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The cuproptosis-related
signature associated with
the tumor environment
and prognosis of patients
with glioma

Weichen Wang †, Zhichao Lu †, Maoyu Wang †, Zongheng Liu,
Bing Wu, Chengkai Yang, He Huan and Peipei Gong*

Department of Neurosurgery, Affiliated Hospital of Nantong University, Medical School of Nantong
University, Nantong, China
Background: Copper ions are essential for cellular physiology. Cuproptosis is a

novel method of copper-dependent cell death, and the cuproptosis-based

signature for glioma remains less studied.

Methods: Several glioma datasets with clinicopathological information were

collected from TCGA, GEO and CGGA. Robust Multichip Average (RMA)

algorithm was used for background correction and normalization,

cuproptosis-related genes (CRGs) were then collected. The TCGA-glioma

cohort was clustered using ConsensusClusterPlus. Univariate Cox regression

analysis and the Random Survival Forest model were performed on the

differentially expressed genes to identify prognostic genes. The cuproptosis-

signature was constructed by calculating CuproptosisScore using Multivariate

Cox regression analysis. Differences in terms of genomic mutation, tumor

microenvironment, and enrichment pathways were evaluated between high-

or low-CuproptosisScore. Furthermore, drug response prediction was carried

out utilizing pRRophetic.

Results: Two subclusters based on CRGs were identified. Patients in cluster2

had better clinical outcomes. The cuproptosis-signature was constructed

based on CuproptosisScore. Patients with higher CuproptosisScore had

higher WHO grades and worse prognosis, while patients with lower grades

were more likely to develop IDH mutations or MGMT methylation. Univariate

and Multivariate Cox regression analysis demonstrated CuproptosisScore was

an independent prognostic factor. The accuracy of the signature in prognostic

prediction was further confirmed in 11 external validation datasets. In groups

with high-CuproptosisScore, PIK3CA, MUC16, NF1, TTN, TP53, PTEN, and EGFR

showed high mutation frequency. IDH1, TP53, ATRX, CIC, and FUBP1

demonstrated high mutation frequency in low-CuproptosisScore group. The

level of immune infiltration increased as CuproptosisScore increased. SubMap

analysis revealed patients with high-CuproptosisScore may respond to anti-

PD-1 therapy. The IC50 values of Bexarotene, Bicalutamide, Bortezomib, and
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Cytarabine were lower in the high-CuproptosisScore group than those in the

low-CuproptosisScore group. Finally, the importance of IGFBP2 in TCGA-

glioma cohort was confirmed.

Conclusion: The current study revealed the novel cuproptosis-based signature

might help predict the prognosis, biological features, and appropriate

treatment for patients with glioma.
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Introduction

Glioma is the most common primary brain tumor,

accounting for about 40% of all brain tumors (1), among

which glioblastoma (GBM) is the most malignant brain tumor.

According to the classification of World Health Organization

(WHO), gl iomas are class ified into four di fferent

histopathological grades: Grade I, II, III and IV, of which

WHO II and III are considered low-grade gliomas (LGG).

Glioblastoma (GBM, WHO IV) characterized by new

angiogenesis is the most aggressive molecular subtype of

glioma (2, 3). The median survival of LGG can be achieved

from five to ten years through the administration of surgery,

radiotherapy, and chemotherapy combination treatments,

whereas the median survival of GBM is normally around one

or two years (4, 5). The prognosis of glioma patients is divergent,

which may be related to different tumor grades, mutation of

isocitrate dehydrogenase (IDH) (6), amplification of epidermal

growth factor receptor (EGFR) (7) and other factors. The current

glioma prognostic evaluation model is mainly based on clinical

factors, which has limited predictive ability (8–11). Therefore, a

better prognostic evaluation system is needed.

Gene-regulated cell death known as “programmed cell

death” is crucial for tissue homeostasis and growth, it also

takes part in several pathological processes (12). At present,

various types of cell death, such as necroptosis, ferroptosis, and

pyroptosis, have been found to belong to necrotic programmed

cell death (12). Researchers have found that cell death is closely

related to tumorigenesis and prognosis. In the process of tumor

development, cell death often occurs in the intratumoral area

due to metabolic stress, such as hypoxia or glucose deprivation

(13). Consequently, triggering programmed cell death could be a

potential strategy for novel tumor therapy. Currently, knowledge

of programmed cell death in cancer is continuously updated as

more types of programmed cell death are discovered and

recognized. Biology has long recognized copper as a vital

component in all living things, from bacteria and fungi to

mammals and plants, where it is a must for survival (14, 15).
02
In humans, it binds to enzymes that assist in blood clotting,

hormone maturation, and cell processing of energy, however,

excessive copper can cause cell death (14). Cuproptosis as a new

type of cell death is modulated and regulated by copper in cells.

