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Abstract

Differential Evolution (DE) is powerful for global optimization problems. Among DE algo-

rithms, JADE and its variants, whose mutation strategy is DE/current-to-pbest/1 with

optional archive, have good performance. A significant feature of the above mutation strat-

egy is that one individual for difference operation comes from the union of the optional exter-

nal archive and the population. In existing DE algorithms based on the mutation strategy—

JADE and its variants, individuals eliminated from the population are send to the archive. In

this paper, we propose a scheme for managing the optional external archive. According to

our scheme, two subpopulations are maintained in the population. Each of them regards the

other as the archive. In experiments, our scheme is applied in JADE and two of its variants

—SHADE and L-SHADE. Experimental results show that our scheme can enhance JADE

and its variants. Moreover, it can be seen that L-SHADE with our scheme performs signifi-

cantly better than four DE algorithms, CoBiDE, MPEDE, EDEV, and MLCCDE.

Introduction

Differential evolution (DE), a type of Evolutionary Algorithm (EA) for global optimization

problems, has been successfully applied in many fields [1]. In each run of DE, the population,

which consists of individuals—candidate solutions of problem, need be maintained. Here,

individuals are also called target vectors. In the gth generation of population, mutant vectors

{vi,g = (vi,1,g, vi,2,g, . . ., vi,d,g)|i = 1, 2, . . ., NP}, where d denotes dimensionality of problem, are

generated through mutation based on target vectors {xi,g = (xi,1,g, xi,2,g, . . ., xi,d,g)}. Then, cross-

over produces trial vectors {ui,g = (ui,1,g, ui,2,g, . . ., ui,d,g)} based on xi,g and vi,g. After that, xi,g+1

are selected via selection from xi,g and ui,g according to their fitness to problem—f(xi,g) and

f(ui,g).
DE is being constantly improved at different aspects. According to [2],

• Methods based on both strategy and control parameter adaptations [3–21];

• Methods based on only strategy adaptations [1, 22–40]; and

• Methods based on population size control [41–46].
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are the recent directions of DE study. Most of the above methods are explained as improving

or maintaining diversity—difference among individuals. Although so many measures have

been presented in literature, satisfactory solutions still cannot be obtained by DE on many

occasions. Therefore, further research is still required.

JADE [3] is a state-of-the-art DE algorithm. So far, a number of variants of JADE have been

proposed in literature, such as SHADE [47], Rcr-JADE [48], L-SHADE [45], AEPD-JADE [1],

JADE-SI [27], JADE_sort [20], ETI-JADE [34], and ETI-SHADE [34]. Not only JADE itself

but also its variants are all based on the same mutation strategy, DE/current-to-pbest/1 with

optional archive, which is shown in Eq 1.

vi;g ¼ xi;g þ Fi � ðx
p
best;g � xi;gÞ þ Fi � ðxr1;g � ~xr2;gÞ ð1Þ

In the equation, xi,g, xr1,g and x p
best;g are target vectors from population P. Further, x p

best;g is ran-

domly chosen from the 100p% individuals whose fitness is better than the other individuals,

where p 2 (0, 1]. Meanwhile, ~xr2;g is an individual from the union of the optional external

archive and the population. In addition, both xr1,g and ~xr2;g are randomly chosen and other

than xi,g.
Mutation of DE is always based on difference operation of individuals. In the majority

mutation strategies, individuals for difference operation are target vectors in the current gener-

ation of population. Nevertheless, a significant feature of DE/current-to-pbest/1 with optional

archive is that one of individuals for difference operation comes from the union of the archive

and the population. That is, individual for difference operation is selected from a larger range

than ever. According to experimental results in literature, DE/current-to-pbest/1 with optional

archive leads to good algorithm performance.

Here, we give the motivation of this paper. In JADE and its variants, the optional external

archive is managed just by a simple means. Details are given as below. In every generation, tar-

get vectors weeded out in selection are sent to archive. A sent individual is accepted by the

archive only if it is different with any individuals existing in archive. That is, redundancy is not

allowed in archive. When there is no free space in the archive, random individuals in it are

removed for accommodating new comers. By this means, potential promising search direc-

tions in individuals eliminated from the population may be still kept for evolution. Neverthe-

less, under the control of the above managing method, individuals in the archive are worse in

fitness than target vectors and similar in chromosome with target vectors. Hence, the method

for managing the archive is not the best choice for DE/current-to-pbest/1 with optional

archive. Thus, how to manage the optional external archive need be further studied for

improving DE/current-to-pbest/1 with optional archive.

EAs naturally tend to demonstrate parallelism, since most of their variation operators can

be processed in parallel. Among renowned types of parallel EAs, distributed EAs (DEAs) are

most widely applied for upgrading different EAs [49]. In DEAs, the large population is divided

into subpopulations for making segregation. When a predetermined condition is met, migra-

tion is executed to exchange individuals among subpopulations. By this means, for each sub-

population, foreign individuals similar in fitness level with local individuals but different in

building blocks of chromosome from local individuals can be provided from time to time.

Hence, upgrading an EA to a DEA can improve solutions.

Enlightened by migration of DEA, we propose a scheme to manage the optional external

archive in this paper. Details are given below. The population is divided into two subpopula-

tions. The two subpopulations evolve synchronously and independently. Each subpopulation

regards the other one as its optional external archive. Between the two subpopulations, indi-

viduals are similar in fitness level with local individuals but different in building blocks of
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chromosome from local individuals. Therefore, under the control of our proposed scheme,

individuals more fitting than before can be provided for difference operation of mutation.

Although our scheme is enlightened by migration of DEA, it differs with migration of DEA

significantly. In migration, individuals from source subpopulation replace individuals in target

subpopulation directly. However, under the control of our scheme, individuals from a subpop-

ulation never migrate to the other subpopulation but just participate difference operation in

mutation occurred in the latter subpopulation. In fact, DEA is very costly since multiple sub-

populations need be maintained in population. However, DE with our method just need to

maintain two subpopulations and then can be directly compared with existing DE algorithms.

Our experiments are based on the IEEE Congress on Evolutionary Computation 2014

(CEC2014) benchmark test suite (http://www.ntu.edu.sg/home/EPNSugan/index_files/

CEC2014/CEC2014.htm). In the first of experiments, our scheme are applied in JADE and its

two variants, SHADE and L-SHADE. When function dimensionality is set 30, 50 and 100,

results of DE algorithms with our scheme are compared with results of the original DE algo-

rithms. The experimental results show that our scheme can significantly improve solutions. In

the second experiment, the best performer among the three DE algorithms with our method,

L-SHADE with our method, is compared with four up-to-date DE algorithms—CoBiDE [6],

MPEDE [12], EDEV [21], and MLCCDE [50]. The experimental results show that L-SHADE

with our method is competitive in the field of DE.

The rest of this paper is organized as follows. In Section II, related work is presented. Firstly,

JADE and its variants, the DE algorithms with optional external archive, are introduced. Then,

DE algorithms with subpopulations are introduced. In Section III, our method for managing

the optional external archive is given. Then, experimental results are shown and analyzed in

Section IV. Finally, a conclusion and a prospect are dealt with in Section V.

