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ABSTRACT: Neuroimaging-driven brain age estimation has introduced a robust (reliable and heritable) 

biomarker for detecting and monitoring neurodegenerative diseases. Here, we computed and compared brain age 

in Alzheimer’s disease (AD) and Parkinson’s disease (PD) patients using an advanced machine learning procedure 

involving T1-weighted MRI scans and gray matter (GM) and white matter (WM) models. Brain age estimation 

frameworks were built using 839 healthy individuals and then the brain estimated age difference (Br ain-EAD: 

chronological age subtracted from brain estimated age) was assessed in a large sample of PD patients (n = 160) 

and AD patients (n = 129), respectively. The mean Brain-EADs for GM were +9.29 ± 6.43 years for AD patients 

versus +1.50 ± 6.03 years for PD patients. For WM, the mean Brain-EADs were +8.85 ± 6.62 years for AD patients 

versus +2.47 ± 5.85 years for PD patients. In addition, PD patients showed a significantly higher WM Brain-EAD 

than GM Brain-EAD. In a direct comparison between PD and AD patients, we observed significantly higher 

Brain-EAD values in AD patients for both GM and WM. A comparison of the Brain-EAD between PD and AD 

patients revealed that AD patients may have a significantly “older-appearing” brain than PD patients. 
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Neurodegenerative diseases are progressive disorders that 

primarily affect the neurons in the human brain [1]. Many 

neurodegenerative diseases such as Alzheimer’s disease 

(AD) and Parkinson’s disease (PD) are associated by 

neuronal loss and structural changes in different areas of 

the brain [2]. These diseases are marked by cognitive 

impairment resulting in memory loss, language 

impairment, and reduced mental functioning in AD and 

loss of motor function, movement disorder, tremors, and 

stiffness in PD [3]. The cognitive impairment occurring in 

these diseases could be progressive and results in 

behavioral and anatomical changes [4]. The normal aging 

process gradually leads to similar deficits, including 

cognitive decline, vision loss, and balance issues, which 

are analogous to the neurodegenerative disorder-related 

structural variations but delayed by a number of years [5]. 

Normal aging can also be considered progression along a 

temporal trajectory that ultimately culminates in an 

individual’s death. However, because chronic diseases 

such as AD and PD affect the brain neurons and result in 

brain atrophy, this trajectory of normal aging is altered, 

modifying the brain aging process [6]. 

AD and PD show significant clinical and pathological 

overlap, with similar and yet undetermined etiological 

changes possibly found in both AD and PD [7]. AD is 

associated by neuronal loss, extracellular senile plaques 

containing the peptide β amyloid, and neurofibrillary 

tangles composed of a protein called tau [8]. PD is linked 
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by some pathological features such as loss of neurons in 

the substantia nigra and elsewhere and the presence of 

ubiquitinated  protein deposits in the cytoplasm of 

neurons (Lewy bodies) [9, 10]. Research has revealed an 

association between AD and PD and their overlapping 

clinical and pathological profiles suggest similarities in 

their pathogeneses. Loss of neurons in the nucleus basalis 

of Meynert and the locus coeruleus, the principal 

cholinergic and noradrenergic nuclei projecting to the 

cortex, respectively, have been observed in both PD and 

AD. Neurons are lost in the midbrain even in AD patients 

with no obvious Lewy bodies (or in patients that have AD) 

[11]. In addition, neurofibrillary tangles are present in 

dopaminergic neurons of the substantia nigra in AD. 

Neurological studies have also shown a decreased number 

of neurons in the zona compacta of the substantia nigra of 

AD patients. However, the pathology of PD and AD may 

differ in terms of the oculomotor neurons of the rostral 

midbrain where PD produces neuronal loss and Lewy 

body formation, which is not seen in AD [12]. 

Neuroimaging methods have been proposed to 

estimate an individual’s brain age based on the structural 

alterations and variations in brain regions [13]. The 

discrepancy between this age and the chronological age 

defines a highly reliable and heritable biomarker known 

as the brain estimated age difference (Brain-EAD: 

chronological age subtracted from brain estimated age). 