Copper ion directly binds to the lipoacylated components in the

tricarboxylic acid cycle, leading to abnormal aggregation of

lipoacylated proteins and loss of iron-sulfur cluster proteins,

which leads to protein toxic stress and ultimately leads to cell

death (15). Cuproptosis in glioma, however, has not yet been

studied in depth.

The establishment of a glioma prognosis prediction model

based on transcriptome data combined with clinical data can

improve the prediction ability to a certain extent, which has

highly significant clinical significance. In this study, glioma gene

expression data and clinical data were collected from open

databases, combined with reported cuproptosis-related genes

(CRGs), was used to establish and verify cuproptosis-related

clusters and signature. Subsequently, the prognosis, immune

status, and treatment response of patients was also explored

based on the cuproptosis-related clusters and signature.
Materials and methods

Collection and preprocessing of data
for glioma

Transcripts and clinical data of glioma samples, including

survival status, IDH status, grade, gender, and age, were collected

from TCGA database based on UCSC Xena platform (16, 17). A

total of 656 glioma patients with corresponding data were enrolled.

Meanwhile, the gene expression profile of the control (non-tumoral

samples) were also obtained from Genome Tissue Expression

(GTEx) project (https://www.gtexportal.org) (18, 19). In addition,

11 glioma-cohorts (CGGA311, CGGA668, GSE108474, GSE13041,

GSE16011, GSE43289, GSE43378, GSE4412, GSE4412, GSE68838,

and GSE83300) were collected from Gene Expression Omnibus

(GEO, https://www.ncbi.nlm.nih.gov/geo/) or Chinese Glioma
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Genome Atlas (CGGA, http://www.cgga.org.cn/). Robust Multichip

Average (RMA) algorithm was used for background correction and

normalization (20). Data in the form of fragments per kilobase

million (FPKM) was transformed into transcripts per kilobase

million (TPM). The list of cuproptosis-related genes (CRGs)

refers to the previous literature (14). In the end, ten CRGs were

included in our study: FDX1, LIAS, LIPT1, DLD, DLAT, PDHA1,

POHB, MTF1, GLS, and CDKN2A.
Establishment of cuproptosis-clusters
and cuproptosis-signature

Based on the collected ten CRGs, the TCGA-glioma cohort

was clustered using ConsensusClusterPlus package (21). Next,

principal component analysis (PCA) (22) was further carried out

to assess patterns associated with cuproptosis. Limma package

was used to identify the differentially expressed genes (DEGs) in

cuproptosis-clusters (logFC>1, P<0.05) (23). Subsequently,

Univariate Cox regression analysis was performed to identify

prognostic DEGs preliminarily (24). Subsequently, more

valuable prognostic genes were screened out based on Random

Survival Forest model (variable importance>0.25) (25, 26). To

construct a cuproptosis-signature, Multivariate Cox regression

analysis was used to estimate and weight the regression

coefficients of the prognostic genes, and the CuproptosisScore

for each glioma sample was calculated. According to the best

optimal cutoff, the patients were divided into high- or low-

CuproptosisScore subgroups. The association between overall

survival (OS) and CuproptosisScore was analyzed using Kaplan-

Meier curves. ROC curves were further utilized to validate the

efficiency and accuracy of CuproptosisScore in predicting

outcomes at one-, two-, and three-year. In addition, Univariate

or Multivariate Cox regression analyses of CuproptosisScore and

several clinical factors were performed to verify the

independence of CuproptosisScore in predicting prognosis.
Genomic mutation analysis for
cuproptosis-signature

The data of somatic mutations (16, 27) or copy number

variation (CNV) (16) was acquired from TCGA. Genomic

Identification of Significant Targets in Cancer (GISTIC) (28)

algorithm was used to assess genomic characterization and

CNV landscape.
Analysis of immune infiltration

Immune cell abundance (immune score), stromal cell

infi ltrating level (stromal score), and tumor purity

(ESTIMATE score) were estimated via ESTIMATE (The
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Estimation of Stromal and Immune cells in Malignant Tumor

tissues using Expression) algorithm (29). Using Tumor Immune

Estimation Resource 2.0 (TIMER 2.0, http://timer.cistrome.org/)

(30), a comprehensive analysis of immune infiltration in the

tumor microenvironment of glioma was carried out.