Related work

JADE and its variants

JADE employs DE/current-to-pbest with optional archive as its mutation strategy. When

implementing the mutation strategy, individuals eliminated from the population are stored in

the optional external archive. Moreover, in JADE, scaling factor F and crossover rate CR—the

two main parameters of DE—are both adaptively set for each target vector independently.

Since details of both DE/current-to-pbest with optional archive and the existing method for

managing the optional external archive has been given in the first section, we just introduce

the adaptively setting of F and CR here.

As shown in Eq 2, crossover probability of each individual, which is truncated to [0, 1], is

generated according to the normal distribution with mean μCR and standard deviation 0.1.

CRi ¼ randnjðmCR; 0:1Þ ð2Þ

If f(ui,g)< f(xi,g), the value of CRi is collected into SCR. The mean μCR is initialized to be 0.5 and

then updated after each generation according to Eq 3.

mCR ¼ ð1 � cÞ � mCR þ c �meanAðSCRÞ ð3Þ

In Eq 3 c is a positive constant between 0 and 1 and meanA(▪) is the usual arithmetic mean.

Similarly, as shownin Eq 4, mutation factor of each individual, which is truncated to be 1 if Fi
≧ 1 or regenerated if Fi≦ 0, is independently generated according to Cauchy distribution with

location μF and scale parameter 0.1.

Fi ¼ randciðmF; 0:1Þ ð4Þ
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If f(ui,g)< f(xi,g), the value of Fi is collected into SF. The location parameter μF of Cauchy distri-

bution is initialized to be 0.5 and then updated at the end of each generation according to Eq

5.

mF ¼ ð1 � cÞ � mF þ c �meanLðSFÞ ð5Þ

In Eq 5, meanL(▪) is Lehmer mean. According to [3], JADE outperforms jDE [51], SaDE [52],

the classic DE/rand/1/bin or a canonical PSO algorithm [53].

A parameter adaptation technique which uses a historical memory of successful control

parameter settings to guide the selection of future control parameter values is proposed in [47]

as an enhancement to JADE. The proposed algorithm is named SHADE. According to the

experimental results in [47] for the 28 CEC2013 benchmark functions, SHADE outperforms

dynNP-jDE [54], SaDE, JADE, EPSDE [55] and CoDE.

A crossover rate repair technique based on successful parameters are proposed and com-

bined with JADE in [48]. According to the technique, crossover rate is repaired by using the

average number of components taken from mutant. Then, Rcr-JADE is obtained based on the

technique. The experiments results in [48] indicate that Rcr-JADE is able to obtain significantly

better solutions than JADE. Moreover, compared with jDE, SaDE, EPSDE-c [56] and CoDE,

Rcr-JADE obtains better, or at least comparable, results for the 25 CEC2005 benchmark

functions.

L-SHADE, which further extends SHADE with Linear Population Size Reduction (LPSR),

is proposed in [45]. LPSR continually decreases population size in runs according to a linear

function. Based on the CEC2014 benchmark functions, L-SHADE is compared with dynNP-

jDE, SaDE, JADE, EPSDE and CoDE as well as the state-of-the-art restart CMA-ES variants.

The experimental results show that L-SHADE is quite competitive with the above evolutionary

algorithms.

A mechanism, auto-enhanced population diversity, is proposed in [1]. This mechanism

identifies convergence and stagnation by measuring the distribution of the population in each

dimension. Once convergence is detected at a dimension, diversification is executed at that

dimension. Similarly, stagnation at a dimension is eliminated as soon as it is found. The AEPD

mechanism is incorporated into DE algorithms including JADE and SHADE. The results for

the set of 25 CEC2005 benchmark functions show that the mechanism significantly improved

the performance of JADE and SHADE. Moreover, AEPD-JADE also has a superior perfor-

mance in comparison with DE/rand/1/bin [57], JADE, jDE, SaDE, CoDE, Pro DE/rand/1/bin

[58], HdDE [59], and EPSDE [56], CLPSO [60] and IPOP-CMA-ES [61].

A scheme based on superior-inferior (SI) crossover is proposed in [27]. When population

diversity degree is small, the SI crossover is performed to improve global search. Otherwise,

the superior-superior crossover is used to enhance exploitation. The above scheme is applied

in four DE algorithms including JADE. Experiments based on 24 functions selected from IEEE

Swarm Intelligence Symposium 2005 and CEC2014 benchmark functions show that JADE-SI

—JADE with SI crossover—is significantly better than JADE in the majority of cases.

A modified JADE version with sorting crossover rate (CR) is proposed in [20]. In the pro-

posed algorithm JADE_sort, a smaller CR value is assigned to individual better in fitness.

Based on the CEC2005 functions, JADE_sort is compared with jDE, SaDE, EPSDE, JADE,

CoDE and JADE-SI. The experiments results show JADE_sort is competitive.

The event-triggered impulsive (ETI) control scheme is introduced in [34]. Two types of

impulses—stabilizing impulses and destabilizing impulses, are presented. In runs, the number

of individuals taking impulsive control is decided by an adaptive mechanism. After that, the

decided number of individuals are chosen by ranking assignment. Then these chosen

Dual-Subpopulation as reciprocal optional external archives for differential evolution
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individuals are adaptively modified with the above two kinds of impulses. The ETI control

scheme is incorporated into ten DE algorithms including JADE and SHADE. According to the

experiments on the CEC2014 benchmark functions, ETI-JADE outperforms not only original

JADE but also AEPD-JADE [1]. Also, ETI-SHADE outperforms SHADE and AEPD-SHADE

[1].

DE algorithms with subpopulations

In this subsection, we list five DE algorithms with subpopulations. The latest two of them are

involved in our experiments for comparison. Although the listed DE algorithms all have more

than one subpopulations, they do not belong to DEA, at least do not belong to narrow sense

DEA, because different subpopulations in these algorithms are different in operators or set-

tings. Details are given as below.

A dual-population differential evolution (DPDE) with coevolution is proposed in [62] for

constrained optimization problems (COPs). In this algorithm, COPs is treated as a bi-objective

optimization problem where the first objective is the actual cost or reward function to be opti-

mized, while the second objective accounts for the degree of constraint violations. At each gen-

eration in runs, population is divided into two subpopulations based on the solution’s

feasibility to treat the both objectives separately. Each subpopulation focuses on only optimiz-

ing the corresponding objective which leads to a clear division of work. Furthermore, DPDE

makes use of an information-sharing strategy to exchange search information between the

subpopulations.

An adaptive multiple subpopulations based DE algorithm, MPADE, is designed in [28]. In

MPADE, population is split into three subpopulations based on fitness. Three DE strategies

are performed on three subpopulation, respectively. Furthermore, an adaptive approach is

designed for parameter adjustment in the three DE strategies. According to its replacement

strategy, a few best offspring may replace worst parents.

In [24], mDE-bES is proposed. In this algorithm, population is divided into independent

subpopulations, each with different mutation and update strategies. A mutation strategy that

uses information from either the best individual or a randomly selected one is used. Selection

of individuals for some of the tested mutation strategies utilizes fitness-based ranks of these

individuals. Function evaluations are divided into epochs. At the end of each epoch, individu-

als are exchanged between subpopulations.