This method compares the age estimated by the system 

with the chronological age of the individual to determine 

the status of the brain. Estimates of brain age, derived 

using machine learning, have previously been used in a 

number of contexts [14-18]. Initially, this brain age model 

was applied to species-specific adaptations for 

experimental animal studies, including baboons [19] and 

rodents [20]. It has also been used to study brain 

maturation in childhood and adolescence and to compare 

preterm-born adolescents (born before the end of the 27th 

week of gestation) with adolescents born after the end of 

the 29th week of gestation [21]; the preterm-born 

adolescents had delayed structural brain maturation. Brain 

age analysis of individuals with psychiatric disorders 

involving schizophrenia and bipolar 1 disorder revealed 

that brain age scores are increased by 2.6 years for 

schizophrenia but are unaltered for bipolar disorder [22]. 

In addition, nondemented individuals with type 2 diabetes 

mellitus were found to have a 4.6 year higher brain age 

than healthy individuals [23]. Lifestyle risk factors (e.g., 

hypertension, smoking, and alcohol intake), tumor 

necrosis factor levels, and common clinical outcomes, 

such as cognition or depression, are associated with higher 

brain age scores [24]. The brain age concept has recently 

been in investigating neurodegenerative disorders to 

enable the early diagnosis of AD and predict conversion 

from mild cognitive impairment (MCI) to AD [14]. For 

instance, the [14] employed an automatic brain age 

estimator for estimating the age of healthy individuals and 

a clinical sample from the ADNI dataset. They reported 

an MAE of 4.98 years for the estimated age of HC 

individuals and a mean Brain-EAD of +10 years for AD 

samples based on GM. The researchers in [25], conducted 

a brain-age framework to assess the accuracy of 

conversion prediction from MCI to AD through the mean 

of brain age score. According to this research, an accuracy 

value of up to 81% was achieved in estimating conversion 

from MCI to AD in MCI subjects using anatomical MRI 

data. These studies suggest a link between disease 

progression and aging. Furthermore, such studies have 

motivated the analysis of other neurodegenerative 

diseases. 

With respect to clinical, pathological, and genetic 

similarities and differences between AD and PD patients 

[26, 27], we conducted this study to compute and compare 

the Brain-EAD values among AD and PD patients using 

a robust brain age estimation framework involving T1-

weighted (T1w) magnetic resonance imaging (MRI) scans 

and multivariate machine learning, and the following 

hypotheses were assessed: 

a) PD patients have a higher WM Brain-EAD than 

GM Brain-EAD. 

b) There are significant Brain-EAD differences 

between PD and AD patients. 

c) AD patients have a significantly “older-appearing” 

brain compared with PD patients.  

 

MATERIALS AND METHODS 

 

Participants and MRI acquisition 

 

A total of 1,128 T1w MRI scans were used from the IXI 

(http://brain-development.org/ixi-dataset/), Open Access 

Series of Imaging Studies (OASIS) (https://www.oasis-

brains.org/), Alzheimer's Disease Neuroimaging Initiative 

(ADNI) (www.loni.ucla.edu/ADNI/), and Parkinson’s 

Progression Markers Initiative (PPMI) (www.ppmi-

info.org) databases. The training dataset comprised 839 

T1w MRI scans from healthy controls (HCs) (aged 35–90 

years) obtained from the IXI, OASIS, ADNI, and PPMI 

datasets. The test set included 160 PD and 129 AD 

patients acquired from the PPMI and ADNI datasets, 

respectively. 

Regarding the AD patients, the Mini-Mental State 

Examination (MMSE) and Geriatric Depression Scale 

(GDS) were considered clinical parameters in the 

statistical analysis. The clinical parameters of PD patients 

comprised disease duration, the Montreal Cognitive 

Assessment (MoCA) test score, GDS, Movement 

Disorder Society‐Sponsored Revision of the Unified 

Parkinson's Disease Rating (MDS-UPDRS Total) Scale, 

http://brain-development.org/ixi-dataset/
https://www.oasis-brains.org/
https://www.oasis-brains.org/
http://www.loni.ucla.edu/ADNI/
http://www.ppmi-info.org/
http://www.ppmi-info.org/
https://www.verywellhealth.com/alzheimers-and-montreal-cognitive-assessment-moca-98617
https://www.verywellhealth.com/alzheimers-and-montreal-cognitive-assessment-moca-98617
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MDS-UPDRS Part I, MDS-UPDRS Part I Patient 

Questionnaire, MDS-UPDRS Part II Patient 

Questionnaire, MDS-UPDRS Part III, Schwab & England 

(S&E) scale, cUPSIT), Scales for Outcomes in 

Parkinson's Disease-Autonomic Questionnaire (SCOPA-

AUT), and specific binding ratios (SBRs) of the left/right 

caudate and left/right putamen. The study participants’ 

details are shown in Table 1. 