MCPcounter algorithm was used to estimate the relative

proportions of ten immune cells in glioma (31). The

infiltration of 28 immune cells was indicated by enrichment

scores, which were calculated by single sample gene set

enrichment analysis (ssGSEA) using Gene Set Variation

Analysis (GSVA) R package (32, 33). Immunomodulators

associated with seven different immune processes (Antigen

presentation, Cell adhesion, Co-inhibitor, Co-stimulator,

Ligand, Receptor and Other) were obtained from the previous

literature (34). The response of glioma to anti-PD1 and anti-

CTLA4 therapy was evaluated by Submap algorithm (35–37).
Enrichment pathway analysis

All gene sets from Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) were

downloaded from the MSigDB database (38). Gene Set

Enrichment Analysis (GSEA) (39) and Gene Set Variation

Analysis (GSVA) (33) were carried out according to

clusterProfiler and GSVA packages, respectively.
Drug response prediction

Pharmacogenomic data from Genomics of Drug Sensitivity

in Cancer (GDSC) (40) database was used to predict drug

sensitivity in the enrolled glioma cases. The half maximal

inhibitory concentration (IC50) value was calculated by

pRRophetic package to reflect the drug response (41).
Immunohistochemistry (IHC) staining

The tissue sections through deparaffinization and

dehydration were incubated with polyclonal rabbit anti-human

IGFBP2 antibodies (1:50, Proteintech, 11065-3-AP) overnight at

4°C after epitope retrieval, H2O2 treatment, and non-specific

antigens blocking. Next, sections were incubated with secondary

antibodies (1:1000, Proteintech, SA00001-2) for two hours at

room temperature, and then the signal was detected by an

enhanced DAB staining kit (Proteintech, China).
Western blot

Tumor tissues as well as normal tissues were lysed in RIPA

buffer (Solarbio, Beijing, China), protease and phosphatase
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inhibitors were added, and then denatured at 100°C for 15 min.

The protein samples were then separated by 10% SDS-PAGE

and transferred to polyvinylidene fluoride (PVDF) membranes.

Next, PVDF membranes were blocked with 5% skim milk

powder solution for 1 hour, and incubated with primary

antibodies, including anti-IGFBP2 antibody (1:1000,

Proteintech, 11065-3-AP), anti-GAPDH antibody (1:5000,

Abcam, ab9485) overnight, followed by secondary antibodies

(1:2000, Proteintech, SA00001-2) for 2 hours at room

temperature, observed with the ECL kit chemiluminescence

reagent (Billerica Millipore, MA, USA). Protein band signals

were detected by the Chemidoc detection system (Bio-Rad,

Hercules, CA, USA) and quantified by ImageJ software

(National Institutes of Health, USA).
Statistical analysis

The Wilcoxon test was used to compare non-normally

distributed data. The T-test was used to compare normally

distributed variables between two groups. The R package

survminer was used to estimate OS between two groups using

Kaplan-Meier survival plots. Cox regression of survival analysis

was also performed by survival. Time-dependent receiver

operating characteristics (ROC) curves were plotted using R

package timeROC. All heatmaps were performed through

pheatmap package. The data were visualized by ggplot2

(V4.1.2). P<0.05 was considered statistically significant.
Results

Characteristics of cuproptosis-clusters
for TCGA-glioma

The clinical information of patients from TCGA was listed in

the Supplemental Table S1. The correlations among the ten CRGs

were mostly positive, and the most strongly associated variables

w e r e DLD an d DLAT ( F i g u r e 1A ) . B a s e d o n

ConsensusClusterPlus, the optimal number of clusters was

determined, k=2 (Figure 1B). Furthermore, PCA analysis was

further used to validate that patients in the two subclusters

clustered separately, which confirmed the reliability of the

clustering results (Figure 1C). Patients with glioma in cluster2

had significantly better clinical outcomes than those in cluster1

(Figure 1D). Compared with the other subcluster, the expressions

of FDX1, DLD, DLAT, PDHB, GLS were relatively high in

cluster1, while the expression of CDKN2A was relatively high in

cluster2, which indicates that these CRGs may be genetic markers

for identifying different clusters (Figure 1E). Interestingly, we

discovered that cluster2 had a greater percentage of IDH

mutation status, which may be one of the factors contributing

to a better prognosis of this subcluster (Figure 1E).
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Establishment of cuproptosis-signature