MPEDE [12] is an ensemble of multiple mutation strategies with adapted F and CR. These

mutation strategies are current-to-pbest/1, current-to-rand/1 and rand/1. Each mutation strat-

egy controls an indicator subpopulation. After every pre-defined number of generations, the

best-performing mutation strategy is found by a proposed equation. Then a reward subpopula-

tion, which is randomly allocated to a mutation strategy at beginning, is assigned to the best-

performing mutation strategy. In MPEDE, the method to adapt F and CR comes from [3].

EDEV [21] is an ensemble of differential evolution variants and consists of three state-of-

the-art DE algorithms, JADE, CoDE and EPSDE. Each constituent DE variant is assigned an

indicator subpopulation. According to a mechanism similar to the one in MPEDE, the most

efficient constituent DE variant is determined after every pre-defined generation, Further-

more, a reward subpopulation is assigned to the currently best-performing constituent DE

variant.

Our method for managing the optional external archive

In DE, the more individuals are involved in mutation or the more individuals can be chosen

for mutation, the higher mutation degree may be gotten. It can be seen from Eq 1 that, on one

Dual-Subpopulation as reciprocal optional external archives for differential evolution
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hand, five individuals are required in the mutation strategy. On the other hand, an individual

for difference operation is chosen from a larger range than the population. Hence, compared

with other mutation methods, DE/current-to-pbest/1 with optional archive show higher muta-

tion degree. Although the archive contains individuals as the population does, it is not another

population since no new individual can be produced in it. Therefore, no function evaluation is

required for maintaining the optional external archive. In brief, the archive provides additional

individuals for mutation without consuming extra function evaluation or leading to high

degeneration. That is, diversity of the population is improved in a reasonable manner. Hence,

JADE and its variants show good performance.

In JADE or its variants, individuals in the optional external archive are ones eliminated

from the population at different generations. Therefore, individuals in the optional external

archive have similarities in chromosome to current target vectors since genetic relationships

exist. Meanwhile, individuals in the archive are worse in fitness than target vectors because

they are all losers in selection. Provided that individuals in archive are very different in chro-

mosome with target vectors but similar in fitness level with current target vectors, DE/current-

to-pbest with optional archive may be further enhanced.

In our scheme, two subpopulations need be maintained in DE. The two subpopulations

regard each other as the optional external archive. In this way, individuals in the archive are

not only different in building blocks of chromosome from current target vectors, but also simi-

lar in fitness level with current target vectors. To show details of our method for managing the

optional external archive, we adapt the pseudo-code of JADE. Although our method can also

be used in any variants of JADE, expressing our method based on original JADE is more con-

cise than based on one of its variant. The adapted pseudo-code is given in Algorithm 1.

Algorithm 1 JADE With our Method for Managing the Optional External Archive
1: Set μCR = 0.5; m0CR ¼ 0:5; μF = 0.5; m0F ¼ 0:5;
2: Randomly create the initial generation of the two subpopulations

SP0, {xi,0|i = 1, 2, . . ., NP/2}, and SP0
0
, fx0i;0ji ¼ 1; 2; :::;NP=2g

3: for g = 1 to G do
4: SF ¼ S0F ¼ ⌀; SCR ¼ S0CR ¼ ⌀
5: for i = 1 to NP/2 do
6: Generate CRi = randni(μCR, 0.1), CR0i ¼ randniðm0CR; 0:1Þ, Fi = randci(μF,

0.1), F0i ¼ randciðm0F; 0:1Þ
7: Randomly choose ~xr2;g 6¼ xr1;g 6¼ xi;g from SPg [ SP0g and ~x 0r20 ;g 6¼ x0r10 ;g 6¼ x0i;g from

SP0g [ SPg
8: vi;g ¼ xi;g þ Fi � ðx

p
best;g � xi;gÞ þ Fi � ðxr1;g � ~xr2;gÞ

9: v0i;g ¼ x0i;g þ F
0
i � ðx

0p
best;g � x0i;gÞ þ F

0
i � ðx

0
r10 ;g �

~x0 r20 ;gÞ
10: for j = 1 to D do
11: if j = jrand or rand(0, 1) < CRi then
12: uj,i,g = vj,i,g
13: else
14: uj,i,g = xj,i,g
15: end if
16: if j ¼ j0rand or randð0; 1Þ < CR0i then
17: u0j;i;g ¼ v0j;i;g
18: else
19: u0j;i;g ¼ x0j;i;g
20: end if
21: end for
22: if f(xi,g) < f(ui,g) then
23: xi,g+1 = xi,g
24: else
25: xi,g+1 = ui,g, CRi ! SCR, Fi ! SF

Dual-Subpopulation as reciprocal optional external archives for differential evolution
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26: end if
27: if f ðx0i;gÞ < f ðu0i;gÞ then
28: x0i;gþ1

¼ x0i;g
29: else
30: x0i;gþ1

¼ u0i;g, CR0i ! S0CR, F0i ! S0F
31: end if
32: end for
33: end for

Experimental studies

Our experiments are based on the 30 CEC2014 benchmark test functions. In the first experi-

ment, original version of JADE and its variants is compared with their version based on our

scheme. Then, the best performer among DE algorithms with our scheme is compared with

up-to-date DE algorithms in the second experiment.

DE algorithms for experiments

For the first experiment, we need to select variants of JADE beside JADE itself. As mentioned

above, SHADE, Rcr-JADE, L-SHADE, AEPD-JADE, JADE-SI, JADE_sort, ETI-JADE and

ETI-SHADE are variants of JADE. Among these algorithms, L-SHADE, AEPD-JADE, ETI-

JADE and ETI-SHADE are tested based on the CEC 2014 benchmark functions in literature.

According to results in [1, 34, 45], it can be seen that L-SHADE performs much better on the

CEC2014 functions than the other algorithms. Thus, we select L-SHADE for the first experi-

ment. In addition, SHADE, the foundation of L-SHADE and an variant of JADE, also be

selected by us. In short, our method is employed in the three algorithms, JADE, SHADE and

L-SHADE, for the first experiment.

For the second experiment, we chose CoBiDE, MPDED, EDEV, and MLCCDE to compare

with the best performer among DE algorithms with our scheme. CoBiDE is a state-of-the-art

DE algorithm having no relationship with JADE. MPDED and EDEV are recent DE algo-

rithms with subpopulations and belong to related work. MLCCDE is one of the most recent

DE algorithms.

Settings

Function dimensionality is set 30, 50 and 100, respectively, in the first experiment, while only

30 in the second experiment. According to the guideline of CEC 2014 competition, maximum

fitness evaluations are set 10000 � D for the all DE algorithms, where D represents function

dimensionality. All parameters of the original DE algorithms are given in Table 1 based on [3,

6, 12, 21, 45, 47, 50], respectively. It can be seen from Table 1 that we change population size

NP in the original algorithms to arrange two subpopulations for implement our scheme. In the

DE algorithms with our method, each subpopulation is allocated NP/2 individuals and regard

the other subpopulation as its archive.