 
Table 1. Characteristics of subjects in this study. 

 

Training dataset Test dataset 

Dataset IXI OASIS ADNI PPMI ADNI PPMI 

Category  HC HC HC HC AD PD 

No of Subjects 408 103 227 101 129 160 

Female/Male 238/170 78/25 110/117 37/64 64/65 64/96 
Age (years) 56.48±12.07 67.81±12.85 75.96±5.04 60.24±10.02 71.64±5.81 64.53±6.98 

MMSE n/a n/a n/a n/a 23.25±2.26 n/a 

CDR n/a n/a n/a n/a 0.75±0.31 n/a 

GDS n/a n/a n/a n/a n/a 2.24±2.33 

MoCA n/a n/a n/a n/a n/a 26.91±2.40 
MDS-UPDRS Total n/a n/a n/a n/a n/a 31.97±13.13 

MDS-UPDRS Part I n/a n/a n/a n/a n/a 1.35±1.57 

MDS-UPDRS Part I 

Patient questionnaire 

n/a n/a n/a n/a n/a 4.05±2.79 

MDS-UPDRS Part II 
Patient questionnaire 

n/a n/a n/a n/a n/a 5.71±3.96 

MDS-UPDRS Part III n/a n/a n/a n/a n/a 20.85±8.72 

S&E n/a n/a n/a n/a n/a 93.78±5.65 

UPSIT n/a n/a n/a n/a n/a 21.01±8.19 

SCOPA-AUT n/a n/a n/a n/a n/a 9.61±5.68 
SBR Left Caudate n/a n/a n/a n/a n/a 1.88±0.60 

SBR Right Caudate n/a n/a n/a n/a n/a 1.87±0.58 

SBR Left Putamen n/a n/a n/a n/a n/a 0.77±0.31 

SBR Right Putamen n/a n/a n/a n/a n/a 0.79±0.31 
 

Note: All data are presented in mean ± standard deviation mode. n/a =not available. 

 

Neuroimaging processing 

 

Pre-processing of the T1w MRI scans was performed by 

using SPM (Statistical Parameter Mapping) v12 

(http://www.fil.ion.ucl.ac.uk/spm) software. As described 

in [28], all of the T1w MRI scans were bias corrected and 

segmented into WM, GM, and cerebrospinal fluid 

components using a generative model. The WM and GM 

images of the training dataset (i.e., healthy individuals, n 

= 839) were used to create a DARTEL template [29], 

using SPM DARTEL. This non-linear deformation 

template formed by using high-dimensional 

normalization is used to create DARTEL warped images. 

All of the DARTEL warped images were registered with 

standard MNI (Montreal Neurological Imaging) space 

maps using linear affine transformation. Then, GM and 

WM images were smoothed with 4-mm smoothing 

kernels [28] followed by a 8-mm isotropic spatial 

resolution. This procedure generated, for each individual, 

3,747 aligned and smoothed GM or WM voxel intensities 

that were used as MRI features. 