In the two subclusters, a total of 27 differentially expressed

genes (DEGs) were identified (logFC>1, P<0.05), and the

volcano map accurately reflected the gene expression

differences between the two subclusters (Figure 2A). After

Univariate Cox regression analysis, 16 potential pro-oncogenes

(HR>1; CYTOR, EMP3, OCIAD2, PLA2G5, FABP5P7, IGFBP2,

TSTD1, TIMP1, RBP1, METTL7B, POSTN, CHI3L1, H19,

CXCL14, LTF and ENC1) and 9 potential suppressor genes

were identified (HR<1; CAMK2A, LINC01088, CDKN2B,

LINC00689, TPTEP1, C5orf38, KLRC2, VIPR2, and SMOC1)

(Figure 2B). Figure 2C showed the distribution of error rates in

Random Survival Forest model, after which the relative

importance of seven genes (H19, CYTOR, IGFBP2, EMP3,

KLRC2, C5orf38, and CHI3L1) was established (variable

importance>0.25, Figure 2D). Multivariate Cox regression

analysis was used to develop the cuproptosis-signature, and

the CuproptosisScore for each glioma sample was calculated

according to the following formula: 0.0621*ExprH19

+0.0196*ExprCYTOR+0.2739*ExprIGFBP2+0.0183*ExprKLRC2
+0.0036*ExprC5orf38+0.1406*ExprCHI3L1. Heatmap displayed the

distr ibution of six genes in cuproptosis-signature,

CuproptosisScore and the clinical characteristics (Figure 2E). It

was clear that a higher CuproptosisScore was linked to higher

expressions of H19, CHI3L1, CYTOR, and IGFBP2 and, in

contrast, was associated with lower expressions of KLRC2 and

C5orf38 (Figure 2E). In the meantime, IDH mutation status was

more likely to be present in glioma patients with lower Cuprop

tosisScore. (Figure 2E).
Prognostic potential of
cuproptosis-signature

Next, we analyzed the CuproptosisScore of TCGA patients

among WHO grades, mutation status and MGMT methylation

status (Figure 3A). Patients with higher CuproptosisScore had

higher WHO grades, while patients with lower grades were more

likely to develop IDH mutations or MGMT methylation

(Figure 3A), all of which may explain the significantly better

clinical outcomes of patients with lower CuproptosisScore

(P<0.001, Figure 3B). In addition, Univariate and Multivariate

Cox regression analysis of CuproptosisScore and clinicopathologic

features demonstrated that both CuproptosisScore and Grade

were independent prognostic factors for patients with glioma

(Figure 3C). The survival ROC curves predicted by the

cuproptosis-signature showed that the AUCs were all greater

than 0.8, indicating the effectiveness of the cuproptosis-signature

in predicting prognosis for glioma at the 1-year (AUC=0.898), 2-

year (AUC=0.922), 3-year (AUC=0.918), 4-year (AUC=0.867),

and 5-year (AUC=0.828) time points (Figure 3D). Furthermore,

we conducted Univariate Cox regression analysis on the OS
frontiersin.org
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(overall survival) of glioma patients based on the external

validation data sets, and the results showed that HR was greater

than 1 in all of the 11 data sets, which further validated the

accuracy of our constructed cuproptosis-signature in prognostic

prediction (Figure 3E).
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Genomic mutation analysis for
cuproptosis-signature

GISTIC algorithm was used to assess the genomic

characterization landscape between high- CuproptosisScore
A B

D

E

C

FIGURE 1

Characteristics of CuproptosisCluster in TCGA-glioma cohort. (A) The correlations among the ten cuproptosis-related genes (CRGs). The color
represents the correlation coefficient. (B) Cluster diagram for subtype analysis of glioma samples. The intragroup correlations were the highest
and the inter-group correlations were low when k=2. (C) PCA analysis for the two subclusters. (D) Kaplan-Meier survival curve showing survival
probability of cluster1 and cluster2. (E) Heatmap showing the expression levels of the ten cuproptosis-related genes (CRGs) in different clinical
features and clusters. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.
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and low-CuproptosisScore subgroups, which was shown in