Comparison between DE algorithms with our scheme and their original

version

Experimental results of original DE algorithms and DE algorithms with our method for

functions with 30, 50 and 100 dimensions are listed in Tables 2–4, respectively. According to

Table 2, when function dimensionality is 30, our method significantly improves JADE in ten

cases out of 30 ones, SHADE in 9/30 cases and L-SHADE in 10/30 cases. Meanwhile, our

method statistically deteriorates JADE in 4/30, SHADE in 3/30 cases and L-SHADE in 2/30

Dual-Subpopulation as reciprocal optional external archives for differential evolution

PLOS ONE | https://doi.org/10.1371/journal.pone.0222103 September 19, 2019 7 / 16

https://doi.org/10.1371/journal.pone.0222103


cases. In addition, there is no significant difference in other cases. According to Table 3,

when function dimensionality is 50, our method significantly improves JADE in 11/30 ones,

SHADE in 10/30 cases and L-SHADE in 9/30 cases. Meanwhile, our method statistically

deteriorates JADE in 3/30, SHADE in 4/30 cases and L-SHADE in 3/30 cases. In addition,

there is no significant difference in other cases. According to Table 4, when function

dimensionality is 100, our method significantly improves JADE in 9/30 ones, SHADE in 11/

30 cases and L-SHADE in 9/30 cases. Meanwhile, our method statistically deteriorates JADE,

SHADE and L-SHADE in two cases, respectively. In addition, there is no significant differ-

ence in other cases.

It can be seen from Tables 2–4 that, for some functions, all DE algorithms with our method

significantly win their original DE algorithms. Details go as below. When function dimension-

ality is 30, for F19 and F29, our method lead to significant improvement in all the cases. When

function dimensionality goes to 50, for F19, our method lead to significant improvement in all

the cases. When function dimensionality becomes 100, for F1, F9, F19, and F29, our method

lead to significant improvement in all the cases. Based on the mean error to the optimum at

interval, we plot convergence graphics of runs for one function when function dimensionality

is 30, 50, and 100, respectively, in Fig 1.

As shown in Fig 1, convergence rate goes lower and lower in all runs. In the figure, runs

with our scheme converge more slowly at the initial stage than runs without it but faster at the

remaining part. The above phenomenon can be explained as below. The original value of pop-

ulation size in the DE algorithms NPo has been proven to be a fitting value by experiments in

literate. In theory, size of each subpopulation in the DE algorithms with our method need be

set NPo. That is, population size need be set 2 � NPo. However, due to the limitation in maxi-

mum fitness evaluations, great increase of population size means great decrease of maximum

generations. Therefore, subpopulation size needs be set less than NPo to ensure that enough

generations can be executed in runs. At the beginning of run, DE algorithms with our scheme

converge more slowly than original DE algorithms for the lack of individuals in each subpopu-

lation. Nevertheless, with the implement of our scheme, the disadvantage is offset gradually in

many cases. Altogether, our method leads to significant improvement in 88 cases out of 270

ones but statistical deterioration in 25 cases. In summary, JADE and its variants with our

scheme outperform their original version.

Table 1. Settings.

Algorithm Parameters

JADE μF = 0.5, μCR = 0.5, c = 0.1 and p = 0.05, |A| = 100 and NP = 100

JADE with our method μF = 0.5, μCR = 0.5, c = 0.1 and p = 0.05, and NP = 150

SHADE H = 100, NP = 100 and |A| = 100

SHADE with our

method

H = 150, and NP = 150

L-SHADE H = 6, |A| = 2.6 � 18 � D, and NPinit = round(18 � D)

L-SHADE with our

method

H = 6, and NPinit = round(1.4 � 18 � D)

CoBiDE pb = 0.4, ps = 0.5, NP = 60

MPEDE λ1 = λ2 = λ3 = 0.2, λ4 = 0.4, ng = 20, and NP = 250

EDEV λ1 = λ2 = λ3 = 0.1, λ4 = 0.7, ng = 20, and NP = 60

MLCCDE MF = 0.7,MCR = 0.5,H = 100,T = 300,GT = 1500,SRT = 0(G< GT), SRT = 0.1(G> GT),

N = 0.05, and NP = 100

https://doi.org/10.1371/journal.pone.0222103.t001
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Comparison between L-SHADE with our scheme and up-to-date DE

algorithms

According to Tables 2–4, L-SHADE based on our scheme is best in performance among the

three DE algorithm with our scheme. Thus, we plan to compare L-SHADE based on our

scheme with up-to-date DE algorithms, CoBiDE, MPEDE, EDEV, and MLCCDE. In Table 5,

the experimental results are listed.

It can be seen from the table that L-SHADE based on our method significantly wins

MLCCDE, EDEV, MPEDE and CoBiDE in 9, 13, 14 and 11 cases, respectively. Meanwhile,

L-SHADE based on our method loses to MLCCDE, EDEV, MPEDE and CoBiDE in two,

Table 2. Results of DE algorithms with our scheme and original DE algorithms when function dimensionality is set 30. “+” denotes the result of a DE algorithm with

our method is significant better than the result of its original DE algorithm in terms of Wilcoxon’s rank sum test at a 0.05 significance level, while “−” represents statistical

worse. In addition, “�” shows that there is no significant difference.

Function Mean error (standard deviation)

JADE JADE with our method SHADE SHADE with our method L-SHADE L-SHADE with our method

F1 3.00E+02 (4.99E+02) 1.12E+02 (3.47E+02)� 3.72E+02 (1.09E+03) 8.43E+01 (5.83E+02)� 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00)�

F2 1.89E-14 (1.36E-14) 8.53E-15 (1.30E-14)� 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00)� 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00)�

F3 4.76E-05 (1.48E-04) 1.53E-04 (6.46E-04)� 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00)� 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00)�

F4 9.09E-14 (4.63E-14) 4.55E-14 (1.08E-13)+ 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00)� 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00)�

F5 2.03E+01 (3.07E-02) 2.02E+01 (1.49E-02)+ 2.01E+01 (2.06E-02) 2.01E+01 (2.36E-02)� 2.01E+01 (2.15E-02) 2.01E+01 (2.24E-02)�

F6 9.88E+00 (1.55E+00) 2.74E+00 (8.67E-01)+ 3.48E-01 (6.73E-01) 2.16E-01 (3.24E-01)+ 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00)�

F7 2.47E-04 (1.35E-03) 3.79E-15 (2.45E-14)+ 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00)� 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00)�

F8 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00)� 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00)� 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00)�

F9 2.63E+01 (4.16E+00) 8.72E+00 (2.18E+00)+ 1.58E+01 (4.22E+00) 1.46E+01 (2.49E+00)� 6.88E+00 (1.53E+00) 4.21E+00 (9.72E-01)+

F10 6.94E-03 (1.26E-02) 2.78E-03 (7.20E-03)� 5.55E-03 (1.08E-02) 2.78E-03 (9.97E-03)� 5.55E-03 (1.08E-02) 1.39E-03 (5.28E-03)�

F11 1.58E+03 (2.19E+02) 1.47E+03 (3.72E+02)� 1.49E+03 (2.37E+02) 1.67E+03 (2.58E+02)− 1.20E+03 (2.02E+02) 1.15E+03 (1.16E+02)�

F12 2.63E-01 (3.73E-02) 2.94E-01 (4.74E-02)− 1.62E-01 (2.45E-02) 1.37E-01 (2.11E-02)+ 1.64E-01 (2.15E-02) 1.73E-01 (2.48E-02)−
F13 2.24E-01 (3.03E-02) 2.18E-01 (2.57E-02)� 1.94E-01 (3.43E-02) 1.89E-01 (2.43E-02)� 1.22E-01 (1.50E-02) 1.14E-01 (1.13E-02)+

