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Alzheimer’s disease (AD), a progressive neurodegenerative disorder featuring memory loss and cognitive impairment, is caused by
synaptic failure and the excessive accumulation of misfolded proteins. Many unsuccessful attempts have been made to develop new
small molecules or antibodies to intervene in the disease’s pathogenesis. Stem cell-based therapies cast a new hope for AD treatment
as a replacement or regeneration strategy. The results from recent preclinical studies regarding stem cell-based therapies are
promising. Human clinical trials are now underway. However, a number of questions remain to be answered prior to safe and
effective clinical translation. This review explores the pathophysiology of AD and summarizes the relevant stem cell research
according to cell type. We also briefly summarize related clinical trials. Finally, future perspectives are discussed with regard to
their clinical applications.

1. Introduction

According to reports from the Alzheimer’s Association,
there are approximately 50 million people with dementia
worldwide, accounting for approximately 800 billion dollars.
Alzheimer’s disease (AD) is the most frequent form of
dementia, which shows clinical manifestations of progressive
loss of memory and impairment of cognitive functions. The
disease was first reported by Alois Alzheimer in 1907 [1].
As life expectancy rises and the population ages, the social
burden of AD is predicted to soar [2, 3]. Alzheimer’s disease
is multifactorial; therefore, it is difficult to determine its exact
pathophysiologic mechanism [4]. However, synaptic failure
is the main feature that is caused by neuronal loss in the
region of the brain cortex and hippocampus due to the
excessive accumulation of neurofibrillary tangles and β
amyloid (Aβ) plaques [5–8]. However, approximately one-
third of patients with a documented diagnosis of AD have
no radiographic signs of amyloid on PET scans [9]. There-
fore, more sophisticated approaches, including imaging and
pathology, are likely needed in the diagnosis of AD [10, 11].

There are two main types of AD: familial and sporadic.
Familial AD comprises <5% of cases and is associated with
a distinct autosomal genetic mutation associated with the
amyloid precursor protein (APP), presenilin-1 (PSEN-1),
and presenilin-2 (PSEN-2) [5, 12–18]. In contrast, sporadic
AD accounts for the majority of cases. It typically has a late
onset and is thought to result from interactions between a
complex genetic profile (including apolipoprotein [ApoE4])
and environmental factors such as cardiovascular disease,
depression, and lower levels of education [19, 20].

The cardinal pathologic features of AD include the accu-
mulation of two types of misfolded proteins [21, 22]. One
such protein is tau, which is a microtubule-associated protein
that is important for axonal transport and structural support.
When the tau protein becomes hyperphosphorylated, the
microtubules lose their support and neurofibrillary tangles
aggregate [23]. Although this process is closely associated
with cognitive decline, tau mutations lead to frontotemporal
dementia rather than AD [4]. The other important protein in
AD is Aβ protein, which is the abnormal sequential cleavage
product of APP. The Aβ aggregates to form senile plaques,
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which are known to cause calcium influx and neuronal cell
death [24]. Aβ oligomers are considered to be especially
detrimental to synaptic and neuronal functions and result
in cognitive dysfunction [25, 26]. Mutations regarding APP
and its processing are prominent characteristics of early-
onset familial AD. Therefore, most patients with AD do not
actually have these mutations. Instead, 60–75% of sporadic
AD populations are ApoE4 carriers [27]. Several evidences
support that ApoE4 has important roles in pathogenesis not
only Aβ dependently but also independently [4, 28, 29].
Therefore, ApoE4 is thought to be an important gene in the
semidominant inheritance of sporadic late-onset AD [14, 15].

In addition to these two specific proteins, microglial acti-
vation and subsequent inflammatory responses are thought
to contribute to the neurodegenerative symptoms of AD
[30, 31]. Activated microglia produce several proinflamma-
tory cytokines, including interleukin- (IL-) 1β and tumor
necrosis factor- (TNF-) α, as well as nitric oxide (NO)
[32–35]. Oxidative stress and mitochondrial dysfunction
have also been suggested to play a role in AD pathogenesis
[36–41]. The dysfunction of the GABAergic neuronal system
is thought to contribute to learning and memory deficits in
patients with AD [4, 17, 42–52].