Figure 4A. In patients with high-CuproptosisScore, PIK3CA,

MUC16, NF1, TTN, TP53, PTEN, and EGFR had high mutation

frequency (over 10%, Figure 4B), while in those with low-

CuproptosisScore, IDH1, TP53, ATRX, CIC, and FUBP1 had
Frontiers in Immunology 06
high mutation frequency (over 10%, Figure 4C). TP53 had high

mutation rates in both groups (26% and 51%, respectively). In

agreement with the findings above, the mutation rate of IDH1

was particularly high in the low-CuproptosisScore group,

reaching as high as 89% (Figure 4C).
A B

D

E

C

FIGURE 2

Establishment of cuproptosis-signature. (A) The volcano map reflects the differentially expressed genes identified (logFC > 1, P < 0.05). (B) The
forest figure for Univariate Cox regression analysis of the differentially expressed genes. (C) The distribution of error rates in Random Survival
Forest model. (D) The variable relative importance of the seven genes. (E) Heat map showing the relationship between six genes in the
cuproptosis-signature and CuproptosisScore distribution and its clinical characteristics. ****P < 0.0001.
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Immune status for cuproptosis-signature

Based on ESTIMATE, MCPcounter, ssGSEA, and TIMER

algorithms mentioned in the Methods section, the heatmap

showed the abundance of infiltrating immune cell populations
Frontiers in Immunology 07
at different CuproptosisScores (Figure 5A). In general, the level

of immune infiltration increased as the CuproptosisScore

increased (Figure 5A). However, it was observed that patients

with lower CuproptosisScores had more tumor purity

(Figure 5A). In addition, our results showed that glioma
A

B

D E

C

FIGURE 3

Prognostic potential of cuproptosis-signature. (A) The violin figures for comparing the CuproptosisScore of TCGA patients among WHO grades,
mutation status and MGMT methylation status. (B) Kaplan-Meier survival curve showing survival probability of high-CuproptosisScore or low-
CuproptosisScore subgroups. (C) The forest figure for Univariate or Multivariate Cox regression analysis of CuproptosisScore and
clinicopathologic features. (D) The 1-year, 2-year, 3-year, 4-year, and 5-year survival ROC curves are predicted by the cuproptosis-signature. (E)
Univariate Cox regression analysis of the cuproptosis-signature in 11 external validation data sets. ***P < 0.001.
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patients with high CuproptosisScores also had higher levels of

TMB (Figure 5B), GEP (Figure 5C), and CYT (Figure 5D).

GSVA analysis also suggested that patients with high

CuproptosisScores were enriched in immune-related

pathways, such as negative regulation of macrophage

apoptotic process, macrophage fusion, B cell receptor signaling

pathway, T cell receptor signaling pathway, and primary

immunodeficiency (Figure 5E).
Frontiers in Immunology 08
Immunotherapy and chemotherapy of
cuproptosis-signature

Immunomodulators (IMs) are closely related to the

immunotherapy of malignant tumors, as well, agonists and

antagonists for immunomodulators are also being studied (42).

The expression of IM-related genes varied across high-

CuproptosisScore or low-CuproptosisScore subgroups
A

B

C

FIGURE 4

Genomic mutation analysis for cuproptosis-signature. (A) Genomic characterization landscape of high-CuproptosisScore or low-
CuproptosisScore subgroups. (B) Gene mutation frequency in high-CuproptosisScore. (C) Gene mutation frequency in low-CuproptosisScore.
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(Figure 6A). As the heatmap demonstrated that the level of

TNFSF9, IL13, and TIGIT, showed no difference between the

two groups, VTCN1, TNF, CX3CL1, IL12A, HMGB1, EDNRB,

and TLR4 were highly expressed in the low-CuproptosisScore

group, and the remaining genes were highly expressed in the

high-CuproptosisScore group (Figure 6A). In addition, SubMap

analysis revealed patients with high-CuproptosisScore may
Frontiers in Immunology 09
respond to anti-PD-1 therapy (Figure 6B). This may be due to

the high expression of IMs in this group of patients. We also

investigated the IC50 values of four chemotherapeutics

(Bexarotene, Bicalutamide, Bortezomib, and Cytarabine) between

the high- and low-CuproptosisScore groups. Results showed that

IC50 values of patients in the high- CuproptosisScore group were

lower than those in the low-CuproptosisScore group, suggesting
A B

D

E

C

FIGURE 5

Immune status for cuproptosis-signature. (A) The heatmap shows the abundance of infiltrating immune cell populations at different
CuproptosisScores. (B–D) Glioma patients with high CuproptosisScores had higher levels of TMB (B), GEP (C), and CYT (D). (E) The heatmap
shows CuproptosisScores, clinical features, and immune-related pathways based on GSVA analysis. ****P < 0.0001.
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A