F14 2.32E-01 (3.36E-02) 2.57E-01 (3.47E-02)− 2.46E-01 (2.98E-02) 2.31E-01 (2.32E-02)� 2.42E-01 (3.05E-02) 2.09E-01 (1.48E-02)+

F15 3.17E+00 (4.51E-01) 3.11E+00 (3.18E-01)� 2.50E+00 (3.77E-01) 2.28E+00 (2.75E-01)+ 2.14E+00 (2.18E-01) 2.12E+00 (4.52E-01)�

F16 9.41E+00 (3.27E-01) 9.38E+00 (2.83E-01)� 9.09E+00 (3.65E-01) 8.46E+00 (2.34E-01)+ 8.63e+00 (4.41E-01) 8.78E+00 (5.47E-01)−
F17 1.24E+03 (4.46E+02) 7.95E+02 (5.47E+02)+ 1.08E+03 (3.25E+02) 8.67E+02 (1.05E+02)� 2.01E+02 (9.71E+01) 1.49E+02 (8.41E+01)+

F18 8.04E+01 (5.84E+01) 4.19E+01 (3.61E+01)� 5.91E+01 (2.51E+01) 2.14E+01 (9.17E+00)+ 6.35E+00 (3.25E+00) 6.64E+00 (1.49E+00)�

F19 4.38E+00 (6.06E-01) 3.76E+00 (5.24E-01)+ 4.31E+00 (7.12E-01) 3.81E+00 (5.14E-01)+ 3.56E+00 (5.97E-01) 3.11E+00 (6.74E-01)+

F20 3.54E+03 (2.50E+03) 8.57E+02 (1.69E+03)+ 1.35E+01 (6.64E+00) 1.47E+01 (7.42E+00)− 2.99E+00 (1.18E+00) 2.25E+00 (2.74E+00)+

F21 4.05E+04 (8.09E+04) 3.57E+03 (7.72E+03)� 2.61E+02 (1.50e+02) 1.13E+02 (1.16E+02)+ 1.08E+02 (7.32E+01) 7.42E+01 (1.47E+01)+

F22 1.40E+02 (6.35E+01) 8.38E+01 (3.72E+01)+ 8.90E+01 (6.05E+01) 7.13E+01 (4.16E+01)� 2.49E+01 (2.15E+00) 2.53E+01 (3.47E+00)�

F23 3.15E+02 (5.78E-14) 3.15E+02 (4.67E-14)� 3.15E+02 (5.78E-14) 3.15E+02 (3.57E-14)� 3.15E+02 (5.78e-14) 3.15E+02 (2.34e-13)�

F24 2.25E+02 (2.62E+00) 2.23E+02 (2.16E+00)� 2.25E+02 (2.65E+00) 2.24E+02 (2.10E+00)� 2.25E+02 (2.73E+00) 2.21E+02 (2.14E+00)�

F25 2.04E+02 (1.06E+00) 2.03E+02 (9.11E-01)� 2.03E+02 (1.59E-01) 2.04E+02 (2.10E-01)− 2.03E+02 (1.00E-01) 2.03E+02 (1.05E-01)�

F26 1.04E+02 (1.82E+01) 1.02E+02 (1.42E+01)� 1.04E+02 (1.82E+01) 1.09E+02 (2.57E+01)� 1.00E+02 (1.48E-02) 1.00E+02 (1.87E-02)�

F27 3.24E+02 (4.34E+01) 3.38E+02 (5.24E+01)− 3.19E+02 (3.22E+01) 3.23E+02 (4.24E+01)� 3.00E+02 (0.00E+00) 3.00E+02 (0.00E+00)�

F28 7.82E+02 (5.39E+01) 7.98E+02 (4.97E+01)− 8.32E+02 (3.83E+01) 8.24E+02 (1.93E+01)� 8.30E+02 (2.18E+01) 8.17E+02 (1.14E+01)+

F29 2.90E+05 (1.58E+06) 3.49E+03 (7.58E+03)+ 7.23E+02 (8.18E+00) 7.14E+02 (7.16E+00)+ 7.16E+02 (3.57E+00) 7.08E+02 (4.15E+00)+

F30 1.55E+03 (6.30E+02) 1.26E+03 (7.57E+02)� 1.96E+03 (7.79E+02) 1.21E+03 (6.47E+02)+ 1.25E+03 (6.07E+02) 8.67E+02 (7.17E+01)+

+ 10 9 10

− 4 3 2

� 16 18 18

https://doi.org/10.1371/journal.pone.0222103.t002
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three, zero and zero cases, respectively. There is no significant difference in all of other cases.

In summary, L-SHADE with our method is very competitive.

Discussion

In JADE and its variants with our scheme, the two subpopulations evolve independently. Indi-

viduals in a subpopulation, compared with individuals in the other subpopulation, are differ-

ent in chromosome but similar in fitness level. Therefore, regarding the other subpopulation

as the optional external archive can provide fitting individuals for difference operation. Under

the control of our scheme, DE/current-to-pbest/1 with optional archive become more efficient

Table 3. Results of DE algorithms with our scheme and original DE algorithms when function dimensionality is set 50. “+” denotes the result of a DE algorithm with

our method is significant better than the result of its original DE algorithm in terms of Wilcoxon’s rank sum test at a 0.05 significance level, while “−” represents statistical

worse. In addition, “�” shows that there is no significant difference.

Function Mean error (standard deviation)

JADE JADE with our method SHADE SHADE with our method L-SHADE L-SHADE with our method

F1 1.54E+04 (1.01E+04) 3.42E+03 (5.27E+03)+ 1.82E+04 (1.16E+04) 2.46E+03 (4.63E+02)+ 7.29E+02 (1.58E+03) 2.46E+02 (1.67E+03)�

F2 1.00E-13 (5.62E-14) 2.47E-15 (3.47E-15))� 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00)� 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00)�

F3 4.23E+03 (1.98E+03) 7.48E+01 (2.74E+02)+ 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00)� 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00)�

F4 2.78E+01 (4.40E+01) 2.57E+01 (7.16E+01)� 3.01E+01 (4.54E+01) 2.88E+01 (6.89E+01)� 4.00E+01 (4.65E+01) 2.14E+01 (2.77E+01)+

F5 2.04E+01 (4.03E-02) 2.01E+01 (2.27E-02)+ 2.01E+01 (2.03E-02) 2.01E+01 (3.72E-02)� 2.03E+01 (3.56E-02) 2.03E+01 (6.41E-02)�

F6 1.62E+01 (6.59E+00) 1.51E+01 (4.21E+00)� 3.01E+00 (1.48E+00) 4.25E+00 (2.48E+00)− 3.51E-01 (7.30E-01) 3.42E-01 (9.37E-01)�

F7 6.57E-04 (2.50E-03) 4.13E-10 (3.69E-09)+ 5.75E-04 (2.21E-03) 0.00E+00 (0.00E+00)+ 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00)�

F8 3.79E-15 (2.08E-14) 0.00E+00 (0.00E+00)� 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00)� 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00)�

F9 5.19E+01 (7.18E+00) 3.86E+00 (6.73E+00)+ 2.99E+01 (4.91E+00) 1.81E+01 (1.67E+00)+ 1.14E+01 (1.88E+00) 1.57E+01 (3.48E+00)−
F10 6.20E-03 (7.87E-03) 1.97E-03 (5.62E-03)+ 2.50E-03 (5.08E-03) 2.92E-03 (6.47E-03)− 4.34E-02 (2.46E-02) 1.82E-02 (3.69E-02)+