Until now, the main therapeutic strategy in AD of most
drug developments has focused on facilitating amyloid
clearance or preventing amyloid production [4, 53–55].
Before the amyloid pathway was proposed [56], clinical trials
using cholinesterase inhibitors were performed based on the
notion that memory is closely related to cholinergic systems
[57–59]. Therefore, a number of small molecules and anti-
bodies targeting the amyloid cascade have been developed
and investigated in clinical trials [53, 54, 60–67]. Unfortu-
nately, the results from almost all of these trials were far from
satisfactory. There is little evidence to support the efficacy of
such treatments [68]. Dementia prevention trials have also
used many other agents, including antihypertensive drugs,
NSAIDs, vitamin E, selenium, and Ginkgo biloba [69–73],
all of which had no effect on reducing the risk of AD.

The conventional mediations investigated have yielded
no clinical benefits for AD. Therefore, there is a large unmet
need for patients suffering from AD. Recently, stem cells
have gained interest as a potential alternative to conven-
tional medicines or surgery. Several attempts have been
made to appreciate the clinical applications of stem cells
with regard to an advanced understanding of the cellular
and molecular mechanisms of neuroregeneration and neuro-
degeneration [74–78]. Stem cell-based therapy is a potentially
promising strategy in the treatment of various neurologic
disorders that do not otherwise have any effective treat-
ments, including stroke, Parkinson’s disease, Huntington’s
disease, amyotrophic lateral sclerosis, and AD [79–83].
This article reviews the current literature according to
stem cell type and discusses the future of stem cell-based
therapy in Alzheimer’s disease.

2. Expected Mode of Action

Stem cells can incorporate into existing neural networks
[84]. They also secrete a variety of neurotrophic factors to

modulate neuroplasticity and neurogenesis [77, 78], which
appear to increase brain acetylcholine levels, ultimately
leading to improved memory and cognitive function in an
animal model [75]. The primary modes of actions of stem
cell-based therapy can be categorized into endogenous and
exogenous ways depending on the mechanisms of action
[19]. Traditionally, cell-based therapies have sought to
replace damaged tissue through tissue repopulation either
by transdifferentiation or by direct participation of infused
stem cells [84]. However, the current understanding suggests
that engrafted stem cells are not a main source for newly
generated neurons [76, 85–90]. Furthermore, unlike in
Parkinson’s disease, AD is characterized by the death of
various distinct nerve cell types. This variability precludes
the feasibility of transplantation of specific mature cell types.

Rather than using the cell replacement paradigm,
therefore, there is a growing interest in the stimulation of
endogenous repair using paracrine effects. The trophic
support provided by transplanted stem cells improves the
microenvironment and promotes the survival of affected/
remaining nerve cells [3, 91]. Using this strategy, the primary
target to stimulate hippocampal neoneurogenesis (in order to
compensate for neurodegeneration) is the upregulation of
resident neural stem cell niches. Hippocampal neoneurogen-
esis is believed to play a key role in memory and learning.
Neurotrophic factor (BDNF), nerve growth factor (NGF),
insulin growth factor-1 (IGF-1), and vascular endothelial
growth factor (VEGF) are suggested paracrine mediators
from transplanted stem cells [92]. Unfortunately, the poten-
tial for neurogenesis in humans decreases substantially with
older age, which is primarily when AD occurs [93, 94]. In
addition, the modulation of inflammation has been proposed
as another mechanism of action [76].

3. Stem Cell Types

3.1. Embryonic Stem Cells. Human embryonic stem cells
(ESCs) were first characterized in 1998 from the inner mass
of the blastocyst [95]. If their pluripotency could be accu-
rately controlled into the desired neural phenotypes, no other
alternative cells would replace them as a better cell source for
cell replacement strategies. In vitro attempts to differentiate
ESCs into several specific neural cell types have been success-
ful, including dopaminergic neurons [96–102]. Indeed, an
ex vivo slice culture study reported stable generations and
the functional integration of cholinergic neuron from human
ESCs [103]. Despite the ongoing preclinical studies, there are
a number of issues that remain with the current technologies,
including tumor formation, phenotype instability, and low
survival rate of transplanted cells [104, 105]. Furthermore,
there are ethical and immunogenic limitations that may
preclude the clinical usage of ESCs. In fact, given the ethical
policies and regulation, there are few clinical trials that have
involved ESCs [106, 107].