 

Brain age estimation and model validation 

 

To build a brain age estimation framework, we used the 

support vector regression (SVR) algorithm [30] 

implemented in LIBSVM (www.csie.ntu.edu.tw/ 

cjlin/libsvm/) library with a linear kernel and default 

setting, because it was shown to be a robust estimation 

model in a series of neuroimaging studies [31-35]. In each 

regression model, the GM and WM voxel intensities were 

considered independent variables with chronological age 

as the dependent variable. To assess the reliability of the 

brain age estimation framework, we used a 10-fold cross-

validation on the basis of the GM and WM training set 

(i.e., healthy individuals, n = 839), separately. That is, the 

GM and WM training set was randomly split into 10 equal 

parts, with each, in turn, serving as the test set for the 

model fitted on the remaining 9/10th of the data. The 

accuracy of the brain age estimation frameworks was 

validated by use of the chronological age and the 

estimated brain age on the basis of the mean absolute error 

(MAE), root mean square error (RMSE), and correlation 

coefficient (between chronological and estimated brain 

age) through 10-fold cross-validation. The final brain age 

estimation framework was created using the entire 

http://www.fil.ion.ucl.ac.uk/spm
http://www.csie.ntu.edu.tw/
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training set (i.e., healthy individuals, n = 839) and then 

applied to AD patients (n = 129) and PD patients (n = 160) 

to estimate the brain ages through the GM and WM 

models. A high-level overview of the brain estimated age 

pipeline is provided in Figure 1. 

 

 
 

Figure 1. The pipeline of the T1w MRI-driven brain age estimation 
framework used in this study.  
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Figure 2. Chronological age versus estimated brain age in the training set (n = 839) through 10-fold cross-validation strategy. 
(A) GM model. (B) WM model. The identity line is illustrated with a dashed black line (y = x). 

 

Statistical analysis 

 

To assess the mean Brain-EAD between groups, we used 

analysis of covariance (ANCOVA) with age and sex as 

covariates. Brain-EAD values were compared between 

GM and WM models in AD and PD patients using a 

paired-samples t-test. The association between the Brain-

EAD and clinical parameters was analyzed using partial 

correlation with age and sex as covariates. Statistical 

analyses were conducted using SPSS (Statistical Package 

for Social Sciences) software version 16.0 (IBM, 

Armonk, NY) with p ˂ 0.05 considered significant. 

 
Table 2. Performance of the proposed brain age 

framework in the training set. 

 
 GM WM 

MAE (years) 4.38 4.85 

RMSE (years) 5.46 6.06 
Correlation (r) 0.92 0.91 

Mean Brain-EAD [SD] 0.01 [5.46] –0.05 [6.06] 
 

 

RESULTS 

 

Brain age estimation model in the training set 

 

To assess the brain age in AD and PD patients, we built 

two independent brain age estimation frameworks in the 

training set (n = 839) using GM and WM models. For each 

model, we validated the proposed brain age estimation 

framework based on 10-fold cross-validation. The Brain-

EAD values (mean ± SD) was –0.01 ± 5.46 years for GM 

and –0.05 ± 6.06 years for WM models in the training set. 

The details of the validation of the brain age framework 

are shown in Table 2 while the chronological ages versus 

predicted ages in the training set on the basis of the GM 

and WM models are shown in Figure 2. There was no 

significant correlation between Brain-EAD and 

chronological age for both GM and WM models (GM, r = 

0.02, p = 0.51; WM, r= 0.04, p = 0.20) in the training set.  

 

 

 
Figure 3. Comparison of Brain-EAD values between PD 

patients (blue spot) and AD patients (red spot) for the GM 
and WM models. The mean brain-EAD values of each group is 

illustrated with a solid black line. The reference line is illustrated 

with a dashed black line (y = 0). 

 

Brain-EAD in the AD and PD patients  

 

To compute the Brain-EAD in AD and PD patients, we 

applied the GM and WM voxel intensities obtained from 

AD and PD patients to brain age estimation frameworks 

conducted by the training set. Grouped data plots showing 

the Brain-EAD (in years) for AD and PD patients are 

presented in Figure 3. The Brain-EAD values were as 

follows: PD patients (GM, +1.50 ± 6.03 years; WM, +2.47 

± 5.85 years), and AD patients (GM, +9.29 ± 6.43 years; 

WM, +8.85 ± 6.62 years). Both PD and AD groups 

showed significantly higher Brain-EAD values versus 
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training set (i.e., brain-EAD of 0) for both the GM model 

(PD vs. training set: F = 3.32, p < 0.05; AD vs. training 

set: F = 102.47, p < 0.001; ANCOVA) and the WM model 

(PD vs. training set: F = 9.48, p < 0.001; AD vs. training 

set: F = 79.64, p < 0.001; ANCOVA). The distribution of 

GM and WM Brain-EAD values among the AD and PD 

of subjects is presented in Figure 4. 

