating HDL-associated PON, independently of
Apo-A1 [149–151].

Modulation of pro-inflammatory and anti-inflammatory mediators by omega-fatty
acid derivatives provides a clear therapeutic target in the treatment of sepsis. Meta-analyses
of clinical trials have failed to demonstrate a consistent mortality benefit of omega-3
supplementation in sepsis, although several studies have shown a positive correlation
between survival and omega-3 fatty acids [152]. Fish-oil in sepsis has led to reductions in
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ICU length of stay and days of mechanical ventilation as well [153]. A pilot randomized
controlled trial (RCT) of a fish oil lipid emulsion in 60 ICU sepsis patients showed improved
organ failure (first 7 days) and mortality (sub-population) compared to placebo, though
results have not been replicated [154]. Inconsistent EPA/DHA concentrations, variable
dosing schedules, as well as additional immunomodulating support may all confound
data and repeatability [155].

The Lipid Infusion and Patient Outcomes in Sepsis (LIPOS) clinical trial used a phos-
pholipid emulsion in gram-negative sepsis with the aim of clearing endotoxin and reducing
28-day mortality [156]. Results were negative, however, secondary analysis showed mor-
tality benefit in patients with normal liver function and either total cholesterol >40 mg/dL
or HDL >20 mg/dL [157]. Our group has previously shown in a phase I clinical trial, Lipid
Intensive Drug therapy for Sepsis Pilot (LIPIDS-P) that omega-3 supplementation through
a fish-oil containing lipid emulsion in early sepsis is safe, and promise toward stabilizing
early total cholesterol and HDL levels [158]. A phase II clinical trial (LIPIDS-P) to further
evaluate the efficacy is currently underway [98].

4.4. Eritoran

Eritoran is a synthetic lipid analogue that functions as a TLR-4 antagonist, down-
regulating LPS-induced stimulation of TNF-α and other inflammatory cytokines. Due to
these effects on preventing overstimulation of the innate immune response, there has been
clinical interest in its use in sepsis and influenza [159]. Preclinical studies demonstrated
in vitro and in vivo benefit in halting LPS-induced alterations in cytokine levels or clinical
signs and symptoms [160].

The ACCESS (A Controlled Comparison of Eritoran and placebo in patients with
Severe Sepsis) trial was a phase 3 clinical trial of nearly 2000 patients with severe sepsis or
septic shock treated with eritoran sodium vs. placebo. The primary end point was 28-day
all-cause mortality, of which there was no significant difference between eritoran compared
to placebo [161].

4.5. PCSK9

Reverse cholesterol transport is not only integral to physiological function, but also
LPS clearance in gram negative sepsis. Several proteins including PLTP, scavenger re-
ceptors, and ABCA1 play dual roles in cholesterol and LPS clearance, suggesting an
evolutionary role of lipid metabolism in ancestral innate immunity [162]. Proprotein
convertase subtilisin/kexin type 9 (PCSK9) is an enzyme that promotes LDL receptor
(LDLR) internalization and degradation, regulating its levels [163,164]. The LDLR removes
cholesterol-rich LDL molecules from plasma. During states of infection, the hepatocytes
clear LPS via the LDLR [165]. During states of acute inflammation, PCSK9 levels increase,
increasing LDLR degradation [166]. Reduced LDL-clearance may have physiologic benefit
as it has been shown that free cholesterol accumulation in macrophages independently
activates TLR signaling [167]. Free cholesterol accumulation in macrophages has also been
shown to increase TNF-α and IL-6 signaling independently of TLRs [168]. The indirect
pro-inflammatory role of PCSK9 in infection make it an attractive target for modulation of
the innate immune response in sepsis.

Secondary genetic analyses of larger sepsis trials have shown a correlation between lower
plasma PCSK9, and PCSK9 loss of function with decreased sepsis mortality [169,170]. One
observational cohort study found PCSK9 levels to positively correlate with organ fail-
ure [171]. No association has been shown between PCSK9 levels and risk of hospitalization
for infection or sepsis [172]. To date, there are no human trials of PCSK9 inhibition in sepsis,
and the only animal study of exogenous PCSK9 inhibition by antibodies to LPS challenge
has not shown mortality benefit [173].
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4.6. Fibrates

Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription
factors that control transcription of genes involved in metabolism, inflammation, prolif-
eration, and differentiation. Endogenous PPAR ligands are mainly polyunsaturated fatty
acids (PUFAs) and eicosanoids [174].

Decreased PPARα levels have been shown to correlate with severity of septic shock in
pediatric patients [175]. This is supported by increased bacterial load, decreased inflamma-
tory cytokine levels (IL-6, TNF-a, IL-17 among others), and increased mortality in PPARα
null mice compared to wild type (WT) mice [175]. In rats, PPARα agonist pretreatment
has been shown to decrease TNF-a and other inflammatory cytokine levels [176]. PPARα
agonists have also been subsequently shown in vitro to decrease macrophage TNF-a, IL-6,
NF-KB, and TLR4 expression [177].