3.2. Induced Pluripotent Stem Cells. Induced pluripotent stem
cells (iPSCs) were first developed from mouse fibroblasts in
2006. These cells are reprogrammed into a state of pluripo-
tency that is similar to that of ESCs [108]. iPSCs are thought
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to be able to differentiate into a variety of cells, including
neurons [109] and neurospheres [110]. Several encouraging
reports have been published showing that some neuronal
subtypes can be generated and automated using iPSCs
[84, 111–114]. For example, iPSC-derived glia could be used
for research regarding inflammatory response in AD [115].
Another study used iPSCs to derive macrophages that could
express neprilysin, the Aβ-degrading protease [116].

Despite this promising evidence, however, the following
unresolved issues regarding iPSC usage constitute big hur-
dles to its clinical application: teratoma formation, long-
term safety and efficacy, tumorigenicity, immunogenicity,
patient-derived genetic defects, and optimal reprogramming
[117–121]. Ethical guidelines and standards have been
developed regarding the use of iPSCs [122, 123]. Therefore,
applications of iPSCs in AD, until now, have been more
focused on the development of cell-based disease models
than on treatments [124–130]. Basal forebrain cholinergic
neurons have been of special interest, as they demonstrate
dysfunction in early AD [131]. In later stages of AD,
strategies using iPSCs should be more elaborated due to
widespread degeneration [6, 132]. Unfortunately, prior stud-
ies have found that human iPSC lines have only a 10–50%
differentiation potential for neurons, as compared to ESCs,
which have a nearly 90% differentiation potential [133, 134].

3.3. Neural Stem Cells. In the adult brain, multipotent neural
stem cells (NSCs) reside in the subgranular zone (SGZ) and
subventricular zone (SVZ) [81]. They can differentiate into
a variety of cell types, including neurons, astrocytes, and
oligodendrocytes. NSCs can also be derived from fetal and
postmortem neonatal brain tissues [76] or differentiated
from ESCs and iPSCs [135–137]. In animal AD models,
transplanted NSCs differentiated into mature brain cell types
[138–141]. For successful neuronal replacement, the grafted
cells should be distributed throughout the affected tissue
(maintaining its original identity) and then integrated into
the host brain’s functional environment [142]. However, it
is unknown if NSCs can generate into specific neural cell
types. Interestingly, the migration and differentiation of
grafted NSCs appeared substantially influenced by the recip-
ient environment [143, 144]. However, there is frequent
unwanted differentiation into nonneuronal glial cell types
reported with NSCs [140].

It is not clear how much neuronal replacement con-
tributes to the beneficial effects of NSC transplantation
[140, 145, 146]. As is the case in the transplantation of other
stem cells, the paracrine effect after NSC transplantation has
gained more support than has cell replacement [75, 147].
In particular, brain-derived neurotrophic factor (BDNF)
secreted from NSCs is essential for rescuing cognitive
function in AD [148, 149]. In addition, NSC transplanta-
tion has been reported to have neuroprotective, neuroregen-
erative, and/or immune modulatory roles [148, 150–153].
Tumorigenesis and functional recovery warrant further
investigations using NSC transplantation [145].

The NSCs can be induced from other cells. The gen-
eration of induced NSCs (iNSCs) from fibroblasts, astro-
cytes, and Sertoli cells has been reported [154–161].

NSCs that are derived from ESCs have also been investi-
gated and differentiated into astrocyte-like cells [162].
However, the in vivo viability of iNSCs after transplanta-
tion is still considered unpredictable [154, 156–158, 163].
As a modified strategy, therefore, NSCs can be used as
delivery vehicles to carry therapeutic agents such as neprily-
sin [164, 165]. Using NSC-based therapy for drug delivery,
rather than for neuronal replacement, has gained interest
recently [74, 76, 135, 149, 166].