 
 
Figure 4. GM and WM Brain-EAD distributions for PD, and 

AD individuals. 

 

Brain-EAD in PD versus AD 

 

The differences and similarities between PD and AD 

patients have been investigated in a series of studies [27, 

36, 37]. Accordingly, we next explored the Brain-EAD in 

PD versus AD patients. The estimated brain age versus 

chronological age among PD and AD patients using both 

the GM and WM models is shown in Figure 5. As reported 

in Section 3.2, both PD and AD patients showed 

significantly higher mean Brain-EAD values versus in the 

training set (PD-GM: +1.50 ± 6.03 years; AD-GM: +9.29 

± 6.43 years; PD-WM: +2.47 ± 5.85 years; and AD-WM: 

+8.85 ± 6.62 years). According to a paired-samples t-test, 

there was no significant difference between GM Brain-

EAD and WM Brain-EAD values (GM mean = 9.29 

years; WM mean = 8.85 years; t(128) = 1.08, p = 0.28) 

among AD patients. In contrast, a paired-samples t-test 

indicated that the WM Brain-EAD (mean = 2.47 years) 

was significantly higher than the GM Brain-EAD (mean 

= 1.49 years) among PD patients (t(159) = 2.75, p = 

0.007). As can be seen in Figure 3, there was a significant 

difference between PD and AD patients in both GM 

values (mean: 1.50 vs. 9.29 years, F = 39.93, p < 0.001, 

ANCOVA) and WM values (mean: 2.47 vs. 8.85 years, F 

= 30.51, p < 0.001, ANCOVA). Indeed, the AD patients 

showed significantly higher Brain-EAD values than PD 

patients in both GM and WM models. The association 

between Brain-EAD and chronological age for PD and 

AD groups is illustrated in Figure 6.  

 

 
 

Figure 5. Chronological age versus estimated brain age among PD patients (blue spot, blue regression line) and 

AD patients (red spot, red regression line). (A) GM model. (B) WM model. The identity line is illustrated with a 

dashed black line (y = x). 

 

Association between Brain-EAD and clinical 

parameters 

 

In this section, we present the correlations between Brain-

EAD and clinical parameters for both AD and PD 

patients. Recently, the associations between Brain-EAD 

and clinical parameters as well as anatomical MRI 

measurements have been investigated in a series of AD 

studies [38]. In this study, we explored the association 

between GM Brain-EAD (because it showed higher 

values than WM Brain-EAD among AD patients) and 

related clinical parameters for AD (i.e., MMSE and GDS). 
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In the PD group, we investigated the association between 

WM Brain-EAD and related clinical parameters for PD 

(i.e., duration of disease, MoCA, GDS, MDS-UPDRS 

Total, MDS-UPDRS Part I, MDS-UPDRS Part I Patient 

Questionnaire, MDS-UPDRS Part II Patient 

Questionnaire, MDS-UPDRS Part III, S&E, UPSIT, 

SCOPA-AUT, SBRs of the left/right caudate, and SBRs 

of the left/right putamen). 

 

 
Figure 6. Brain-EAD values versus chronological age among PD patients (blue spot, blue regression line) and AD 

patients (red spot, red regression line). (A) GM model. (B) WM model. The reference line is illustrated with a dashed 

black line (y = 0). 

 

 

Association between Brain-EAD and clinical parameters 

in the AD group 

 

The results of a partial correlation test between GM Brain-

EAD values and respective clinical parameters among AD 

patients (i.e., MMSE and GDS) with adjustment for age 

and sex are shown in Table 3. There was no significant 

correlation between the Brain-EAD and clinical 

parameters in the AD group. 

 
Table 3. Partial correlation (r) of GM Brain-EAD with  

adjustment for age and sex among AD patients (n = 129) 

 

Variable r p-value 

MMSE –0.08 0.17 

GDS 0.04 0.31 
 

 

Association between Brain-EAD and clinical parameters 

in the PD group 

 

The associations between the Brain-EAD results and the 

clinical parameters in the PD group are shown in Table 4. 