B

C

FIGURE 6

Immunotherapy and chemotherapy of cuproptosis-signature. (A) Correlation of CuproptosisScore with seven immunomodulators in gliomas. (B)
SubMap analysis for cuproptosis-signature in gliomas. (C) Box plots of estimated IC50 for several chemotherapeutic agents in the high- or low-
CuproptosisScore groups. *P < 0.05; **P < 0.01; ***P < 0.001, ****P < 0.0001.
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that patients in the high-CuproptosisScore group were more likely

to benefit from these four drugs (Figure 6C).
The importance of IGFBP2 in TCGA-
glioma cohort

The aforementioned results showed that the cuproptosis-

signature we created has substantial clinical significance. Next,

we randomly selected one gene from this signature, IGFBP2, and

explored its important value in gliomas. As is evident from WB

and IHC results that IGFBP2 was significantly higher in the six

tumor tissues than in the paired adjacent tumor tissues

(Figures 7A–C). The patients with IGFBP2 expression values

were listed in the Supplemental Table S2. The expression level of

IGFBP2 was further compared between the glioma sample and

the healthy control sample, it was found that IGFBP2 was

significantly overexpressed in the cancer tissue (Figure 7D). In

terms of the survival curve, glioma patients with low expression

of IGFBP2 had better survival, indicating that IGFBP2 may be a

promoter of the malignant progression of glioma. The 1-year

(AUC=0.877), 2-year (AUC=0.92), 3-year (AUC=0.91), 4-year

(AUC=0.858), and 5-year (AUC=0.822) survival ROC curves

predicted by IGFBP2 revealed that the AUCs were all higher

than 0.8, indicating the efficiency of IGFBP2 in predicting

prognosis for glioma (Figures 7E, F). Therefore, IGFBP2 is

highly likely to be the oncogenic gene of glioma. The heatmap

(Figure 7G) showed that the expression value of IGFBP2 was

positively correlated with the expression value of eight immune

checkpoints (LAG3, CD274, PDCD1LG2, TNFRSF9, PDCD1,

CTLA4, CD247, and TNFRSF4). Moreover, we carried out

GSEA analysis to explore cancer and immune-related signaling

pathways positively modulated by IGFBP2. We found six

signaling pathways (Figure 7H): immune response, T cell

receptor signaling pathway, regulation of immune response,

pathways in cancer, p53 signaling pathway, and TF

signaling pathway.
Discussion

Gliomas, especially glioblastoma (GBM), are the most

destructive brain tumors within the human nervous system

(43). Despite improvements in glioma diagnosis and treatment

in recent years, gliomas are still difficult to treat with surgery

alone due to their invasive and quickly proliferating nature.

Patients with postoperative recurrence have a poor prognosis,

with the median survival time only being extended by a few

months (44, 45). One of the crucial characteristics of tumor cells

is their resistance to cell death. Unrestricted proliferation is

typical for tumor cells, and they overcome growth inhibition by

resisting death and avoiding being killed by immune cells.

However, due to metabolic stress, such as hypoxia and glucose
Frontiers in Immunology 11
deprivation, necrotizing cell death often occurs in the interior of

solid tumors, which affects the occurrence and development of

tumors by reshaping the tumor microenvironment. With the

discovery of ever-more programmed death modes and the

elucidation of associated molecular mechanisms, our

understanding of the role of cell death in tumor is constantly

updated. Since multiple forms of cell death occur simultaneously

in tumors, an in-depth study of cell death on the occurrence and

development of tumors can help us better understand their

pathogenesis and pave the way for the creation of effective anti-

tumor medications. For example, abnormalities of apoptosis

pathways play critical roles in tumorigenesis, and tumor cell

avoidance of apoptosis has long been thought to lead to primary

or acquired therapeutic resistance (46). Necroptosis has both

pro-tumor and anti-tumor effects in different types of cancer

(13). Inducing necroptosis of tumor cells is an important way to

overcome chemotherapy resistance of tumor cells. Finding a

novel way to precisely regulate necroptosis might be an essential

research target in the field of tumor therapy in the future (47).

Numerous pieces of evidence suggest that pyrotopia plays an

important role in tumor progression, and inducing pyrotopia

has become one of the focuses of cancer immunotherapy (48–

51). Ferroptosis is a type of cell death induced by oxidative stress.