F11 3.82E+03 (4.06E+02) 3.34E+03 (8.72E+02)� 3.46E+03 (2.72E+02) 1.73E+03 (4.72E+02)+ 3.28E+03 (3.58E+02) 2.96E+03 (6.87E+02)�

F12 2.60E-01 (3.77E-02) 1.74E-01 (2.79E-02)+ 1.56E-01 (1.81E-02) 2.28E-01 (3.97E-02)− 2.23E-01 (2.77E-02) 1.97E-01 (6.46E-02)+

F13 3.18E-01 (4.39E-02) 2.83E-01 (5.67E-02)� 3.13E-01 (3.94E-02) 1.88E-01 (1.39E-02)+ 1.70E-01 (1.35E-02) 1.53E-01 (2.86E-02)+

F14 3.04E-01 (7.83E-02) 2.67E-01 (4.56E-02)+ 3.13E-01 (9.90E-02) 3.27E-01 (1.87E-01)� 3.10E-01 (2.07E-02) 3.13E-01 (3.47E-02)�

F15 7.32E+00 (6.14E-01) 7.26E+00 (5.87E-01)� 5.76E+00 (5.91E-01) 5.37E+00 (2.67E-01)+ 5.11E+00 (4.37E-01) 4.87E+00 (9.46E-01)+

F16 1.77E+01 (4.61E-01) 1.25E+01 (3.16E-01)+ 1.73E+01 (4.14E-01) 1.68E+01 (3.72E-01)� 1.67E+01 (4.27E-01) 1.49E+01 (3.76E-01)�

F17 2.38E+03 (5.90E+02) 2.44E+03 (3.73E+02)� 2.53E+03 (6.12E+02) 2.14E+03 (7.34E+02)� 1.34E+03 (3.53E+02) 1.53E+03 (6.72E+02)�

F18 1.63E+02 (4.95E+01) 1.47E+02 (6.77E+01)� 1.58E+02 (4.79E+01) 1.44E+02 (3.81E+01)� 1.04E+02 (1.38E+01) 1.17E+02 (3.68E+01)�

F19 1.18E+01 (4.05E+00) 8.83E+00 (7.42E+00)+ 8.62E+00 (2.39E+00) 6.72E+00 (5.82E-01)+ 8.42E+00 (2.05E+00) 6.27E+00 (3.47E+00)+

F20 7.40E+03 (6.14E+03) 1.37E+02 (3.69E+02)+ 2.06E+02 (6.82E+01) 1.82E+02 (9.72E+01)� 1.42E+01 (3.64E+00) 1.47E+01 (9.79E-01)�

F21 1.39E+03 (4.13E+02) 1.27E+03 (7.46E+02)� 1.36E+03 (3.04E+02) 8.91E+02 (7.69E+02)+ 5.21E+02 (1.85E+02) 3.29E+02 (9.46E+01)+

F22 5.22E+02 (1.75E+02) 6.79E+02 (3.52E+02)− 3.90E+02 (1.39E+02) 4.12E+02 (4.72E+02)� 1.02E+02 (6.50E+01) 9.81E+01 (4.38E+01)�

F23 3.44E+02 (1.79E-13) 3.44E+02 (2.46E-13)� 3.44E+02 (1.73E-13) 3.44E+02 (1.08E-13)� 3.44E+02 (2.78E-13) 3.44E+02 (1.22E-13)�

F24 2.74E+02 (2.37E+00) 2.79E+02 (3.68E+02)− 2.74E+02 (1.81E+00) 2.74E+02 (3.57E+00)� 2.75E+02 (5.52E-01) 2.74E+02 (1.76E+00)�

F25 2.16E+02 (6.55E+00) 2.15E+02 (5.43E+00)� 2.07E+02 (3.97E+00) 2.05E+02 (6.71E+00)� 2.05E+02 (3.46E-01) 2.08E+02 (1.79E-01)−
F26 1.07E+02 (2.53E+01) 1.09E+02 (3.46E+01)� 1.00E+02 (1.18E-01) 1.02E+02 (1.03E-01)− 1.00E+02 (2.41E-02) 1.00E+02 (1.19E-02)�

F27 4.60E+02 (5.18E+01) 4.71E+02 (6.34E+01)� 4.16E+02 (4.75E+01) 4.23E+02 (3.98E+01)� 3.40E+02 (3.68E+01) 3.51E+02 (2.67E+01)−
F28 1.12E+03 (5.96E+01) 1.29E+02 (7.59E+01)− 1.13E+03 (4.77E+01) 1.06E+03 (9.17E+00)� 1.11E+03 (3.07E+01) 7.46E+02 (6.14E+00)+

F29 8.77E+02 (5.47E+01) 8.65E+02 (6.49E+01)� 8.96E+02 (8.27E+01) 6.97E+02 (9.37E+00)+ 8.13E+02 (4.79E+01) 6.42E+02 (3.72E+01)+

F30 9.84E+03 (1.01E+03) 9.47E+03 (5.35E+02)� 9.42E+03 (7.72E+02) 8.16E+03 (5.71E+02)+ 8.81E+03 (4.22E+02) 7.36E+03 (3.43E+02)+

+ 11 10 9

− 3 4 3

� 16 16 18

https://doi.org/10.1371/journal.pone.0222103.t003
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than before. Thus, DE algorithms based on DE/current-to-pbest/1 with optional archive

become more powerful than before. In fact, if maximum fitness evaluations can be extended,

DE algorithms with our scheme may have a more significant advantage.

Conclusion

JADE and its variants, DE algorithms based on DE/current-to-pbest/1 with optional archive,

show good performance in comparisons among DE algorithms. Nevertheless, more powerful

DE algorithms are needed for the solving difficulty arisen from the complexity of problems.

The mutation strategy of these DE algorithms, DE/current-to-pbest/1 with optional archive, is

Table 4. Results of DE algorithms with our scheme and original DE algorithms when function dimensionality is set 100. “+” denotes the result of a DE algorithm with

our method is significant better than the result of its original DE algorithm in terms of Wilcoxon’s rank sum test at a 0.05 significance level, while “−” represents statistical

worse. In addition, “�” shows that there is no significant difference.