According to the partial correlation test results, the Brain-

EAD values showed a relationship with the MoCA, MDS-

UPDRS Part I, and UPSIT - Total Score (r = –0.15, r = 

0.21, and r = –0.14, respectively; p < 0.05). There was no 

significant correlation between the Brain-EAD values and 

the duration of disease, GDS, MDS-UPDRS Total, MDS-

UPDRS Part I, MDS-UPDRS Part I Patient 

Questionnaire, MDS-UPDRS Part II Patient 

Questionnaire, MDS-UPDRS Part III, S&E, SCOPA-

AUT, SBRs of the left/right caudate, and SBRs of the 

left/right putamen. The associations between the WM 

Brain-EAD values and the clinical parameters that were 

significant among PD patients are shown in Figure 7. 

 

DISCUSSION 

 

Recent studies have confirmed that the use of 

neuroimaging-based data followed by multivariate 

machine learning methods can detect and track brain 

abnormalities in neuropsychiatric patients. Similarly, 

several studies have investigated brain age as a reliable 

biomarker in different brain diseases [15, 17, 22, 28, 31]. 

For instance, in [25], the researchers modeled a GM-based 

brain age estimation framework to investigate the brain 

age values among mild cognitive impairment patients. In 

another study [31], the researchers investigated the 

neuroanatomical age estimation for schizophrenia and 

beyond. They reported an MAE of 4.6 years for HCs and 

mean brain ages of +1.7, +3.1, +4.0, and +5.5 years for 

individuals in at-risk mental states for psychosis, 

borderline personality disorder, major depression, and 

schizophrenia, respectively. 

Similarities and differences between AD and PD have 

been documented in a series of neurological studies based 

on behavioral and psychological aspects [3, 39], 



 Beheshti I., et al                                                                                                                       Brain age in AD and PD 

Aging and Disease • Volume 11, Number 3, June 2020                                                                              625 

 

mechanisms of neurodegeneration [37], and genetics [27]. 

Accordingly, we conducted this empirical study to 

explore the Brain-EAD in PD patients and compare it with 

AD using both GM and WM models. Briefly, our data 

were derived from 1,128 T1w MRI scans from four 

different datasets. To the best of our knowledge, this study 

is the first to estimate brain age through neuroimaging 

(T1w) data in PD patients. The Brain-EAD value of each 

individual was determined by subtraction of the brain 

estimated age from the chronological age. Significant 

differences in the brain ages of PD and AD patients versus 

training set were found for both GM and WM models. 

Regarding the GM model, the mean Brain-EAD values 

were +1.50, and +9.29 years for PD, and AD individuals, 

respectively. Our Brain-EAD results are in line with those 

of a previous brain age study that showed a 10-year 

increase in Brain-EAD in AD patients on the basis of GM 

[14]. In this study, we additionally investigated the Brain-

EAD on the basis of WM for AD. With respect to the WM 

model, the mean Brain-EAD values were +2.47, and 

+8.85 years for PD, and AD individuals, respectively. It 

is worth noting that a larger positive Brain-EAD value 

indicates faster brain aging [14]. Thus, higher mean 

Brain-EAD values among AD patients (for both GM and 

WM models) indicate significantly advanced brain aging 

among AD patients than PD patients (Figure 3). 

Consequently, we can hypothesize that AD patients have 

a significantly “older-appearing” brain than PD patients, 

possibly due to greater brain atrophy among AD patients 

compared with PD patients [40]. In the AD group, 

although the mean GM Brain-EAD value was higher than 

the WM Brain-EAD value (mean: +9.29 vs. +8.85 years), 

there was no significant difference between GM and WM 

Brain-EAD values among AD patients (t(128) = 1.08, p = 

0.28, paired-samples t-test). 

 

 

 
Figure 7. Partial correlations between Brain-EAD results and clinical parameters in the PD group. 

(A) MoCA, (B) MDS-UPDRS Part I, and (C) UPSIT - Total Score. Variables showing a significant 
correlation with Brain-EAD are shown. 