3.4. Mesenchymal Stem Cells. Mesenchymal stem cells
(MSCs) have received special interest in the treatment
of AD given their excellent accessibility, relative ease of
handling, extensively studied characteristics, and broad
range of differentiating potential (including neuronal cells)
[78, 167]. MSCs are additionally advantageous as cell-based
therapies given that they can be administered intravenously,
exhibit blood-brain barrier penetration, have low tumorige-
nicity, and elicit less of an immune response (than do other
cell-based therapies) [168, 169].

Unfortunately, there is little evidence for the func-
tionality of MSC-derived neurons in vivo with low rates
of neuronal differentiation [170]. Rather than for neuronal
replacement, the beneficial effects of MSCs seemed to be
mediated by their secreted factors, which stimulate the pro-
liferation, differentiation, and survival of the neurogenic
niche [168, 171–178]. Well-known anti-inflammatory and
immune modulatory characteristics are also presumed to
contribute to recovery, which involves a number of cyto-
kines [171, 175, 177, 178]. Notably, the homogeneity of
MSCs is suspected in their phenotypic expression and
differentiation [179].

There is a wide variety of sources from which MSCs are
acquired. Bone marrow-derived MSCs (BM-MSCs) have
been most widely investigated since a long time ago [162].
BM-MSCs gain their immunomodulatory ability through
the release of soluble factors, including IL-6, IL-10, TGF-β,
and PGE2 [180–182]. They are known to inhibit the func-
tioning of monocyte-derived dendritic cells and to alter the
natural killer cell phenotype [183, 184]. Adipose tissue is
one of the most advantageous sources of MSCs. Adipose
tissue-derived MSCs (AT-MSCs) can differentiate into
neuron-like and astrocyte-like cells [185]. They seem to share
a common transcriptional profile for stemness with BM-
MSCs [186, 187]. AT-MSCs also secrete many neurotrophic
factors [188–193]. Finally, umbilical cord blood-derived
MSCs (UCB-MSCs) can differentiate into neuron-like cells.
These cells have been studied in an AD mouse model, as well
as clinically [194]. One suggested mechanism of action is the
activation of M2-like microglia [177, 195].

3.5. Other Cells. Several other stem cells have been investi-
gated with regard to their potential in neuronal regeneration,
including neural crest stem cells [196–200], hematopoietic
stem cells [201], human dental pulp stem cells [202–204],
and olfactory ensheathing cells [205–210]. Remarkably, the
somatic cell nuclear transfer procedure involving olfactory
ensheathing cells is another promising technology via the
intranasal route [211–214].
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4. Clinical Trials

There was sufficient animal model evidence for MSC-based
therapies to approve the initiation of clinical trials in patients
with AD since 2011 (Table 1). Intravenous infusion is the
most preferred delivery method of stem cells, and UCB-
MSCs were the most frequently used cell source. According
to Kim et al., human UCB-MSCs were transplanted into
the hippocampus and precuneus stereotactically. Although
there were no severe adverse events, the group did not
identify any significant clinical efficacy in cognitive decline
(ClinicalTrials.gov, NCT01297218, NCT01696591) [175]. Fur-
thermore, there were no changes in pathology or observed
neuroprotective effects [175, 177, 178]. These results may
be partly due to neuroimaging, which can be an insensitive
modality for detecting such changes compared to that of
postmortem biochemical analyses.

Three additional clinical trials using UCB-MSCs are
currently underway. One involves intravenous injection in
an open-label phase I/II study (NCT01547689), while
another involves intravenous infusion in a double-blind
randomized placebo-controlled study (NCT02672306).
The third study involves intraventricular injection of the
Ommaya reservoir system (NCT02054208). As an alternative
source of MSCs, one trial will assess the outcome of AT-
MSCs (NCT02912169). A phase 2A study (NCT02600130,
NCT02833792) will utilize the intravenous administration
of allogenic ischemia-tolerant allogeneic BM-MSCs grown
in hypoxic conditions [215].

5. Discussion

Cognitive declines in AD result from the loss of neurons and
neuronal processes, which result from diverse factors. The
pathways of toxic protein synthesis and degradation in AD
have been rigorously investigated to determine the most
effective disease management [132]. To date, efforts to
develop target-specific drugs have not succeeded. The pro-
gressive and devastating nature of AD requires breakthrough
therapy to satisfy the unmet needs of patients. Cell-based
therapies may offer a promising solution to this need. They
may be able to not only reverse the progression of AD but
also improve cell function.