Function Mean error (standard deviation)

JADE JADE with our method SHADE SHADE with our method L-SHADE L-SHADE with our method

F1 1.01E+05 (5.57E+04) 7.01E+05 (6.75E+04)+ 1.47E+05 (7.31E+04) 8.24E+04 (4.25E+04)+ 1.51E+05 (4.70E+04) 9.88E+04 (7.64E+03)+

F2 6.79E-10 (1.20E-09) 5.46E-12 (3.87E-10)� 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00)� 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00)�

F3 5.91E+03 (3.00E+03) 1.46E+02 (8.45E+02)� 4.70E-03 (8.84E-03) 5.72E-03 (4.71E-03)� 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00)�

F4 8.64E+01 (6.21E+01) 8.45E+01 (3.79E+01)� 1.18E+02 (5.47E+01) 8.87E+01 (7.94E+01)+ 1.72E+02 (3.18E+01) 1.29E+02 (2.76E+01)+

F5 2.05E+01 (3.40E-02) 2.04E+01 (6.72E-02)� 2.02E+01 (1.57E-02) 2.00E+01 (1.94E-02)+ 2.05E+01 (4.08E-02) 2.06E+01 (5.67E-02)−
F6 4.55E+01 (1.60E+01) 2.75E+01 (8.64E+00)+ 2.99E+01 (4.78E+00) 2.37E+01 (6.72E+00)� 9.32E+00 (1.95E+00) 6.72E+00 (3.48E+00)+

F7 1.07E-03 (2.80E-03) 1.24E-03 (3.49E-03)� 1.72E-03 (4.10E-03) 0.00E+00 (0.00E+00)� 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00)�

F8 1.14E-13 (0.00E+00) 0.00E+00 (0.00E+00)� 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00)� 1.20E-03 (6.93E-04) 1.25E-13 (7.00E-12)−
F9 1.47E+02 (2.02E+01) 6.94E+01 (8.46E+00)+ 9.82E+01 (1.42E+01) 5.72E+01 (9.72E+00)+ 3.69E+01 (4.82E+00) 2.72E+01 (1.72E+00)+

F10 1.35E-02 (9.14E-03) 8.43E-02 (6.37E-03)+ 5.62E-03 (4.74E-03) 3.72E-03 (6.79E-03)+ 1.71E+01 (4.01E+00) 1.43E+01 (5.78E-01)�

F11 1.05E+04 (6.04E+02) 9.47E+03 (7.46E+02)� 9.80E+03 (6.38E+02) 6.72E+03 (3.72E+02)+ 1.08E+04 (4.58E+02) 9.27E+03 (7.71E+02)�

F12 3.42E-01 (2.66E-02) 3.57E-01 (4.19E-02)− 2.30E-01 (2.26E-02) 3.31E-01 (7.49E-02)− 4.13E-01 (4.29E-02) 3.76E-01 (7.50E-02)�

F13 4.05E-01 (5.01E-02) 3.99E-01 (6.74E-02)� 4.10E-01 (4.19E-02) 4.16E-01 (3.71E-02)� 2.41E-01 (1.85E-02) 1.71E-01 (2.71E-02)+

F14 3.18E-01 (2.77E-02) 2.48E-01 (1.73E-02)+ 2.09E-01 (1.55E-02) 2.07E-01 (2.43E-02)� 2.24E-01 (1.40E-02) 2.18E-01 (2.48E-02)�

F15 2.90E+01 (3.55E+00) 2.87E+01 (2.87E+00)� 1.93E+01 (1.87E+00) 1.88E+01 (2.57E+00)� 1.57E+01 (1.00E+00) 1.64E+01 (3.64E+00)�

F16 4.00E+01 (4.06E-01) 4.02E+01 (4.87E-01)− 3.97E+01 (5.65E-01) 3.95E+01 (4.74E-01)� 3.92E+01 (4.74E-01) 3.84E+01 (3.48E-01)�

F17 1.27E+04 (6.21E+03) 1.11E+04 (9.47E+03)� 1.09E+04 (4.71E+03) 6.70E+03 (2.56E+03)+ 4.47E+03 (7.75E+02) 3.82E+03 (9.71E+02)�

F18 9.34E+02 (1.03E+03) 7.56E+02 (3.48E+03)� 7.94E+02 (5.08E+02) 5.48E+02 (6.79E+02)+ 2.17E+02 (1.30E+01) 1.94E+02 (2.78E+01)�

F19 9.47E+01 (1.99E+01) 9.32E+01 (1.79E+01)+ 9.82E+01 (1.11E+01) 9.64E+01 (9.65E+00)+ 9.62E+01 (2.42E+00) 9.34E+01 (3.57E+00)+

F20 9.63E+03 (1.54E+04) 6.36E+03 (3.71E+03)+ 5.92E+02 (1.45E+02) 4.87E+02 (1.78E+02)� 1.52E+02 (4.21E+01) 1.48E+02 (6.45E+01)�

F21 3.79E+03 (1.03E+03) 3.49E+03 (8.47E+02)� 3.36E+03 (1.07E+03) 3.10E+03 (2.87E+03)� 2.21E+03 (5.20E+02) 2.34E+03 (9.45E+02)�

F22 1.61E+03 (2.62E+02) 1.58E+03 (3.94E+02)� 1.36E+03 (2.83E+02) 1.58E+03 (1.72E+02)− 1.03E+03 (1.83E+02) 1.12E+03 (4.57E+02)�

F23 3.48E+02 (9.52E-13) 3.48E+02 (7.67E-13)� 3.48E+02 (9.61E-13) 3.48E+02 (5.18E-13)� 3.48E+02 (1.89E-13) 3.48E+02 (5.64E-13)�

F24 3.99E+02 (5.39E+00) 4.01E+02 (6.72E+00)� 3.97E+02 (4.23E+00) 3.95E+02 (6.25E+00)� 3.95E+02 (2.83E+00) 3.95E+02 (1.87E+00)�

F25 2.73E+02 (4.87E+00) 2.83E+02 (7.19E+00)� 2.64E+02 (5.19E+00) 2.31E+02 (6.71E+00)+ 2.00E+02 (2.60E-13) 2.00E+02 (1.92E-13)�

F26 2.00E+02 (4.68E-03) 2.01E+02 (8.64E-03)� 2.00E+02 (5.86E-03) 2.00E+02 (7.37E-03)� 2.00E+02 (2.38E-13) 2.00E+02 (6.24E-03)�

F27 1.08E+03 (1.23E+02) 8.27E+02 (9.72E+01)+ 8.94E+02 (1.03E+02) 6.76E+02 (9.64E+02)� 3.80E+02 (3.28E+01) 2.54E+02 (6.72E+01)+

F28 2.38E+03 (2.65E+02) 2.41E+03 (3.72E+02)� 2.45E+03 (2.94E+02) 2.37E+03 (1.73E+02)� 2.24E+03 (4.61E+01) 2.01E+03 (3.72E+01)+

F29 1.36E+03 (1.72E+02) 9.09E+02 (1.43E+02)+ 1.23E+03 (2.62E+02) 8.45E+02 (3.81E+02)+ 7.69E+02 (5.20E+01) 4.67E+02 (2.67E+02)+

F30 8.60E+03 (1.35E+03) 8.34E+03 (8.74E+02)� 8.76E+03 (9.51E+02) 8.81E+03 (7.62E+02)� 8.30E+03 (6.56E+02) 8.18E+03 (5.48E+02)�

+ 9 11 9

− 2 2 2

� 19 17 19

https://doi.org/10.1371/journal.pone.0222103.t004
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based on the external optional archive. In this paper, we propose a new scheme for managing

the archive. According to our scheme, two subpopulations are maintained in the population.

Each of them regards the other as its archive. In this way, the individuals in the archive of a

subpopulation are ones similar in fitness level with current target vectors but different in

building blocks of chromosome from current target vectors. Experiments based on the

CEC2014 benchmark functions not only show that our scheme can significantly improve solu-

tions of JADE and its two variants, SHADE and L-SHADE, but also demonstrate that

L-SHADE with our method performs significantly better than CoBiDE, MPEDE, EDEV, and

MLCCDE.