Tissue-specific PPARα expression is crucial for the metabolic shift from glucose to fatty-
acid oxidation. In mice, hepatocyte PPARα deletion decreases survival of E. Coli bacterial
infection [178]. Animal studies have shown beneficial effects of PPARα agonists in a cell-
specific manner by ameliorating alveolar inflammation, preserving neutrophil migration
ability, preventing myocardial dysfunction, and preventing endothelial damage [179–182].
To our knowledge, there are no human clinical trials of PPARα agonists in sepsis. PPARα
activity has cell-specific, activation-specific, species-specific, and even gender-specific
effects [183]. While it represents an attractive target, much research is needed before
modulating PPARα in human septic patients.

5. Discussion

In many instances, preclinical data have failed to translate meaningfully to human
septic patients. Reasons for this vary, including heterogeneity of human sepsis phenotypes
and limitations of animal models. In addition to the multitude of sepsis categories (that
vary by infection type, source, and severity), retrospective analyses of critical illness
databases have yielded new patient phenotypes of sepsis. In one of these, Seymour et al.,
elucidated four specific phenotypes (α, β, γ, δ) by analyzing a compilation of multiple
cohorts yielding over 20,000 patients meeting Sepsis-3 criteria [184]. Each group has its
own unique characteristics: α, most common, least vasopressor use; β, older, more chronic
illness and renal dysfunction; γ, more inflammation and pulmonary dysfunction; and
finally δ, which had more liver dysfunction and septic shock. Across all cohorts of trials,
the δ phenotype had the highest 28-day and 365-day mortality.

Using these phenotypes, the authors ran simulation models of several RCTs. Simu-
lation of the Protocol-based Care for Early Septic Shock (ProCESS) trial yielded the most
notable results [185]. This clinical trial compared the central venous pressure and mean ar-
terial pressure guidelines set forth in the original Early Goal Directed Therapy Trial (EGDT)
with both a standardized resuscitation protocol and care at provider-discretion [186]. Simu-
lation of the δ phenotype found EGDT to be harmful in over half, whereas simulation of
the α phenotype actually found it to be superior. In the ACCESS trial, mentioned above,
eritoran was found to be likely-harmful in δ phenotype patients.

Parallels can be drawn between the δ phenotype and others such as the inflammo-
pathic cluster, Molecular Diagnosis and Risk Stratification of Sepsis (MARS) 2 cluster,
and the sepsis response signature (SRS) 1 [187–189]. As transcriptomics and metabolomic
characterizations evolve, these new biomarkers and metabolic signatures may yield more
meaningful data when incorporated a priori in clinical trials.

The limitations of animal models of sepsis have been discussed extensively in other
reviews and involve differences in type of septic insult, timing of insult, duration of therapy,
supra-clinical doses of agents, pretreatment, exaggerated disease severity, variable transcrip-
tomic responses, as well as differential metabolic and cardiovascular responses [190–193].
One of the most commonly-studied animals in preclinical research, the mouse, has a native
lipid profile and metabolism that is markedly different from humans. Mice have lower
overall cholesterol levels, predominantly carried in HDL molecules rather than LDL [194].
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A natural deficiency of CETP in mice and reduced intestinal cholesterol uptake, partially
explain this difference [195,196]. Transgenic human CETP mice exhibit dose-dependent
decreases in HDL levels and an increase in VLDL and LDL levels, leading to a more
‘humanized’ lipid profile [197,198].

Most apparent is the murine resistance to atherosclerosis, a disease of low grade
inflammation and dysregulated lipid metabolism. To model this in mice, they require
Westernized diets and genetic modifications such as LDLR knockouts [199]. Using animal
models with humanized lipid profiles may lead to more translatable clinical effects in
studies of infection and inflammation in the future.

6. Conclusions

Lipid metabolism and innate immunity are closely linked and better understanding
of their biology provides novel opportunities for targeted sepsis care. The heterogene-
ity between individual sepsis patients is a significant barrier to success in clinical trials.
Temporal effects, secondary to patients presenting at different periods of illness, are a
limiting factor as well. Signaling pathways require a ligand and a receptor, and variability
in clinical response is not as straightforward as providing an exogenous ligand. These may
have pleiotropic downstream effects when active at different points in cellular metabolism.
Lipidomics is a powerful tool to provide temporal and phenotype-targeted therapies to
improve sepsis survival and long-term outcomes. Our group seeks to use this information
to better modulate host response in critical illness by improving early detection and prog-
nostication, targeting patients likely to benefit, and lastly, preventing the immense burden
of long-term sequelae secondary to PICS.
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