Cancer cells metabolize more efficiently than normal cells, with a

higher ROS load (52) and require large amounts of iron, thus

they are more sensitive to ferroptosis than normal cells (53).

However, cancer cells also employ additional genetic or

epigenetic mechanisms to combat elevated ROS levels, thereby

reducing their sensitivity to ferroptosis (54). Therefore,

ferroptosis is closely related to the occurrence and

development of tumors.

Copper ions can be combined with a variety of proteins or

enzymes, as cofactors or structural components, involved in the

regulation of energy metabolism, mitochondrial respiration,

antioxidant, and other physiological processes (55, 56). The

content of copper ions maintains a dynamic balance, which

can lead to oxidative stress (55) and abnormal autophagy (56),

and thus induce a variety of copper or copper ion-related

diseases. Tsvetkov et al. proposed for the first time that a new

method of cell death with copper dependence, which was called

cuprotosis (14). Several studies had shown that copper

metabolism was associated with tumorigenesis, and cancer

cells have a higher demand for copper than normal cells (57–

60). Wang et al. found that blocking Cu2+ transport can cause

oxidative stress and decrease cellular ATP levels, which in turn

activates AMP-activated protein kinase (AMPK), leading to

reduced adipogenesis and inhibiting tumor cell proliferation

(61). Studies have confirmed that copper is closely related to

the expression level of hypoxia-inducible factor 1a (HIF-1a)
(62). The use of copper chelating agent tetrathiomolybdate can

significantly reduce the content of Cu2+ in vivo, and dramatically

reduce tumor angiogenesis, restrain tumor growth, and reduce

the invasion of breast cancer cells (63). In conclusion, cuprotosis
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is a novel kind of cellular regulatory death that impacts copper

metabolism. The identification of cuprotosis molecular

pathways has implications for the mechanism of cuprotosis,

cancer drug discovery, and a deeper understanding of copper

metabolic diseases. In this study, we included ten cuproptosis-
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related genes (CRGs): FDX1, LIAS, LIPT1, DLD, DLAT,

PDHA1, POHB, MTF1, GLS, and CDKN2A. The correlations

among the ten CRGs were primarily positive in TCGA-glioma

cohort. In addition, a prognostic signature based on

CuproptosisScore was established to explore its prognostic and
A
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FIGURE 7

(A) WB for IGFBP2 in 3 pairs patients from Nantong cohort. (B) Represented IHC for IGFBP2 in three parents with different WHO stage from
Nantong cohort. (C) Boxplot of IHC for IGFBP2 in six pairs parents from Nantong cohort. (D) The expression level of IGFBP2 in glioma sample
and the control normal sample. (E) Kaplan-Meier survival curve showing survival probability of high- or low-expression IGFBP2. (F) The 1-year,
2-year, 3-year, 4-year, and 5-year survival ROC curves are predicted by the expression of IGFBP2. (G) The heat map shows the correlation
between IGFBP2 and eight immune checkpoints in TCGA. (H) GSEA maps of cancer and immune-related signaling pathways positively
modulated by IGFBP2. ∗∗P < 0.01; ∗∗∗P < 0.001; ∗∗∗∗P < 0.0001.
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clinical value in glioma. The current research provides a

reference for exploring the mechanism of cuprotosis in the

development of glioma.

As for the ten CRGs, the phosphorylation and

dephosphorylation of PDHA1 (Pyruvate Dehydrogenase E1

alpha Subunit) are key modulators of deactivation and

activation of PDC(Pyruvate Dehydrogenase Complex) (64). It

was reported that the increasing level of PDHA1 was observed in

the higher grade of glioma and PDHA1 could regulate the

migration of glioma cells (65). LINC00665 promoted MTF1

degradation, and MTF1 bound to the promoter region of GTSE1

and transcription promoted GTSE1 expression, which proved

that LINC00665/MTF1/GTSE1 axis played an important role in

regulating the biological behavior of glioma cells (66). GLS are

oncogenic genes of glioma (67, 68) and Qiangzhen Huang et al.

found that GLS could regulate the effect of SNAP25 in glioma

(66, 69). CDKN2A homozygous deletion was reported to serve

as an adverse prognostic factor for IDH-mutant gliomas (70–

72). However, to our knowledge, the role of the remaining CRGs

in glioma has not been reported in the literature.

The complexity of gliomas is mainly reflected by their

molecular heterogeneity. Molecular subtypes can well predict

the occurrence and development of glioma polymorphism,

which can assist us in developing better treatments (73).