Fig 1. Convergence graphics. A: The convergence graphic for F19 when function dimensionality is 30. B: The

convergence graphic for F19 when function dimensionality is 50. C: The convergence graphic for F1 when function

dimensionality is 100.

https://doi.org/10.1371/journal.pone.0222103.g001
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As mentioned above, our scheme for managing the archive is enlightened by DEA. Con-

versely, a new type of distributed DE—DEA in the field of DE—can be developed based on the

work in this paper. Further investigation is remained to be done.
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Table 5. Results of L-SHADE based on our method, MLCCDE, EDEV, MPEDE and CoBiDE when function dimensionality is set 30. “+” denotes that the result of

L-SHADE based on our method is significant better than the current result in terms of Wilcoxon’s rank sum test at a 0.05 significance level, while “−” represents statistical

worse. Meanwhile, “�” shows that there is no significant difference.

Function Mean error (standard deviation)

L-SHADE based on our method MLCCDE EDEV MPEDE CoBiDE

F1 0.00E+00 (0.00E+00) 7.20E+03 (5.39E+03)+ 1.88E+03 (5.74E+03)+ 9.43E-11 (4.77E-10)� 1.46E+04 (1.05E+04)+

F2 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00)� 0.00E+00 (0.00E+00)� 9.47E-16 (5.19E-15)� 0.00E+00 (0.00E+00)�

F3 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00)� 0.00E+00 (0.00E+00)� 4.36E-14 (2.45E-14)� 0.00E+00 (0.00E+00)�

F4 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00)� 2.23E+01 (8.06E+01)� 6.37E-08 (3.48E-07)� 2.66E-06 (8.45E-06)�

F5 2.01E+01 (2.24E-02) 2.02E+01 (4.73E-02)� 2.04E+01 (6.21E-02)+ 2.04E+01 (4.98E-02)� 2.04E+01 (2.48E-01)+

F6 0.00E+00 (0.00E+00) 2.99E-02 (1.63E-01)� 6.23E-01 (9.03E-01)� 9.57E-01 (9.78E-01)� 1.23E+00 (1.23E+00)+

F7 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00)� 0.00E+00 (0.00E+00)� 5.75E-04 (2.21E-03)� 0.00E+00 (0.00E+00)�

F8 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00)� 0.00E+00 (0.00E+00)� 1.52E-14 (3.93E-14)� 0.00E+00 (0.00E+00)�

F9 4.21E+00 (9.72E-01) 2.29E+01 (4.03E+00)+ 3.27E+01 (4.97E+00)+ 2.81E+01 (5.90E+00)+ 4.14E+01 (1.07E+01)+

F10 1.39E-03 (5.28E-03) 2.82E-01 (3.45E-01)+ 6.27E-03 (9.69E-03)� 1.14E+00 (5.10E-01)+ 5.90E+01 (1.39E+01)+

F11 1.03E+03 (1.16E+02) 1.82E+03 (2.76E+02)+ 2.47E+03 (5.39E+02)+ 2.41E+03 (3.42E+02)+ 1.65E+03 (4.48E+02)�

F12 1.48E-01 (2.48E-02) 2.32E-01 (6.46E-02)� 6.13E-01 (1.42E-01)+ 5.07E-01 (9.11E-02)+ 2.45E-01 (3.48E-01)�

F13 1.14E-01 (1.13E-02) 1.82E-01 (2.61E-02)� 1.94E-01 (3.01E-02)� 2.15E-01 (3.68E-02)+ 2.36E-01 (4.76E-02)+

F14 2.09E-01 (1.48E-02) 1.98E-01 (2.36E-02)� 1.83E-01 (2.97E-02)� 2.42E-01 (3.60E-02)� 2.23E-01 (3.53E-02)�

F15 2.02E+00 (4.52E-01) 2.35E+00 (5.93E-01)� 4.13E+00 (5.69E-01)+ 4.14E+00 (7.37E-01)+ 3.10E+00 (8.50E-01)�

F16 8.58E+00 (3.47E-01) 9.10E+00 (5.46E-01)� 9.84E+00 (3.79E-01)� 1.00E+01 (4.93E-01)+ 9.94E+00 (6.90E-01)+

F17 1.49E+02 (8.41E+01) 3.19E+02 (1.81E+02)+ 2.22E+03 (4.85E+03)+ 2.26E+02 (1.61E+02)+ 2.26E+02 (1.80E+02)+

F18 6.64E+00 (1.49E+00) 1.63E+01 (5.94E+00)+ 3.23E+01 (2.01E+01)+ 1.35E+01 (5.69E+00)+ 1.06E+01 (3.75E+00)+

F19 3.11E+00 (6.74E-01) 2.57E+00 (5.73E-01)− 4.30E+00 (2.37E+00)+ 3.87E+00 (6.68E-01)+ 2.65E+00 (4.39E-01)�

F20 2.25E+00 (2.74E+00) 9.33E+00 (5.58E+00)+ 1.52E+01 (3.27E+00)+ 9.61E+00 (2.83E+00)+ 7.30E+00 (2.73E+00)+

F21 7.42E+01 (1.47E+01) 1.32E+02 (9.70E+01)+ 4.07E+02 (3.22E+02)+ 1.32E+02 (9.84E+01)+ 1.08E+02 (9.88E+01)�

F22 2.53E+01 (3.47E+00) 5.73E+01 (5.72E+01)+ 1.13E+02 (5.55E+01)+ 9.07E+01 (6.36E+01)+ 1.07E+02 (7.26E+01)+

F23 3.15E+02 (2.34e-13) 3.15E+02 (5.78E-14)� 3.14E+02 (1.97E-13)� 3.15E+02 (5.78E-14)� 3.15E+02 (5.78E-14)�

F24 2.21E+02 (2.14E+00) 2.24E+02 (8.82E-01)� 2.24E+02 (8.55E-01)� 2.25E+02 (1.46E+00)� 2.22E+02 (4.25E+00)�

F25 2.03E+02 (1.05E-01) 2.03E+02 (4.86E-01)� 2.01E+02 (2.89E+00)� 2.00E+02 (2.24E-03)� 2.03E+02 (3.80E-01)�

F26 1.00E+02 (1.87E-02) 1.00E+02 (2.08E-02)� 1.04E+02 (1.82E+01)+ 1.00E+02 (2.70E-02)� 1.00E+02 (5.92E-02)�

F27 3.00E+02 (0.00E+00) 3.32E+02 (4.68E+01)� 3.61E+02 (4.93E+01)� 3.59E+02 (4.90E+01)� 3.93E+02 (2.38E+01)�

F28 8.17E+02 (1.14E+01) 8.01E+02 (2.62E+01)� 3.83E+02 (7.76E+00)− 8.34E+02 (3.35E+01)� 8.20E+02 (2.82E+01)�

F29 7.08E+02 (4.15E+00) 7.06E+02 (1.04E+02)� 2.14E+02 (9.47E-01)− 2.98E+05 (1.63E+06)+ 5.69E+02 (2.48E+02)�

F30 8.67E+02 (7.17E+01) 6.08E+02 (2.28E+02)− 3.49E+02 (1.11E+02)− 6.69E+02 (1.69E+02)� 7.05E+02 (2.83E+02)�

+ 9 13 14 11

− 2 3 0 0

� 19 14 16 19

https://doi.org/10.1371/journal.pone.0222103.t005
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