 

With respect to the PD group, the mean WM Brain-

EAD value was higher than the GM Brain-EAD value 

(+2.47 vs. +1.50 years). Furthermore, our statistical 

analysis revealed a significant difference between WM 

Brain-EAD and GM Brain-EAD values among PD 

patients (t(159) = 2.75, p = 0.007, paired-samples t-test). 

Thus, we hypothesized that PD patients would have 

higher WM Brain-EAD values than GM Brain-EAD 

values.  

We additionally explored the association between the 

Brain-EAD values and the clinical parameters among AD 

and PD patients. Among AD patients, there was no 

significant correlation between Brain-EAD values and the 

respective clinical parameters (i.e., MMSE and GDS), 

possibly due to the small range of variables. With respect 
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to PD patients, we observed a significant correlation 

between Brain-EAD values and the MoCA, MDS-

UPDRS Part I, and UPSIT. Given the lack of significant 

correlations in measures specific to motor symptoms (e.g., 

MDS-UPDRS Part II and III), the Brain-EAD values 

appear to be related to non-motor symptoms in PD (e.g., 

abnormal smelling, dyscognition). Thus, we speculate 

that Brain-EAD might be a candidate biomarker for non-

motor symptoms in PD. However, the correlation values 

are generally not high, and their significance should thus 

be carefully interpreted. 

 
Table 4. Partial correlation (r) of WM Brain-EAD values with clinical parameters among PD patients with 

adjustment for age and sex (n = 160). 

 
Variable r p-value Variable r p-value 

Duration of disease –0.06 0.19 S&E –0.12 0.05 

MoCA –0.15 0.04 UPSIT - Total Score –0.14 0.04 

GDS –0.13 0.43 SCOPA-AUT 0.02 0.42 

MDS-UPDRS Total 0.06 0.23 SBR–Left Caudate 0.01 0.48 

MDS-UPDRS Part I 0.21 0.005 SBR–Right Caudate –0.04 0.27 

MDS-UPDRS Part I Patient 

Questionnaire 

0.02 0.42 SBR–Left Putamen 0.02 0.39 

MDS-UPDRS Part II Patient 

Questionnaire 

–0.02 0.40 SBR–Right Putamen –0.12 0.06 

MDS-UPDRS Part III 0.06 0.06    
 

Note: Variables with a significant correlation (i.e., p < 0.05) with Brain-EAD are in bold. 

 

In this study, we compared Brain-EAD values 

between the two most common neurodegenerative 

diseases (i.e., PD and AD), which show substantial 

overlap in clinical representation, pathology, and genetics 

[26, 27]. Nevertheless, some limitations should be 

considered in this study. First, voxel-wise brain age 

frameworks require a very large number of T1w MRI 

scans from HCs in order to build a robust prediction 

model. To overcome this aspect, the voxel-wise brain age 

frameworks use the MRI scans from different sites[14, 34, 

41]. This point might be considered as a potential 

weakness,  because it was shown that MRI measurements 

are influenced by scanner characteristics and imaging 

protocol [42, 43]. However, some of the site effects could 

be ameliorated using a common pre-processing pipeline 

for all data (notably, creating a customize DARTEL 

template). Second, the comparison of different 

neurodegenerative diseases is complicated because their 

disease progressions vary, and no common scales can 

assess them. Finally, the effect of lifestyle was not 

considered in our brain age frameworks, as it has 

previously been demonstrated that lifestyle factors such as 

metabolic syndrome and alcohol abuse in men and healthy 

liver and kidney functions and an adequate nutrition in 

women may significantly affect brain aging [24]. We 

suggest that future studies investigate the associations 

between behavioral and psychological symptoms of 

dementia, such as anxiety, depression, apathy, and 

hallucinations, and brain age estimations for patients with 

AD and PD. 

Conclusion 

 

In this study, we compared neurological age between AD 

and PD patients based on robust brain age estimation 

frameworks with T1w MRI scans. Brain-EAD values 

were significantly increased in both AD and PD patients 

compared with the training set, with AD patients showing 

higher values than PD patients in both GM and WM 

models. The greater deviation from normality of AD 

patients suggests that AD patients have a significantly 

“older-appearing” brain compared with PD patients. We 

also observed a significant correlation between the Brain-

EAD and the MoCA, MDS-UPDRS Part I, and UPSIT. 
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