Mesenchymal subtypes are particularly malignant compared to

other subtypes (neurogenic, canonical, and preneurotic)

according to TCGA classification, with recurrent GBM always

fatal and often presenting as a mesenchymal phenotype (74–76).

In addition, mesenchymal subtypes of gliomas expressed higher

levels of angiogenic markers in addition to higher levels of

necrosis (74, 77). It has been reported that the transition from

the former neural subtype to the mesenchymal subtype is closely

associated with treatment resistance and poor prognosis (78).

Currently, no fully verified and feasible classification system has

been applied to clinical practice, and the glioma classification

system needs to be continuously explored and improved. In this

study, we determined the optimal number (k=2) of clusters

based on R package (Figure 1B). Furthermore, the reliability of

the clustering results was confirmed by PCA analysis

(Figure 1C). Patients with glioma in cluster2 had significantly

better clinical outcomes than those in cluster1 (Figure 1D).

Interestingly, it was observed that cluster2 had a higher

proportion of IDH mutation status, which may be one of the

reasons for the better prognosis of this subcluster (Figure 1E). In

the two subclusters, a total of 27 differentially expressed DEGs

were identified (Figure 2A). When combined with the

aforementioned findings, our study sheds light on the need for

a new glioma typing system.

Although the WHO classification system has been used for

many years to predict the prognosis of patients with glioma, it is

occasionally inaccurate due to the heterogeneity of the tumor. In

addition to identifying potential biomarkers, new advances in

bioinformatics and genome sequencing can help predict cancer
Frontiers in Immunology 13
patient outcomes and treatment strategies (79, 80). Studies have

shown that the prognostic value of a single biomarker is limited,

and it is better to integrate multiple biomarkers into a single

model (81). For example, three IncRNAs can predict the

prognosis of colorectal cancer (CRC) based on a network of

metastasis-related competing endogenous RNAs (ceRNA) (82).

By extracting TCGA-related data, four IncRNA signals can

effectively predict the survival time of lung adenocarcinoma

(LUAD) (83). Importantly, recent studies have confirmed the

predictive power of some IncRNA prognostic signatures in

gliomas, such as immune-associated IncRNAs and autophagy-

associated IncRNAs, which have strong prognostic potential for

glioma patients (44, 45). In this study, we also used

bioinformatics methods to identify a signature containing

multiple genes based on CuproptosisScore. Patients with

higher CuproptosisScore had higher WHO grades, while

patients with lower grades were more likely to develop IDH

mutations or MGMT methylation (Figure 3A) and patients with

lower CuproptosisScore had the significantly better clinical

outcomes (Figure 3B). In addition, Univariate and Multivariate

Cox regression analysis of the signature demonstrated that the

cuproptosis-signature was an independent prognostic factor for

patients with glioma (Figure 3C). The survival ROC curves

indicated the efficiency of the cuproptosis-signature in

predicting prognosis for glioma (Figure 3D). Furthermore, we

conducted Univariate Cox regression analysis on the OS of

glioma patients based on the external validation data sets, and

the results demonstrated the accuracy of our constructed

cuproptosis-signature in prognostic prediction. In conclusion,

the signature we have identified has excellent prognostic

power (Figure 3E).

We randomly selected one gene from this signature,

IGFBP2, and explored its important value in gliomas. In

glioma, IGFBP2 is often involved in the activation of PTEN,

AKT and other related pathways, leading to enhanced

invasiveness and malignancy (84, 85). Studies have shown that

overexpression of IGFBP2 can increase the malignant degree of

glioma and up-regulate the expression of invasion protein

MMP2, thereby enhancing the invasion ability of glioma cells

(86). Previous studies have confirmed that the expression levels

of IGFBP2 transcripts and proteins are positively correlated with

the malignant degree of glioma, suggesting that IGFBP2 plays an

important role in malignant transformation, tumor necrosis and

metastasis of glioma (87, 88). In our study, we also found that

IGFBP2 is highly likely to be the oncogenic gene of glioma.

However, our study still has several shortcomings. Due to

the lack of data of clinical samples collected by us, the prognostic

cuproptosis-signature constructed in this study was based on the

public database, which may have a certain bias in the source of

samples. The hypothesis obtained in this study was not verified

by experimental results, and the next step is to be confirmed by

various in vivo and in vitro experiments and larger multicenter

studies. In conclusion, this prognostic cuproptosis-signature still
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needs to be further tested, evaluated and applied in a wide range

of clinical settings.
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