Technologic advances have sought to generate various
types of neuronal cells with glial cells. These investigations
have led to the replacement and regeneration concept of
stem cell-based therapies in AD. Substantial achievements
have been made in animal models as a proof of concept
[29, 143, 145, 149, 162, 165, 166, 216–219]. Despite the
promising results of preclinical studies, human clinical
trials are still in their infancy with regard to stem cell
therapies. There are many more questions that must be
answered prior to transferring this technology from the
bench to the clinic.

There are several cardinal questions that ought to be
addressed for the clinical translation of stem cell therapies,
such as optimum cell source, long-term safety, and routes
of delivery. The brain is an immune-privileged organ; there-
fore, it is important to consider immune rejection when using

stem cell therapies [142]. Given that most AD patients are
elderly, special caution is necessary regarding the difference
in donor cell proliferation capability [216, 220, 221]. The var-
iability of donor cells and unstandardized reprogramming
methods could also pose a problem [222, 223]. The current,
general concerns regarding stem cell-based therapy are as fol-
lows: tumorigenicity, immune reaction, contamination while
handling, risks from genetic modification, risks of adminis-
tration modality, unintended migration, unwanted transdif-
ferentiation, infection, and death of the transplant [224–
227]. There are also ethical concerns with regard to certain
cell sources.

Alzheimer’s disease involves the death of variable neuro-
nal cell types. In its early phases, the hippocampal circuitry
can be a major therapeutic target [19]. In advanced phases,
additional neuronal subtypes become involved. Therefore,
the therapeutic strategy will become more complicated as
the disease progresses. In clinical trials, extremely elaborate
controls must be used, unless each involved cell type is
transplanted (at the same time or sequentially). In this
regard, pluripotent stem cells might be advantageous in AD
over another source. However, the current evidence does
not suggest that cell replacement is the mechanism of stem
cell-based therapy.

The iPSC approach deserves attention given its biological
relevance. The major advantages of this approach are that
iPSCs can be made autologous, be differentiated into
intended cell types, and provide a sufficient quantity [132].
In order to advance toward successful iPSC-based therapies
for AD, the following parameters must be met: establish
haplobanks of HLA-typed iPSCs for off-the-shelf cell thera-
pies [228], establish protocols to create neuronal stem cells
or hippocampal neurons with appropriate surgical and
tracking techniques, and establish an astrocyte-generation
technique for providing trophic agents [226]. We believe that
the development of individual cell tracking and real-time
imaging will be essential [229–233].

Eventually, there is a need for precise manufacturing
practices in the preparation and handling of transplantable
cells for clinical use. Prior to their clinical use, if able to be
manipulated in vitro, all grafted cells would ideally be
transgenically equipped with a molecular “kill switch” that
could be easily activated in the event of adverse effects.
AD can be a relatively slowly progressive disease; there-
fore, clinical trials are expected to require many years to
demonstrate success in halting or reversing disease pro-
gression. The safe and ethical future of stem cell therapies,
especially for AD, will likely be slow, expensive, and
tightly controlled [166]. However, given the unique nature
of stem cell-based therapies, regulatory agents are needed
to develop new regulatory policies to foster their appropri-
ate development and success.

6. Conclusion

Alzheimer’s disease is a progressive neurodegenerative
disease for which there is no effective treatment currently.
Stem cell-based therapies may become an effective thera-
peutic alternative (to conventional therapies) due to their
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regenerative potential. Although the mechanism of action of
stem cell therapies remains incompletely elucidated, a num-
ber of preclinical studies have provided promising results.
However, human clinical trials are still in their infancy. For
the successful clinical translation of this technology, further
relevant animal studies and clinical trials (with standardized
protocols) are needed. There are many questions left unan-
swered regarding the safety, efficacy, ethical issues, and
regulatory framework of stem cell-based therapies. There is
a growing hope for patient-specific individualized stem cell-
based therapy. This review attempts to provide a synopsis
of stem cell-based therapy for AD in particular. We describe
the pathophysiology of AD and proposed mechanisms of
stem cell therapies. Preclinical results according to the cell
type and clinical trials are briefly summarized. Future
perspectives are also discussed.
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